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Abstract

Keystroke dynamics are a powerful behavioral biomet-

ric capable of determining user identity and for continu-

ous authentication. It is an unobtrusive method that can

complement an existing security system such as a password

scheme and provides continuous user authentication. Ex-

isting methods record all keystrokes and use n-graphs that

measure the timing between consecutive keystrokes to dis-

tinguish between users. Current state-of-the-art algorithms

report EER’s of 7.5% or higher with 1000 characters. With

1000 characters it takes a longer time to detect an imposter

and significant damage could be done.

In this paper, we investigate how quickly a user is au-

thenticated or how many digraphs are required to accu-

rately detect an imposter in an uncontrolled free-text envi-

ronment. We present and evaluate the effectiveness of three

distance metrics individually and fused with each other. We

show that with just 100 digraphs, about the length of a sin-

gle sentence, we achieve an EER of 35.3%. At 200 digraphs

the EER drops to 15.3%. With more digraphs, the perfor-

mance continues to steadily improve. With 1000 digraphs

the EER drops to 3.6% which is an improvement over the

state-of-the-art.

1. Introduction

With the increase of sensitive and private data being

stored online and on computers, protecting data has never

been more important. Many devices requiring only a

password or other form of one-time authentication can be

breached or hacked by exploiting knowledge-based authen-

tication [4]. Another form of authentication is needed to
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Typed Text Characters

Average tweet length 60-70

Average sentence 75-100

Phishing email 120

Average Facebook post 155

Maximum tweet length 280

Gettysburg Address 1450

Nigerian prince emails 1500-2500

Table 1. Estimates of character counts in different typed texts

[9, 16, 22]. The dashed line separates texts with fewer than 1000

characters. Classification algorithms that require 1000 characters

for intruder detection may miss attacks.

confirm that the user at the device is really the authorized

user, on an ongoing basis.

Keystroke dynamics are a behavioral biometric method

offering strong performance for continuous user authentica-

tion [24, 25]. It is important to note that keystroke dynam-

ics should not replace traditional authentication schemes,

but rather complement existing ones. Keystroke dynam-

ics are an extra layer of security that continuously authen-

ticate users. If a user is logged into a device and some-

body else starts using the device, it may be possible to de-

tect an intruder and lock them out before serious damage

can be done. This continuous authentication layer, not only

provides extra security, but is also unobtrusive. Another

strength of this additional security layer is that users need

not change their routine behavior for the system to function.

Furthermore, most computers already have a keyboard, so

there is no requirement for additional hardware.

Many keystroke algorithms have been proposed us-

ing various techniques including hidden Markov models

(HMM) [1], support vector machines (SVM) [26], and ker-

nel density estimation (KDE) [7, 12]. Most algorithms are

tested on a somewhat controlled dataset where users are

given guidance on what to type. This guidance can range

from giving users exact passages to type, to providing spe-



cific questions to answer. Less work has been done on

datasets that are completely uncontrolled with no restric-

tions on user activity or typing behavior [12]. This scenario

is of interest to us because it most closely resembles typ-

ical user behavior. In an uncontrolled environment, users

could be switching between writing an essay, answering

email, coding, playing video games, and many other activi-

ties without providing any explicit cues. Huang et al. inves-

tigated effects on the performance of free-text systems after

removing what they called “gibberish” [13]. They noted

that a possible explanation for some of the gibberish could

be video games or other non-traditional text input activities.

However, this type of behavior may be key to characterizing

the user, making gibberish filtering subjective and likely to

be different for each user as well as being hard to implement

in a real-time system. For this paper no “gibberish” filter-

ing is done to ensure all keystrokes are truly representative

of user behavior.

In uncontrolled free-text environments, as expected,

most algorithms perform worse overall [12]. For exam-

ple, while multiple algorithms for keystroke dynamics us-

ing features only from passwords have high degrees of suc-

cess (EER’s under 1% with ≤ 30 fixed characters) [24], al-

gorithms for strong performance on uncontrolled datasets

need 500, 1000 or even more characters [2, 10, 11]. On

average, one thousand characters is 10 sentences, 4 maxi-

mum length tweets, or a lengthy email that can be used for

phishing (See Table 1). To enable faster and more frequent

authentication, it is desirable that intruder detection be per-

formed with much fewer characters, for example, on the

order of a hundred. A system requiring 100 characters can

detect intruders 10 times faster and thus 10 times more often

than a system using 1000 characters. This enables contin-

uous authentication systems to detect imposters far faster,

better protecting user data.

In this paper, to investigate performance of keystroke

dynamics with fewer keystrokes, we propose a modifica-

tion on three existing digraph based algorithms. The first

algorithm uses kernel density estimation (KDE) to derive

a distance score between the reference and test empirical

probability density functions (PDFs) [12]. This algorithm

has achieved a great deal of success for long free-text, 1000

digraphs in the testing sample, and is comparable to other

state-of-the-art algorithms [12]. The second algorithm is

based on the Kolmogorov-Smirnov (KS) test and compares

the cumulative distribution functions (CDFs) between the

digraphs for the reference users and test users producing a

similarity score. This metric has been previously used for

larger test samples (≥650 digraphs), but not yet for smaller

test samples (≤500 digraphs) [18]. The last algorithm uses

an energy metric to compute a difference score between the

reference and test PDFs. We perform fusion with differ-

ent combinations of these distance metrics to evaluate our

keystroke dynamics algorithms, individually and fused.

The rest of this paper is organized as follows. Section

2 describes the three metrics used. A brief summary of

the uncontrolled free-text database used in this study and

our results are provided in Section 3. The algorithms are

evaluated using ROC curves, each computed with different

amounts of digraphs in the testing sample. Fewer digraphs

in the testing sample means the algorithm is faster. Finally,

concluding remarks are presented in Section 4.

2. Algorithms

In this section, we focus on three distance metrics that all

rely on the distributions of digraphs, i.e., the frequency of

occurrences of a given digraph versus flight time. Digraphs

are the flight time between consecutive key-down presses

and are commonly used in keystroke dynamics [24]. In con-

trast to the study in [21], we do not consider all digraphs as

a single feature but instead treat them independently.

These three algorithms rely on statistical approaches that

exploit similarities or differences in the empirical probabil-

ity functions (PDF’s) or the empirical cumulative distribu-

tion functions (CDF’s). The PDF’s and CDF’s are generated

from the distributions of digraphs, occurrence versus flight

time. The CDF’s are created as follows:

CDF (x) =
1

N

N
∑

i=1

Ixi<x, (1)

where N is the number of samples used to recreate the dis-

tribution, x is the flight time of the digraph, and IA is the

indicator function on event A [17]. The CDF’s are created

for the reference user from their training data and for the

test user from a sample of testing data. The algorithms only

compute CDF’s when there at least four of the same digraph

present in the sample, which provides a reasonable estimate

of the CDF under ideal circumstances [12].

2.1. Kernel Density Estimation

The kernel density estimation (KDE) algorithm used in

this paper is a modified version of the algorithm proposed

in [12]. KDE is a non-parametric method used to estimate

the PDF of a random variable. Here, it is used to create a

PDF of the flight-times for each digraph from a finite num-

ber (> 4) of samples [20]. If there are less than four occur-

rences of a digraph in either the training sample or testing

sample, that graph is not used. Given N > 4 samples of

each digraph, the PDF is estimated at a point y within a

group of points xi; i = 1, . . . , N as

Pk(y) =

N
∑

i=1

K

(

y − xi

h

)

, (2)



where K(x;h) is a kernel function controlled by the band-

with parameter h. We are using Gaussian kernel functions

where K(x;h) ∝ exp
(

−x2/2h
)

. Pk is estimated for both

the training and testing data from the N digraph samples

present. We used the python library scikit-learn’s imple-

mentation of Gaussian KDE for PDF estimation [19]. Once

the PDFs are estimated, the absolute difference of the PDFs

for training and testing samples is calculated, summed, and

then averaged across all the different digraphs to produce

one scalar value. This averaged scalar value is a dissimi-

larity score between the training and testing samples. If the

score is above a certain threshold, authentication fails.

2.2. Kolmogorov­Smirnov

The Kolmogorov-Smirnov (KS) test is a non-parametric

statistical test used for comparing two independent or non-

related samples [6]. The KS test computes the maximum

absolute distance between two empirical cumulative distri-

bution functions (CDFs) to give the quantity

K = max

x
|CDFtrain(x)− CDFtest(x)|. (3)

The empirical CDF is computed from the samples in the

training and testing samples. A p-value is generated from

the distance score using K and the data in the training and

testing samples as

p = s

(

K

√

n1n2

n1 + n2

)

, (4)

where s(u) = exp (−2u2) [14], and n1 and n2 are the

number of data points in the training and testing samples,

respectively.

For a graph with only a few samples in the testing profile,

the probability returned from the KS test is high regardless

of whether the user is an imposter or not. To avoid this

problem, only digraphs with four or more samples in both

the training and testing data are used.

The scipy Python library is used to perform the KS test

and generate the p-values with the stats.ks 2samp()

function [8]. The p-values from each shared graph between

training and testing samples are averaged together. This

averaged p-value serves as a similarity score between the

training and testing samples. If the score is below a certain

threshold, the user is not authenticated and must authenti-

cate themselves through other means.

2.3. Energy Distance

Energy statistics are functions of distances between sta-

tistical observations in metric spaces [23]. The energy dis-

tance is a non-parametric statistical test for comparing two

distributions defined as

E =

[

∑

x

{CDFtrain(x)− CDFtest(x)}
p

]
1

p

(5)

When p = 2, the energy distance becomes the Cramer

distance [3]. The energy distance is calculated for each

graph that has four or more occurrences. The energy dis-

tance is a dissimilarity score and the closer the energy

distance is to zero, the closer the two distributions are.

The energy scores are averaged together for all shared

graphs between training and testing samples. The test user

is then either authenticated or deemed an imposter from

the average energy score. The energy distance is com-

puted using the python library, scipy, with the command

stats.energy distance() [8].

2.4. Distance Metric Fusion

To improve authentication accuracy at fewer keystrokes,

we fuse the metrics from the three algorithms discussed pre-

viously. We compare different sets of fused metrics that use

the KS, KDE and energy metrics one-at-a-time, in sets of

two metrics, and all three metrics. This results in a total of 7

different classifiers. We consider two different fusion meth-

ods and report ROC curves for each. The first fusion method

requires all three metrics to authenticate the test user for au-

thentication. The second fusion method authenticates the

test user when two or more of the three metrics authenticate

the test user (“majority rules”). This fusion method is equiv-

alent to a majority voting scenario. When only two metrics

are fused the fusion decision requires both metrics to au-

thenticate the user. Through fusion of the distance metrics

we expect increased performance when the metrics contain

independent information, i.e. the metrics are measuring dif-

ferent differences between users.

3. Evaluation and Results

In this section, we describe the dataset and the methods

used to evaluate our algorithms, and compare our results

to state-of-the-art algorithms. Results with testing samples

ranging from 100 to 1000 digraphs are shown to demon-

strate our algorithms fast performance and to best compare

our algorithm to existing state-of-the-art algorithms. All

methods of distance metric fusion are performed for the dif-

ferent testing sample sizes for a fair comparison.

3.1. Dataset

The data used for this study is the Clarkson II keystroke

dataset collected through a study conducted at Clarkson

University [15]. There are 103 users in the study and they

contributed a combined 12.9 million keystrokes. To the best

of our knowledge, this dataset is the largest available where

an average user has 125k keystrokes. The keystrokes were

recorded as long as the program was running regardless of

application or context. Users had the option of temporarily

disabling the keylogger to protect their private information.

Previous work on this dataset shows that the performance

of algorithms can be improved by cleaning up “gibberish”



keystrokes from the data [13]. The authors coined the term

“gibberish” to describe non-traditional typing behavior. A

possible explanation for some of the “gibberish” is video

game usage, coding, or other activities where keystrokes are

not representative of traditional text entry practices such as

writing an essay. Filtering out this “gibberish” might also

result in losing some important user behavior or artificially

even increasing performance. To ensure data is representa-

tive of a real-world setting, no “gibberish” filtering is done

in this work.

3.2. Methods

One common approach to user authentication in

keystroke dynamics is to use n-graphs and often only di-

graphs [24]. An n-graph is the timing between n consecu-

tive keystrokes. In this work, we use n = 2, and a 2-graph is

more commonly referred to as a digraph. Digraphs are cal-

culated by looking at every pair of consecutive keystrokes.

The flight times for the digraphs are calculated by subtract-

ing the ith and ith − 1 keystrokes. Digraphs that occur

over half a second apart are filtered out because it is likely

the user has walked away from the keyboard or is not typ-

ing continuously. To ensure adequate data only users with

at least 10,000 digraphs are used which leaves 79 users.

The testing samples are randomly selected subsets of the

10,000 digraphs with 100, 200, 500, or 1000 consecutive

digraphs. The training sample becomes 9000 of the remain-

ing digraphs to ensure for each test sample size the same

amount of training data is present. To better generalize re-

sults across our data, Monte Carlo analysis and cross val-

idation is used with 20 random subsets of the data. Each

subset contains different training and testing digraphs. This

shows our results do not depend on particular subsets of the

data and are in fact representative of the entire dataset.

The simulations were run on a computer with an Intel

core i5 processor and took about one hour per Monte Carlo

iteration. In each iteration, the model was retrained be-

fore testing, which led to the simulation taking consider-

able time. Each user was tested against themselves and all

other users for every iteration. This results in many more

imposter attacks, however, results are averaged when com-

puting false accept and false reject rates so there is no ad-

verse effect on error rates. With 79 users this equates to

79 genuine user attempts and 78 × 79 imposter attacks per

Monte Carlo iteration. It is important to note that for every

iteration, the training and testing data was different and all

calculations were redone. Additionally, code was required

to perform the random sampling of the dataset adding to

total time of the simulation. The authentication algorithms

by themselves are not that computationally expensive and

could be implemented in real time for a single user with

pre-collected training data.

Classification algorithms are used to detect if a user at

a keyboard is the authorized user or an intruder/imposter.

We use seven combinations of distance metric fusion for

the classifiers as described in Section 2.4. The algorithms

use data from the Clarkson II keystroke dataset. In what fol-

lows, the classification results are presented for the metrics

individually and fused together.

3.3. Individual Metric Results

Figures 1, 2, and 3 show the ROC curves for the KDE,

KS, and Energy algorithms, respectively. The KDE and En-

ergy algorithms were the best performers, both with very

similar performance. This result is consistent with previous
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Figure 1. ROC curves for the KDE based algorithm with 100, 200,

500, and 1000 consecutive digraphs in the testing sample. As the

testing sample size increases, the performance improves. For 100

digraphs in the testing sample, the EER is 35.8%.
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Figure 2. ROC curves for the KS based algorithm with 100, 200,

500, and 1000 consecutive digraphs in the testing sample. As the

testing sample size increases, the performance improves. For 100

digraphs in the testing sample, the EER is 40.3%.
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Figure 3. ROC curves for the Energy based algorithm with 100,

200, 500, and 1000 consecutive digraphs in the testing sample. As

the testing sample size increases, the performance improves. For

100 digraphs in the testing sample, the EER is 36.1%.

works where the KDE based algorithm performed strongly

in uncontrolled free-text environments [12]. The KS algo-

rithm has the worst overall individual performance although

not much worse than KDE or Energy. The KDE and energy

algorithms perform similarly since both metrics are calcu-

lated as a difference between an empirical PDF or empirical

CDF of the same data. Figure 4 clearly shows the similar-

ity between the KDE and Energy metrics. The two ROC

curves are almost identical, only deviating slightly in a few

locations. This is expected as the two metrics are computed

very similarly, one from the absolute differences in training

and testing PDF’s and the other from the absolute differ-

ences in training and testing CDF’s. Testing samples above

100 digraphs are even more similar and have less slight de-

viations. For the the rest of the paper, due to the similarity of

the performance of the metrics, only the performance of the

KDE algorithm is shown in the plots. We should note here

that although the KDE and Energy metrics perform simi-

larly, they are not identical. Therefore, the majority rules

fusion rule (see Section 2.4) does not simply follow the per-

formance of the KDE algorithm.

The ROC curves for smaller amounts of testing data (100

digraphs in testing sample) do not start at the origin, but at

approximately 15% true accept rate and 21% false accept

rate. This is not a problem for larger amounts of digraphs

in the testing sample and the ROC curves start at the origin

as to be expected. For 100 digraphs, the ROC curve does

not begin at the origin because there are not always at least

four or more of the same digraph present in testing sam-

ple that are also present in the reference users training sam-

ple. For this experiment, when our algorithm does not have

enough information to make a decision it always accepts

the test user. We believe the ROC curve does not begin at
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Figure 4. ROC curves for the KDE and Energy based algorithm

with 100 consecutive digraphs in the testing sample. The two met-

rics are very similar with only slight deviation in few locations.

an equal true accept and false accept rate because when the

test user is the reference user, it is more likely they have

typed similar topics and words as contained in their train-

ing data. Whereas, imposters are less likely to have typed

about the same topics and used the same words. However,

because this is free-text keystroke dynamics and we are us-

ing enough data, the rates only differ by a few percent. If

less data was used for training, it is possible the ROC curve

would begin at a much higher false accept rate than true

accept rate. As the amount of data used to for training in-

creases we would expect to eventually have enough samples

for every conceivable digraph and the ROC curve would be-

gin at equal false accept and true accept rates.

Figure 5 shows the statistics of the digraphs from each

of the different sizes of testing samples. Not surprisingly,

as the testing sample size increases, more of the same di-

graphs occur with a higher frequency. With fewer digraphs

in the testing sample, the probability of getting at least four

of the same digraph is much lower than with a larger test

sample. Additionally, if a digraph occurs four more times

in the testing sample that digraph may not have four or more

occurrences in the reference users training data. This is due

to only 9000 digraphs present in the training sample. More

data, while likely to eliminate this effect, is impractical to

collect in a real time system as the training phase would be

far too time consuming. If no digraphs can be compared,

the test user is assumed to be the reference user causing the

ROC curve with 100 digraphs not to start at the origin.

3.4. Results with less than 500 testing digraphs

Figures 6 and 7 compare the performance of the three

metrics individually, fused in pairs, and fused all together,

with 100 and 200 digraphs in the testing sample. Both fu-



Figure 5. Frequencies of repeated digraphs from 100, 200, 500,

and 1000 digraphs in the testing sample. The dashed black line

distinguishes between digraphs that occur less than 4 times and

digraphs that occur 4 or more times. Having ≥4 digraphs allows

the algorithms to compute a CDF. As the testing sample size in-

creases it becomes more likely the testing sample will contain a

digraph that occurs 4 or more times.

sion metrics described in Section 2.4 are used for fusing the

three algorithms. The KDE and Energy algorithms perform
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Figure 6. ROC curves for the KDE and KS metrics used for clas-

sification individually, fused in pairs, fused together with all three

metrics authenticating, and fused all together with majority rules,

with 100 digraphs in the testing sample. Their EER’s are 35.8%,

40.3%, 37.0% (KDE and KS), 35.1% (KDE and Energy), 35.9%

(all 3 authenticate), and 35.3% (majority rules) respectively.
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Figure 7. ROC curves for the KDE and KS metrics used for classi-

fication individually, fused in pairs, fused together with all three

metrics authenticating, and fused all together with at least two

of three authenticating, with 200 digraphs in the testing sample.

Their EER’s are 15.9%, 25.7%, 21.3% (KDE and KS), 16.0%

(KDE and Energy), 19.4% (all 3 authenticate), and 15.3% (ma-

jority rules) respectively.

almost identically, as seen in Figure 4, and do not benefit

much from fusing with each other. For testing samples of

both 100 and 200 digraphs, fusing KS with KDE results in

a lower EER that KDE alone.

For 100 digraphs in the testing sample, the ROC curves

show that KDE fused with KS leads to higher true posi-

tive rates at lower false accept rates and lower true positive

rates at higher false accept rates. The majority rules fu-
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Figure 8. ROC curves for the KDE, and KS metrics used for clas-

sification individually, fused in pairs, and fused all together, with

500 digraphs in the testing sample. Their EER’s are 6.3%, 12.8%,

10.1% (KDE and KS), 6.8% (KDE and Energy), 8.7% (all 3 au-

thenticate), and 6.6% (≥2 of 3 authenticate) respectively.

sion classifier, requiring at least two of the three metrics to

authenticate the test user, outperforms KS combined with

KDE. Finally, the fused classifier requiring all three met-

rics to authenticate the test user performs best at low false

accept rates, but is beaten by the majority rules fusion at

higher false accept rates. This is expected since having all

three metrics agree on authentication reduces the number of

accepts, including false accepts. It should also be noted that

the majority rules method is less strict on acceptance when

compared to requiring all three metrics to authenticate. The

majority rules method, therefore, is the best performer at

higher true accept rates. It is a design consideration to se-

lect the fusion method to implement. For example, if se-

curity is desired (low false accept rates), then choosing the

fusion method where all three metrics authenticate the test

user is the better algorithm choice. Regardless of algorithm

preference the EER with 100 digraphs in the testing sample

will be around 35%.

For 200 digraphs in the testing sample, fusing KS with

KDE yields worse overall performance than KDE individ-

ually. The fusion method requiring all three metrics to

authenticate the test user also performs worse than KDE

alone. Fusing all three metrics using majority rules out-

performs KDE individually and is the best performing al-

gorithm achieving an EER of 15.3%.

3.5. Results with greater than 500 testing digraphs

Figures 8 and 9 compare the performance of the three

metrics individually, fused in pairs, and fused all together,

with 500 and 1000 digraphs in the testing sample. As with

the cases of less than 500 digraphs in the testing sample,

the KDE and Energy algorithms perform similarly and do
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Figure 9. ROC curves for the KDE, KS, and Energy metrics used

for classification individually, fused in pairs, and fused all to-

gether, with 1000 digraphs in the testing sample. Their EER’s are

4.0%, 7.0%, 5.4% (KDE and KS), 4.0% (KDE and Energy), 5.2%

(all 3 authenticate), and 3.6% (≥2 of 3 authenticate) respectively.

not benefit from fusing with each other. KS is the worst

overall performing metric and fusing KS with KDE yields

worse overall performance than KDE individually. The fu-

sion method requiring all three metrics to authenticate the

test user also performs worse than KDE alone.

For 500 digraphs in the testing sample, fusing all three

metrics with majority rules provides the best overall per-

formance at lower false accepts rates while at higher false

accept rates, KDE individually performs very similarly.

Majority rules fusion performs best, achieving an EER of

6.6%. Compared in [12], three state-of-the-art algorithms,

KDE based [12], Gunetti and Picardi’s [10], and Buffalo’s

SVM [5] algorithms, achieved EER’s of 7.6%, 10.3%, and

15.7% respectively with 1000 keystrokes for the Clarkson II

dataset. With 500 digraphs in the testing sample, our fused

metric classifier achieves an EER just below the state-of-

the-art systems. This demonstrates the ability of our classi-

fier to quickly authenticate users, or authenticate users with

half as many digraphs as in the state-of-the-art. For 1000

digraphs in the testing sample, fusing all three metrics with

majority rules provides the best overall performance. An

EER of 3.6% is achieved using the majority rules fusion

method, which is a significant improvement over the state-

of-the-art performance of an EER of 7.6% [12].

In Figure 10, we plot the EER for both of the fused dis-

tance metrics vs. the number of digraphs used for testing.

With fewer then 80 samples, a stable EER cannot be calcu-

lated due to lack of data in the testing samples. Performance

improves rapidly as we increase the number of digraphs

from 80 to 300. As the number of digraphs continue to in-

crease, performance improves, but slowly. For almost every

amount of digraphs in the test sample, the fusion method re-
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Figure 10. EER versus test sample size for fusion of the three al-

gorithms with both fusion methods. For fewer than 80 digraphs,

the performance is not reliable and an EER value was not gen-

erated. The fusion method where all three metrics are required

to authenticate the test user appears to have a worse overall EER

than the fusion method requiring only two of the three metrics to

authenticate the test user for all testing samples with more than

100 digraphs.

quiring at least two of three metrics to authenticate the test

user has a lower EER than the fusion method where all three

metrics are required to authenticate the test user. With fewer

than 100 digraphs in the testing sample, the EER is lower

for the all three metric authentication fusion method. At 100

digraphs, we observed a trade-off between false accept rates

and true positive rates for both fusion methods. Choosing

the best performing algorithm for testing samples of size

100 or fewer, will depend on the desired system. For testing

sample sizes of 100 or more digraphs the fusion method re-

quiring at least two of the three metrics to authenticate the

test user is the best performer.

4. Conclusions and Future Work

In this paper, we present three metrics for fast intruder

detection using keystroke dynamics. In systems presented

in literature, for good performance, around 1000 keystrokes

are required. However, this leaves these systems vulnera-

ble during short activities such as tweeting and composing

short emails, about the length used for phishing attacks. To

improve both the speed and frequency of authentication, we

focused on testing samples with less than 1000 digraphs.

We investigated the performance of kernel density estima-

tion (KDE), Kolmogorov-Smirnov (KS), and Energy algo-

rithms as individual metrics, fused in pairs, as well as all

three fused. Table 2 shows EER’s for the different fusion

methods with 100, 200, 500, and 1000 digraphs in the test-

ing samples. For the fused metrics, due to their ROC curves

Fusion Method
EER from # of test digraphs

100 200 500 1000

KS alone 40.3% 25.7% 12.8% 7.0%

KDE alone 35.8% 15.9% 6.3% 4.0%

KDE and KS 37.0% 21.3% 10.1% 5.4%

KDE and Energy 35.1% 16.0% 6.8% 4.0%

All 3 agree 35.9% 19.4% 8.7% 5.2%

Majority Rules 35.3% 15.3% 6.6% 3.6%

Table 2. EER’s for the different fusion methods for 100, 200, 500,

and 1000 digraphs in the testing sample. Due to the similar per-

formance between the KDE and Energy metrics, Energy alone and

Energy fused with KS are not reported. Majority rules is overall

the strongest performing fusion method.

intersecting with 100 or fewer digraphs in the testing sam-

ple, to choose the better fused algorithm the EER should not

be the only factor considered. The choice will also depend

on whether the desired system should favor security or con-

venience. With only 100 digraphs in the testing sample the

performance is not very strong. Our results improve with

more digraphs in the testing sample.

In addition to our algorithm’s promising performance for

fast intruder detection, our fused classifier’s performance

is an improvement over existing state-of-the-art algorithms.

With 1000 digraphs in the testing sample, the majority

rules classifier achieves an EER of 3.6%. This is a sig-

nificant improvement over other state-of-the-art algorithms

with EER’s of 7.6%, 10.3%, and 15.7% with 1000 digraphs

in the testing sample [12]. With 500 digraphs in the test-

ing sample the majority rules fusion classifier achieves an

EER of 6.6%. Our classifier achieves slightly better per-

formance over existing state-of-the-art methods with half

as much data enabling faster and more frequent authentica-

tion. With 200 digraphs in the testing sample the EER rises

to 15.3% with the majority rules fusion classifier. While the

EER at 200 digraphs may be too large to be implemented as

is, our continuous security layer can now authenticate with

20% of the data and 5 times as often when compared to

previous state-of-the-art systems.

In this paper, two fusion methods were used: one where

all metrics agree on a decision, and another where a ma-

jority two out of three metrics agree. Future work involves

exploring other fusion methods. These include weighted fu-

sion and optimizing fusion with neural networks and deep-

learning. With 100 digraphs used for testing, there was not

one ROC curve that was the best. Devising new metrics

and fusions schemes that will provide improvements on the

methods presented in this paper will also be investigated.

Other avenues of future research include investigation of n-

graphs for n > 2, and analyzing the effects of prior and

future keystrokes to improve authentication models.
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