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Abstract

We propose a new biometric feature based on autocorre-

lation using an end-to-end trained network to capture hu-

man gait from different viewpoints. Our method condenses

an unbounded image stream into a fixed size descriptor, and

capitalizes on the periodic nature of walking to leverage se-

quence self-similarity. Autocorrelation is invariant to start

or end of the gait cycle, can be efficiently computed on-

line, and is well suited for capturing pose frequencies. We

demonstrate empirically that under equal settings an auto-

correlation network provides a more complete representa-

tion for gait than existing work, resulting in improved per-

son re-identification performance.

1. Introduction

Person re-identification from gait aims to re-identify

people who walk based on motion patterns from video,

without information about people’s visual appearance. Re-

identifying people at real-time speeds is of paramount im-

portance for numerous applications, including surveillance,

activity understanding, and anomaly detection.

The sequence of images of a walking person captures

their gait, and throughout this paper we refer to gait as the

cyclic motion that repeats at a stable frequency [5]. The na-

ture of video surveillance makes gait particularly appealing

to handle subjects that are seen from a distance. However,

the problem is challenging due to changes in viewpoint, ap-

pearance (clothing, accessories, and background), walking

speed, and duration [9, 17, 28].

Re-identifying people by gait complements appearance-

based methods. Appearance-based methods utilize infor-

mation from one or multiple images but the order is often

not relevant. Invariance to order in time makes appearance

methods focus on the overall shape of a person and the dif-

ferent poses attained at different times of the walking cycle,

This material is based upon work supported by the National Science

Foundation under Grant No. 1513816.

Figure 1: Top: Silhouette sequence sampled at different

time steps. Bottom: Sequence autocorrelation for varying

time lags. Autocorrelation at time lag zero is equivalent to

the Gait Energy Image, while other time lags capture addi-

tional aspects of gait.

without specific knowledge of when in the cycle a particular

pose is attained. In contrast, gait captures patterns which

describe how the shape and pose of a person change over

time. This class of methods is oblivious to how a person

looks but instead it requires a sequential ordering of frames

to identify people through changes in appearance induced

by their motion. This is particularly useful when people

have roughly the same shape and outfit, like sport players,

and who can be disambiguated only while walking.

Simple and effective methods like the Gait Energy Im-

age (GEI) have become popular gait descriptors over the

last several years, and more recently supervised learning

methods have shown improved gait identification accuracy

with the availability of larger datasets. Existing methods

however resort to a pre-processing step before training and

inference, to segment and sample one walking cycle from

a walking sequence. Additionally, the motion patterns,

whether learned or engineered, do not capture repetitive

motion information explicitly.

In this work we propose to re-identify people walk-

ing based on their gait patterns using the concept of auto-

correlation, that is, the similarity of a temporal signal with
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its time-shifted self. We treat the intensity of each fea-

ture map pixel over time as a signal whose pattern reveals

gait traits, and the combination of such signals over the en-

tire image domain allows us to learn a representation of

gait across individuals (Figure 1). Computationally, auto-

correlation can be implemented efficiently using the Fast

Fourier Transform and it can be updated online through re-

cursive estimation. Additionally, our feature can be learned

or hand-crafted from any set of raw data observations or in-

termediate representations. Further, autocorrelation is able

to convert walking sequences of variable length into a fixed-

size feature, without resorting to pre-processing techniques.

In our analysis we also show that the popular GEI descrip-

tor can be viewed as a special case of autocorrelation when

the input is a sequence of binary silhouettes, and we demon-

strate that under equal settings autocorrelation outperforms

existing gait representations.

2. Related Work

Many existing approaches to person re-identification

(ReID) by gait are based on two assumptions [5]. The

first is that the sequence of configurations for human walk-

ing is similar across most people—that is, in general their

arms and legs tend to swing forward and backward in sim-

ilar ways during walking [5]. The second assumption is

that, these similarities notwithstanding, there are differ-

ences across people, such as those in the length of the arms

and legs, the shape of the body, and the period and detailed

sequence of the walking cycle configurations [5].

Features for gait recognition can be extracted from each

frame and concatenated into a corresponding feature se-

quence [3, 5, 15, 25]. Alternatively, some methods use a

feature extracted from the correlation of a set of frames

without considering order [5, 8]. Gait recognition then

requires defining a gait feature and a method to compare

features, which can be implemented either using statistics

about a feature sequence or by comparing frame-level fea-

tures from a feature sequence that is time-normalized by

the walking cycle period [5]. We take a statistics-based ap-

proach, using autocorrelation to fix the length of our feature

vector in time without requiring the detection of the gait pe-

riod.

A recent article [1] studied best practices for ReID,

based on an experimental comparison of different meth-

ods. Largely, approaches are either generative or discrim-

inative. From a pair of co-identical gait features from dif-

ferent viewpoints the generative methods first generate the

features for the same viewpoint to enable better matching

[11, 18, 28]. However, generative approaches are focused

on the accuracy of the generated gait features rather than

their discrimination capability [28]. By contrast, discrimi-

native approaches focus on optimizing discrimination capa-

bility across viewpoints. This is done by learning a discrim-

inative feature or metric and is typically implemented with

machine learning.

The Gait Energy Image (GEI), or averaged silhouette, is

the most commonly used gait feature [5, 28]. This feature

was thus named for several reasons. First, each frame-level

silhouette gives a space-normalized energy image for the

person walking at that time-step. Next, the GEI gives the

“time-normalized accumulative energy image” for the com-

plete walking cycle of the person. Finally, the GEI can be

interpreted such that pixels of higher intensity (energy) cor-

respond to more frequent positions of the person walking.

While the GEI is the most common gait feature, a sur-

vey [16] describes other energy-based features for gait.

These methods require extracting the gait period and many,

including GEI, do so by employing the concept of autocor-

relation. Our work avoids the need for detecting the gait pe-

riod by building on approaches that leverage autocorrelation

[12, 27] directly to compute a fixed-size feature from any in-

termediate representation, even those with varying extents

in space and time.

As discriminative methods that use CNNs have become

increasingly popular, several gait recognition methods have

shown improvement of a CNN-based approach over a base-

line without a CNN [26, 28, 31].

Recent progress has been made using deep learning and

residual networks [6], and learning hierarchical discrimina-

tive features with several levels of granularity [30]. Siamese

convolutional neural network (SCNN) approaches use two

parallel CNNs that share parameters and a loss considering

co-identical and non co-identical pairs of features [32]. In

[28] a simple CNN is used with gait energy images (1in-

GEINet) to achieve state-of-the-art Rank-1 performance on

OU-MVLP, the largest data set for gait recognition .

For methods that do not use CNNs, discriminative fea-

tures from a GEI extracted by PCA and further reduced by

LDA [21] were found to yield slight improvement over di-

rectly matching GEIs [28]. Additionally, several generative

approaches employ a view transformation model (VTM)

[13, 14, 18, 20] to help mitigate view variations from spatial

displacements of limbs [28].

3. Method

We model observations x(t) of a moving person over

time as a discrete stochastic process, that is, a mapping

from an event space E to a space X of real-valued vector

functions defined on the integers. Given an event e ∈ E , a

realization of the stochastic process is thus a function:

xe(t) : Z → R
N (1)

and the subscript denoting dependence on e is typically

omitted for simplicity. We think of the integer variable t

as denoting time, and the vector x(t) for a given t describes

frame t in some fashion.



The process x(t) is said to be stationary if this density

depends only on the differences τj
def
= tj − t0 for j =

1, . . . , k and not on t0, . . . , tk.

The process is said to be Wide-Sense Stationary (WSS) if

the analogous property holds for the mean and the autocor-

relation, that is for the first and second moments for k = 1
and k = 2. Some human activities are at least approxi-

mately WSS, and are then described in the literature as mo-

tion textures. In the short term, the quasi-periodic nature of

human gait makes walking a cyclostationary process, that

is, one whose statistics are periodic. However, if walking

is observed over several time intervals starting at random

times during the gait cycle, the cyclic nature of the activ-

ity averages out over different observations, and yields an

approximately stationary process.

Our proposal is to use the autocorrelation A(τ) for a set

of time lags τ as a descriptor of human gait, where auto-

correlation is defined as:

A(τ) = E[x(t)xT (t+ τ)] . (2)

If the input process x(t) is N -dimensional and L time

lags are considered, the values of the autocorrelation can be

stored in a block of data of size N × N × L. When N is

very large, we may only use the diagonal of A(τ).

Time Lags. The time lags under consideration will be in-

cluded in a single vector:

τ
def
= [τ1, . . . , τL] ∈ Z

L . (3)

The values of these time lags are between 0 and some

maximum lag, τmax = max τ , and they are an ordered sub-

set of {0, . . . , τmax}. An interesting option is to compute

the autocorrelation for all low lag-values and then sample

higher values with logarithmic density, that is, with expo-

nentially growing intervals between lag values [2, 4].

Properties. It is easy to verify that the matrix A(0), that

is, the second moment of x(t) for any t, is semidefinite pos-

itive, and that for any τ ∈ Z the following equality holds:

A(τ) = AT (−τ) . (4)

The same properties hold for the autocovariance Σ(τ).
Positive-semidefiniteness reflects the fact that A(0) is a

power and Σ(0) is a covariance. Since A(0) is the corre-

lation of the signal with itself, we also have ‖A(τ)‖2 ≤
‖A(0)‖2 for all τ . Further properties of autocorrelation or

autocovariance can be found in standard texts [4, 22, 23].

Recursive Computation. The autocorrelation A(τ) is an

expectation. If the process x(t) is WSS and ergodic, the

expectation of any quantity q(t) related to x(t) can be es-

timated from the empirical average of a sufficiently large

number of samples:

E[q(t)] ≈ µ(t)
def
=

1

|T (t)|

∑

t∈T (t)

q(t) (5)

where:

T (t)
def
= {t1, . . . , t|T (t)|} = {s ∈ Z | s ≤ t} (6)

is the set of |T (t)| time tics elapsed up until time t. For

simplicity, T will be used to denote the number of time sam-

ples used, so that T = |T (t)|. We consider scalar quantities

here: For vectors or matrices, the discussion is merely re-

peated for each component.

For video sequences with unbounded time extents, one

needs a way to update µ(t) based on the information avail-

able up to time t. Because the data varies, µ depends on t

even if the underlying process is stationary: While the true

mean m may be constant, its estimate µ(t) varies. For effi-

ciency, µ(t) can be computed as a (weighted) moving aver-

age, for which a recursion with finite state can be defined.

Implementation. Given a sequence of N images or fea-

ture maps each with C channels of size W×H , we compute

the autocorrelation A(τ) for each pixel and time lag. The

result is a matrix of size W×H×τmax that does not depend

on the (varying) number of images N . We also integrate au-

tocorrelation as an operator into a CNN, and the operator is

differentiable and has no learnable parameters. For binary

silhouettes, A(0) is simply the GEI of the sequence.

4. Experiments

We examine empirically what we can tell about a per-

son’s identity from walking patterns. Specifically, the input

is a silhouette video clip of a person who walks across the

field of view of a camera placed at an unknown viewpoint.

The output is a ranking of gallery observations and their

corresponding identities, in order of similarity to the input

observation.

We use human motion here in a very indirect manner

for inference: The individuals included in the training set

are different from those in the test set, so the problem is

not to recognize a person from his or her gait (gait recogni-

tion), but rather for the system to understand what aspects

of someone’s gait are most helpful in recognizing identity

(re-identification from gait).

We use the OU-MVLP data set [28] for evaluation based

on input of a sequence of silhouettes and show results that

improve on the prior state-of-the art, comparing variants of

our proposed autocorrelation motion texture feature with

the popular Gait Energy Image (GEI) feature [5] and 3D

convolutional neural networks (C3D) [29].



Next we describe the details for running our experiments.

First, we detail the setup, benchmark data set and perfor-

mance measures used for evaluation. Then we discuss the

methods we compare to each other and implementation de-

tails for training and testing.

4.1. Setup

Given an image of a person (the query), a person re-

identification system retrieves from a database a list of

other images of people (gallery), usually taken from dif-

ferent cameras and at different times, and ranks them by

decreasing similarity to the query. Ideally, any images in

the database that are co-identical with (that is, depict the

same person as) the person in the query are ranked highly.

Rather than using a single image, we use a sequence of size-

normalized silhouettes to compute our autocorrelation mo-

tion texture feature to perform person re-identification from

gait. The intention is that features extracted from the same

person are more similar to each other than to those extracted

from different people. The sets of people observed for train-

ing, validation, and testing are mutually disjoint.

4.1.1 Benchmarks

We perform experiments on the OU-ISIR multi-view large

population data set (OU-MVLP), which is the largest multi-

view gait database available to date and can be used to

evaluate person re-identification from gait [28]. The data

set has 10, 307 subjects with varying ages (2-87 years

old) and genders. Video is captured from 14 view angles

(0◦ − 90◦, 180◦ − 270◦, Fig. 2a) for two separate walking

sequences (A run from A to B and B run from B to A),

giving 28 gait image sequences per subject. Including a

second sequence for each subject implies that the data set

includes view variations and intra-subject variations of gait

itself [28]. The original sequences for OU-MVLP are com-

posed of binary images of 1280×980 pixels and captured at

25 fps. The binary images show a silhouette region that was

extracted using a chroma-key method to remove the green

background from the controlled walking course (Fig. 2b).

4.1.2 Evaluation

For each identity in the test set, we use the specified model

to compute its corresponding Kf -dimensional feature for

each of its 28 samples (run A and run B at each of the 14
viewpoints). To measure performance, all A runs are used

as the query set and B runs as the gallery set. Given query

viewpoint(s) and gallery viewpoint(s), the feature distances

are computed and sorted to give the identities of the gallery

set in decreasing similarity for each query. We report Av-

erage Rank and Rank-1 accuracy per viewpoint. We also

report these scores averaged across all queries and view-

points. Average Rank gives the mean position of the correct

(a) (b)

Figure 2: Camera setup for OU-MVLP gait data set [28] (a)

and their method for extracting same-sized silhouette se-

quences and computing the GEI (b).

identity. Rank-N accuracy is the percentage of queries that

return the correct gallery identity within the top N results.

For Rank-1, the probability of a random guess being accu-

rate is 1 in 1800 (the number of gallery identities). Thus,

the random baseline accuracy per viewpoint pair is 0.056%.

4.1.3 Preprocessing

We follow the method by the authors of OU-MVLP to ex-

tract size-normalized 128 × 88 silhouettes for each binary

image (Fig. 2, [28]). Each frame has a corresponding sil-

houette region, and the normalization step first extracts its

top, bottom, and horizontal center. The top and bottom

are defined as the extremum of the sorted y coordinates

of the silhouette region, while the horizontal center is set

as the median of the sorted x coordinates of the region. A

moving-average filter is then applied to these positions [10].

A 128× 88 silhouette image is then produced such that the

horizontal median of the silhouette region corresponds to

the horizontal center of the silhouette image.

4.1.4 Compared Methods

Given the size-normalized silhouette sequences we describe

several models for comparing our gait re-identification

method ACnet with other state-of-the-art models.

GEI. We compare with the implementation of [28]

(Fig. 3(a)) which is a CNN-based method using a single

Gait Energy Image [5] as input (1in-GEInet). This ap-

proach has achieved state-of-the-art Rank-1 performance on

the OU-MVLP dataset. We follow the approach used by the

OU-MVLP authors to extract a Gait Energy Image (GEI)

(Fig. 2(b)), or the pixel-wise average of the size-normalized

silhouette sequences over one gait period [28]. The gait pe-

riod is detected using the normalized autocorrelation (NAC)

of the size-normalized silhouette sequences from the side-
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Figure 3: Architectures for the different methods we com-

pare for Re-ID by gait. Numbers written to left side of Conv,

Pool, and Dense indicate: [#filters · filter size], [filter size],

and [# of nodes] respectively. Kf is the final embedding di-

mension of the feature at the last layer of the network before

an optional softmax is used to produce a C-dimensional

vector, where C is the number of subjects.

view camera (90◦) [10]. Specifically, the gait period is iden-

tified as time shift corresponding to the second peak of the

NAC [10]. If multiple gait periods are detected, [28] use the

period closest to the center of the walking course. We use

the gait period to directly compare with 1in-GEInet, but per-

form most of our experiments on sequences that start at any

point in the gait cycle and use different temporal windows

that are not the exact gait period.

C3D. We also compare against the popular Convolution

3D (C3D) CNN architecture, which has previously achieved

state-of-the-art results for both action recognition and per-

son re-identification by gait with silhouettes [29]. Figure

3(c) shows our C3D implementation, which matches stan-

dard state-of-the-art C3D architectures, and the results we

report are consistent with [29].

ACnet. We compare two models of our ACnet. The stan-

dard version uses the autocorrelation layer on the input of

same-sized silhouettes to compute the autocorrelation fea-

ture which is then fed to a CNN, with architecture shown

in Figure 3(a). The standard version of ACnet with τ = 0
(ACnet{0}) is our implementation of 1in-GEInet [28]. We

also implement a version of our autocorrelation network,

ACnet
E2E, that is trained end-to-end (E2E) from image se-

quences as shown in Figure 3(b). The learned ACnet

(ACnetE2E) model uses an additional shallow network be-

fore the autocorrelation layer and is trained end-to-end to

learn a more abstract frame-level feature.

4.1.5 Training and Testing

The networks are implemented using Keras. A training and

validation set are specified along with the number of epochs

and batch size to use for training. Unless otherwise speci-

fied, we use the following default parameters and settings

for the inputs and network structures in our experiments.

For training, testing, and validation we use disjoint sets

of 1800, 1800, and 400 identities respectively. The initial

inputs are a sequence of T = 100 size-normalized 128×88
silhouettes. The final embedding dimension of the feature at

the last layer of the network (before an optional softmax) is

Kf = 32. When the optional softmax is used, the output is

a C-dimensional vector, where C is the number of classes,

in this case the number of identities.

We follow the approach introduced by [7] of using PK

batches for training. Each batch consists of P identities

with K samples per identity selected at random. At each

training epoch, every identity is selected and a batch con-

structed by choosing the other P − 1 identities at random.

This approach avoids the need to generate a combinatorial

number of triplets, and is well suited to similarity-based

ranking tasks [24].

For training, we set the batch size to 50 (P = 10 identi-

ties, K = 5 samples). The query and gallery viewpoints are

selected at random from all 14 viewpoints, similar to prior

work [28]. The learning rate is set to 3 ·10−4 for the first 10

epochs, 3 · 10−5 for the next five epochs, and then 3 · 10−5

thereafter.

We consider two types of losses, categorical cross-

entropy and hard triplet loss with adaptive weighting [24].

The hard triplet loss requires that for each anchor identity,

the furthest sample from the same identity has smaller dis-

tance than the nearest sample from other identities. Ad-

ditionally, we use a multi-task loss (denoted by +m) that

combines the two.

We train the models until convergence, using an early

stopping patience of 5 epochs (with validation loss) and a

maximum number of epochs of 100. For multi-loss we do

not implement validation and thus stop at a specified epoch

(100). For all experiments we report results from the best

epoch (using minimum validation loss).

4.2. Results

We present results for the task of person re-identification

from gait using the OU-MVLP data set. We perform sev-

eral experiments and discuss results using different mea-

sures (Rank-1, Avg. Rank), highlighting where our method

outperforms prior state-of-the-art; examine the influence of



Method Rank-1 (%) ↑ Avg. Rank ↓
C3D [29] 21.3 41

C3D+m [29] 30.0 31

1in-GEInet [28] 36.1 19

1in-GEInet+m [28] 36.9 24

ACnet
E2E{7log}+m 58.0 7

Table 1: State-of-the-art results for Re-ID by gait, showing

the improvement of our autocorrelation network (ACnet)

using a set of {7log} time lags and trained end-to-end (E2E)

with multi-loss (+m) over prior state of the art.

different pipeline components; and finally analyze system

limitations.

4.2.1 Comparisons with the State of the Art

Table 1 shows the average Rank-1 performance of state-

of-the-art Re-ID by gait methods on OU-MVLP across 14
viewpoints (0◦ − 270◦) for 1, 800 identities. Our method

ACnet
E2E{7log}+m achieves 58.0% Rank-1 performance.

This result is significant considering the random baseline

(0.056%). Further, we significantly outperform the prior

state of the art. Our Rank-1 performance (58.0%) shows

significant improvement over the popular C3D architecture,

trained with single-loss (21.3%) and multi-loss (30.0%)

(Table 1, and Fig. 5 over Fig. 4(c)). Due to its architecture,

C3D can only handle small batches of size 20 (P = 5,K =
4) and temporal samples T = 15. While this batch size is

limiting, we allow C3D to run until convergence. There-

fore, the small temporal window is more likely the factor

limiting C3D’s performance.

Our experiments show improvement of our

ACnet
E2E{7log}+m method (58.0%) over 1in-GEInet,

equivalent to our ACnet{0}, trained with single-loss

(36.1%) and multi-loss (36.9%) (Table 1). Note that [28]

report mean Rank-1 accuracy of 40.7%, but that this is

for query and gallery angle pairs from a thinned set of

viewpoints: [0◦, 30◦, 60◦, 90◦]. We use this thinned set

of viewpoints to provide further detailed results for our

method and those compared (See Fig. 4 and 5), and report a

similar performance for our implementation of 1in-GEInet

over the thinned viewpoints (40.6%) (Fig. 4(a)).

While we only report results for Rank-1, our perfor-

mance is comparable or surpasses state-of-the-art methods

that relax the challenge by using Rank-5, looking only at

intra-view test sets, or limiting the viewpoints to 55◦− 90◦.

4.2.2 Model Parameters and Architecture

We further compare our method with 1in-GEInet and ex-

plain their similarities while detailing the modifications of

our approach that lead to improved performance. Using
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Figure 5: Rank-1 results showing our improvements of

using ACnet with end-to-end (E2E) training, {7log} time

lags, and multi-loss (+m).

Method Rank-1 (%) ↑ Avg. Rank ↓
ACnet{0} 36.1 19

ACnet{0, 32} 36.9 18

ACnet{7step} 39.4 16

ACnet{7log} 39.6 16

Table 2: Re-ID by gait results on OU-MVLP, showing im-

provement of different sets of time lags.

a single time lag of zero is equivalent to directly compar-

ing the signals with themselves without a time lag. In the

case of ACnet the input to the autocorrelation function is the

size-normalized silhouettes. Each pixel is treated as a sepa-

rate signal, with observations of one or zero over the set of

time samples. The autocorrelation of a single pixel signal is

then the summation of itself multiplied by a version of itself

that is circularly shifted by the given time lag, normalized

by the number of time samples. For a time lag of zero the

autocorrelation is simply the summation of the observations

normalized by the number of time samples. Thus, the au-

tocorrelation at τ = {0} of the direct silhouette input is

equivalent to the GEI as long as the observations are from

the set of time samples that correspond to a single complete

gait period. Therefore, our ACnet{0} is an implementation

of 1in-GEInet [28].
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Figure 6: Rank-1 results for ACnet with different time lags.

Method Rank-1 (%) ↑ Avg. Rank ↓
ACnet{0} 36.1 19

ACnet
E2E{0} 41.6 11

ACnet{7log} 39.4 16

ACnet
E2E{7log} 49.7 8

ACnet{7log}+m 56.1 10

ACnet
E2E{7log}+m 58.0 7

Table 3: Re-ID by gait results on OU-MVLP, showing im-

provement of using end-to-end (E2E) training for ACnet

with time lags of {0} and {7log}, with single loss and

multi-loss (+m).

Different Time Lags. Using multiple time lags improves

the average Rank-1 performance as shown in Table 2 and

Figure 6. In Table 2, we study the average Rank-1 perfor-

mance over all 14 viewpoints for different sets of time lags

used with the standard ACnet. The baseline performance

with a single τ = {0} (36.1%) is improved only slightly

(36.9%) by considering the pair of lags {0, 32}. This makes

sense, as the typical number of time samples in a single

complete gait period was approximately 32 time-steps, and

using a time lag that is the exact length of the gait period is

equivalent to a time lag of zero. Additionally, we consid-

ered two sets of time lags, {7log} = {0, 1, 2, 4, 8, 16, 32}
and {7step} = {0, 10, 20, 30, 40, 50, 60}. A significant im-

provement over the baseline is achieved by both {7log}
(39.6%) and {7step} (39.4%). The similar performance

between {7log} and {7step} is again likely due to the gait

period length ≈ 32 meaning that lags 40, 50, and 60 do not

capture significantly different values than those in {0, 32}.

We can see that adding multiple time lags seems to help

mostly the off-diagonal performance values for cross-view

tasks (Fig. 6(b and c over a) and over Fig. 4(a)). However,

this might simply be because the intra-view performance

has been saturated, given that it is a much easier problem.

End-to-End Training. Placing the autocorrelation layer

in the middle of the CNN and training end-to-end

(E2E) significantly improves performance for ACnet{0}
(36.1% to 41.6%), ACnet{7log} (39.4% to 49.7%), and

ACnet{7log}+m (56.1% to 58.0%) as shown in Table 3.

Figure 7: Autocorrelation for time lag 0, equivalent to GEI

[5], shown for different viewpoints.

Method Rank-1 (%) ↑ Avg. Rank ↓
ACnet{0} 36.1 19

ACnet{0}+m 36.9 24

ACnet{7log} 39.4 16

ACnet{7log}+m 56.1 10

ACnet
E2E{7log} 49.7 8

ACnet
E2E{7log}+m 58.0 7

C3D [29] 21.3 41

C3D+m 30.0 31

Table 4: Re-ID by gait results on OU-MVLP show improve-

ments from training with multi-loss (+m is triplet + categor-

ical) over single-loss (triplet) for C3D and our ACnet with

time lags {0} and {7log} and trained end-to-end (E2E).

A Direct Matching (DM) approach that simply com-

pares feature distance on the GEI directly (flattening it into

a 1D vector and using L2 distance) was found to only

work for same-viewpoint pairs [28]. This is because the

GEI captures the spatial displacement of the limbs and is

a direct function of the viewpoint, such that those closer

to side-view demonstrate maximum front-to-back displace-

ment while those closer to front-view display maximum

side-to-side displacement (Fig. 7). Hence, the GEI has large

intra-sample variation across viewpoints. This suggests that

adding a shallow CNN to the GEI can help learn a view-

invariant feature and supports the improvement we see in

our end-to-end approach (Table 3). Our results would be

bolstered by future experiments that control for consistency

in the number of dense layers across methods as well as

testing other hand-crafted features as input to the end-to-

end network.

Different Losses. Training models with a multi-loss (+m

is triplet + categorical) improves performance over using a

single loss (triplet), as shown in Table 4 for several architec-

tures: ACnet{0} (36.1% to 36.9%), ACnet{7log} (39.4%
to 49.7%), ACnetE2E {7log} (56.1% to 58.0%), and [29]’s

C3D (21.3% to 30.0%).



Temporal Window Rank-1 (%) ↑ Avg. Rank ↓
T = 40 49.3 15

T = 100 56.1 10

T = 150 56.3 10

Table 5: Re-ID by gait results on OU-MVLP show improve-

ments from using a longer temporal window (T = 100
v. T = 40) but with marginal returns extending further

(T = 150) for ACnet{7log}+m, our ACnet with {7log}
time lags and multi-loss (+m).

Temporal Window. Increasing the temporal window im-

proves performance, as shown in Table 5 and Figure 8. Us-

ing our ACnet{7log}+m we show that increasing the tem-

poral window from T = 40 to 100 improves Rank-1 per-

formance across all 14 viewpoints (from 49.3% to 56.1%).

A further increase to T = 150 only slightly improves per-

formance (56.3%). This shows that there is a point beyond

which extending the temporal window is no longer benefi-

cial, and thus for the majority of our experiments we con-

sider T = 100.

Given that the average gait period is T = 32, these re-

sults also suggest that for periodic activities such as walking

it is useful to capture multiple cycles of the activity. Com-

paring these results along with the performance of C3D,

which can only handle 15 time samples for the same mem-

ory budget, autocorrelation proves to be an efficient and

compact way to consider a larger temporal window.
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Figure 8: Rank-1 results for different temporal window

lengths (T ) for ACnet{7log}+m, our ACnet with {7log}
time lags and multi-loss (+m).

Intra-View v. Cross-View. The diagonal of the Rank-1

matrices (Fig. 9) represents the less difficult intra-view task

of learning similarity within the same camera viewpoint. By

contrast, the off-diagonal represents inter-view pairs and en-

tails the much more challenging task of cross-view learning.

It seems that the query-gallery pair (90◦, 0◦) is one of the

most challenging inter-view pairs, which is intuitive consid-

ering that front- and side-views are the most separate view-

points in terms of appearance from a single frame and from

the sequence of frames. Further, we notice that it is partic-

ularly challenging in general when one of the viewpoints is
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Figure 9: State-of-the-art Re-ID by gait Rank-1 results

for ACnetE2E{7log}+m, our model using {7log} time lags

and trained end-to-end (E2E) with multi-loss (+m) on OU-

MVLP for all viewpoints.

straight on (0◦ or 180◦) as there is less spatial displacement

from the limbs and hence less signal to re-identify from gait.

The Rank-1 matrices for all viewpoints seem as though

they can be divided into four sub-matrices that have simi-

lar trends, as seen in Figure 9. We notice, as did [28], a

similarity between (query, gallery) pairs separated by 180◦.

The implementation flips one of the viewpoints so they are

similar to a “same-view pair due to perspective projection

assumption” [19]. This explains why the trends are similar

in the sub-matrices defined by: (a) 0◦−90◦ query to 0◦−90◦

gallery; (b) 180◦ − 270◦ query to 0◦ − 90◦ gallery; (c)

0◦−90◦ query to 180◦−270◦ gallery; and (d) 180◦−270◦

query to 180◦ − 270◦ gallery viewpoints.

5. Conclusion

We have introduced a new biometric feature to capture

gait autocorrelation leveraging end-to-end training. This

feature, whether applied to raw data or intermediate learned

representations, captures the time-varying aspects of human

gait explicitly and can be used to complement appearance-

based re-identification methods. In our experiments we

have shown how different parameters affect our method,

and how autocorrelation and end-to-end training improves

performance over existing methods under equal settings. In

future work, we plan to apply autocorrelation to 2D and 3D

pose sequences, as well as raw RGB sequences of people

walking.
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