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Abstract

Contemporary face hallucination (FH) models exhibit

considerable ability to reconstruct high-resolution (HR) de-

tails from low-resolution (LR) face images. This ability

is commonly learned from examples of corresponding HR-

LR image pairs, created by artificially down-sampling the

HR ground truth data. This down-sampling (or degrada-

tion) procedure not only defines the characteristics of the

LR training data, but also determines the type of image

degradations the learned FH models are eventually able to

handle. If the image characteristics encountered with real-

world LR images differ from the ones seen during training,

FH models are still expected to perform well, but in prac-

tice may not produce the desired results. In this paper we

study this problem and explore the bias introduced into FH

models by the characteristics of the training data. We sys-

tematically analyze the generalization capabilities of sev-

eral FH models in various scenarios where the degradation

function does not match the training setup and conduct ex-

periments with synthetically downgraded as well as real-life

low-quality images. We make several interesting findings

that provide insight into existing problems with FH models

and point to future research directions.

1. Introduction

Face hallucination (FH) refers to the task of recover-

ing high-resolution (HR) facial images from corresponding

low-resolution (LR) inputs [2, 6, 11]. Solutions to this task

have applications in face-oriented vision problems, such as

face editing and alignment, 3D reconstruction or face at-

tribute estimation [3, 6, 19, 23, 24, 25, 31, 43] and are used

to mitigate performance degradations caused by input im-

ages of insufficient resolution. One particularly popular use

of FH models is for LR face recognition tasks[13, 24, 45],

where LR probe images are super-resolved to reduce the

dissimilarity with HR gallery data.

Formally, face hallucination is defined as an inverse
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Figure 1. Hallucination examples (8×) for the five FH models used

in this work (see Sec. 3 for details). The top row shows results for a

LR image generated with a degradation procedure matching (MS)

the one used during training and the bottom row shows results

for an image produced by a non-matching degradation function

(NMS). Note the difference in the reconstruction quality. In this

paper, we study the bias introduced into FH models by the training

data, which has so far received limited attention in the literature.

problem described by the following observation model [27]:

x = Hy + n, (1)

where x denotes the observed low-resolution face image, H

stands for a composite down-sampling and blurring opera-

tor, n represents an additive i.i.d. Gaussian noise term with

standard deviation σn, and y is the latent high-resolution

face image that needs to be recovered [27]. Recent tech-

niques increasingly approach the FH problem in (1) using

machine learning methods [1, 4, 21, 28, 42, 44] and try to

learn a direct (non-linear) mapping fθ from the LR inputs

to the desired HR outputs, i.e., fθ : x → y.

This mapping is commonly implemented with a pa-

rameterized regression model, e.g., a convolutional neural

network (CNN), and the parameters of the model, θ, are

learned through an optimization procedure that minimizes

a selected training objective (e.g., an Lp loss) over a set of

corresponding LR-HR image pairs. Because the learning

procedure is supervised, the image pairs needed for training

are constructed by artificially degrading HR training images

using a selected degradation function, i.e., a known opera-

tor H and noise level σn. Such an approach ensures that
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all generated LR images have corresponding HR ground

truth faces available for training, but also implicitly defines

the type of image degradations the learned model is able to

handle. If the actual degradation function encountered with

(real-world) test data differs from the one used during train-

ing, the result of the face hallucination model may be far

from optimal - as illustrated in Fig. 1 for five recent state-

of-the-art FH models [1, 11, 21, 22, 44].

As can be seen from the presented examples, the HR

images recovered from a LR input that matches the char-

acteristics of the training data (Fig. 1, top row) are of sig-

nificantly better quality than those produced from a non-

matching LR input image (Fig. 1, bottom row). While all

models are able to convincingly (8×) upscale the example

24 × 24 face with a matching LR image, the hallucination

results exhibit considerable artifacts when a small change

in terms of blur and noise is introduced into the degrada-

tion procedure. These examples show that the bias intro-

duced into the FH models by the training data has a detri-

mental effect on the quality of the super-resolved faces and

may adversely effect the generalization ability of the trained

models to data with unseen characteristics.

Surprisingly, the problem of (face hallucination) model

bias has received little attention from the research com-

munity so far. Nevertheless, it has important implications

for the generalization abilities of FH models as well as for

the performance of high-level vision tasks that rely on the

generated hallucination results, most notably face recog-

nition. The existing literature on the generalization abil-

ities of FH techniques is typically focused on generaliza-

tion across different facial characteristics, such as pose, fa-

cial expressions, occlusions or alignment, and less so on the

mismatch in the degradation functions used to produce the

LR test data or qualitative experiments with real-world im-

agery. Difficulties with model bias are, therefore, rarely ob-

served. Similarly, when used to improve performance of LR

face recognition problems, FH models are predominantly

applied on artificially degraded images, leaving the ques-

tion of generalization to real-world LR data unanswered.

In this paper, we aim to address these issues and study

the problem of model bias in the field of face hallucination.

We try to answer obvious research questions, such as: How

do different image characteristics affect the reconstruction

quality of FH models? How do FH models trained on artifi-

cially degraded images generalize to real-world data? Do

FH models ensure improvements in LR face recognition

when applied as a preprocessing step? Are there differ-

ences in recognition performance when using either artifi-

cially generated or real-world LR data? To answer these

and related questions we conduct a rigorous analysis using

five recent state-of-the-art FH models and examine in detail:

i) the mismatch between the degradation procedure used to

generate the LR-HR training pairs and the actual degrada-

tion function encountered with LR data, ii) changes in dif-

ferent separability measures before and after the application

of FH models, and iii) face recognition performance with

hallucinated images and a state-of-the-art CNN recognition

model. We make interesting findings that point to open and

rarely addressed problems in the area of face hallucination

and provide insights into future research challenges.

2. Related Work

Bias in computer vision. Machine learning techniques

are known to be sensitive to the characteristics of the train-

ing data and typically result in models with sub-optimal

generalization abilities if the training data is biased to-

wards certain data characteristics. The effect of dataset

bias can, for example, be seen in [5], where commercial

gender classification systems are shown to have a drop in

gender-classification accuracy on darker-skinned subjects

compared to lighter-skinned subjects, indicating insufficient

training data coverage of the latter. Torralba and Efros [36]

demonstrate that image datasets used to train classifica-

tion models are heavily biased towards specific appearances

of object categories, causing poor performance in cross-

dataset experiments. Zhao et al. [46] show that datasets

for semantic role labeling tasks, contain significant gender

bias and introduce strong associations between gender la-

bels and verbs/objects (e.g., woman and cooking) that lead

to biased models for certain labeling tasks. These examples

show that understanding dataset bias is paramount for the

generalization abilities of machine learning models. Our

work is related to these studies, as we also explore dataset

bias. However, different from prior work, we focus on the

task of face hallucination, which has not been studied from

this perspective so far.

Face hallucination for face recognition. Face recogni-

tion performance with LR images tends to degrade severely

in comparison to HR face data. To mitigate this problem,

a significant body of work resorts to FH models and tries

to up-sample images during pre-processing [8, 13, 24, 34]

or to devise models that jointly learn an upscaling function

and recognition procedure [15, 18, 40]. While performance

improvements are reported with these works, experiments

are commonly limited to artificially down-sampled images,

findings are then simply extrapolated to real-world data and

potential issues due to dataset bias are often overlooked.

Experiments with real LR images, on the other hand, are

scarce in the literature and the usefulness of FH models for

face recognition with real-world LR imagery has not re-

ceived much attention by the research community. As part

of our analysis, we study this issue and explore the effect

of FH models on data separability and recognition perfor-

mance on artificially down-sampled and real-world LR data.



3. Methodology

We now describe the methodology used for the analy-

sis. We discuss the selected experimental setup, FH models

considered, and the image datasets used in the experiments.

3.1. Experimental setup

We conduct our analysis with several state-of-the-art FH

models and LR images of size 24 × 24 pixels. Since there

is no clear distinction on what constitutes a LR image, we

select the LR image data to be smaller than 32× 32 pixels,

which represents an image size, below which most com-

puter vision models are known to deteriorate quickly in per-

formance [12, 37, 39]. Given this rather small size, we use

an upscaling factor of 8× with the FH models and generate

192×192 images that are used as the basis for our analysis.

3.2. Face hallucination (FH) models

Using the presented setup, we study the effect of dataset

bias using five recent FH (or super-resolution) models, i.e.:

the Ultra Resolving Discriminative Generative Network

(URDGN, [44]), the Deep Laplacian Super-Resolution Net-

work (LapSRN, [21]), the Super-Resolution Residual Net-

work (SRResNet, [22]), the Cascading Residual Network

(CARN, [1]), and the Cascading Super Resolution Network

with Identity Priors (C-SRIP, [11]). The selected models

differ in the network architecture and training objective, but

are all considered to produce state-of-the-art hallucination

results as shown in Fig. 1. We also include an interpolation-

based method in the experiments to have a baseline for com-

parisons. A short summary of the models is given below:

• Bicubic interpolation [20] is a learning-free approach

that up-samples images by interpolating missing pixel

values using Lagrange polynomials, cubic splines, or

other similar functions. Unlike FH models it does not

rely on domain knowledge when generating HR faces.

• URDGN consists of a generator and a discriminator net-

work, and is trained using the generative adversarial net-

work (GAN [9]) framework, where the discriminator

is trained to tell apart real and generated HR images,

whereas the generator is trained to minimize an L2 re-

construction loss and the accuracy of the discriminator.

• LapSRN represents a CNN-based model that progres-

sively up-samples LR images by factors of 2 through

bilinear deconvolution and relies on a feature prediction

branch to calculate the high-frequency residuals at each

scale. Because of the progressive up-sampling, multi-

scale supervision signals are used during training.

• SRResNet is a variant of the SRGAN [22] model that in-

corporates many of the recent tweaks used in CNN-based

super-resolution, such as adversarial training, pixel shuf-

fle up-sampling, batch normalization and leaky ReLU ac-

tivations. SRResNet represents the generator network of

SRGAN trained with the L2 loss.

• CARN consists of a light-weight CNN, which is able

to achieve state-of-the-art performance for the gen-

eral super-resolution problems using an efficient cascad-

ing architecture that combines the design principles of

densely connected networks [16] and ResNets [14]. We

use the variant with local and global cascading connec-

tions, as opposed to the lighter variants of the network.

• C-SRIP is a CNN-based FH model that incorporates ex-

plicit face identity constraints into the training procedure

in addition to the main reconstruction objective. The

model has a cascaded architecture that allows it to use

supervision signals at multiple scales during training.

To incorporate face-specific domain knowledge into the

models and ensure a fair comparison, we train all models on

the CASIA Webface [41] dataset using 494, 414 images of

10, 575 subjects. We crop the 192× 192 central part of the

images and generate the HR-LR data pairs for training by

blurring the HR images with a Gaussian kernel of σb = 8

3

and then downscaling them 8× using bicubic interpolation.

3.3. Datasets.

We conduct experiments on the Labeled Face in the Wild

(LFW [17]) and SCFace [10] datasets. We introduce artifi-

cial down-sampling to simulate low image resolutions with

LFW and use the SCFace images to explore the effect of

training data bias on real-world LR images.

• LFW is one of the most popular face dataset available,

mainly due to the unconstrained settings in which the im-

ages were captured. The dataset [17] consists of 13, 233
face images of size 250 × 250 pixels belonging to 5749
subjects. For the experiments, we use only the central

crop of the images to have faces of similar proportion to

the ones used during FH model training.

• SCface contains images of 130 subjects that are split

between a gallery set, containing 130 high-resolution

frontal mugshots (1 per subject), and a larger probe set

of surveillance-camera images. The daylight camera

set, which we use for our experiments, consists of im-

ages from 5 different security cameras. Each subject is

recorded by each camera at 3 different distances, result-

ing in a total of 130×5×3 = 1950 probe set images. We

crop facial areas from all images based on the provided

facial landmarks prior to the experiments.

4. Experiments and Results

To study the bias introduced into FH models by the par-

ticularities of the training-data-generation process, we con-



(a) LR inputs (σn vs. σb) (b) Bicubic (σn vs. σb) (f) C-SRIP (σn vs. σb)

Figure 2. Reconstruction capabilities of the learning-free bicubic interpolation and a selected FH model. The image block on the left (with

samples of size 24 × 24 pixels) illustrates the effect of increasing noise (σn, decreases vertically) and blur (σb, increases horizontally)

for a sample LR LFW image, the second and third block show 192× 192 reconstructions generated by bicubic interpolation and C-SRIP,

respectively. Images marked green are generated with a degradation function matching the one used during training. For the FH model

good HR reconstructions are achieved only with images degraded similarly as the training data, whereas interpolation ensures reasonable

reconstructions with all input images. Results for the remaining FH models are shown in the Appendix. Best viewed zoomed in.
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Figure 3. Reconstruction capabilities with mismatching degradation functions due to different blur and noise levels. The heat maps show

the average SSIM values computed over artificially degraded LFW images. The points marked in the heat maps correspond to the sampled

levels of noise (σn, decreases vertically) and blur (σb, increases horizontally). The value of σn and σb that was used for training is marked

green. Note that all FH models achieve good reconstructions only around values that match the training setup. Best viewed in color.

duct a series of rigorous experiments in this section. We

first present experiments with artificially degraded images

on LFW, where we have complete control over the degrada-

tion process, and then report results with real-world surveil-

lance images from SCFace.

4.1. Bias exploration with synthetic LR data

We start our analysis by exploring the sensitivity of FH

models to a controlled mismatch in the degradation func-

tion. We first crop the (192× 192) central part of the LFW

images and generate baseline LR test data using the same

degradation function as used during training. To simulate

the mismatch, we generate additional sets of LR data from

LFW by varying the standard deviations of the Gaussian

blurring kernel σb and Gaussian noise term σn, which de-

fine H and n in (1). We consider five different values for

each parameter and select σb from [0.75, 1.5, 2.25, 3, 3.75]
and σn from [0, 5, 10, 15, 20]. Because the LR test data is

generated artificially, the HR ground truth can be used to

evaluate the reconstruction capabilities of the FH models

for each combination of σb and σn. Note that it is in gen-

eral infeasible to include all possible data variations in the

training procedure, so there will always be image charac-

teristics that have not been accounted for by data augmen-

tation. The selected noise and blur levels are therefore as

reasonable factors as any to simulate the mismatch.

From the hallucination examples in Fig. 2 we see that

visually convincing results for the FH model are produced

only for LR images generated with blur and noise levels

similar to those used during training (close to the images

marked green), and deteriorate quickly as the difference to

the training blur and noise levels gets larger (see Appendix

for additional results). The interpolation baseline produces

less convincing results compared to the best hallucinated

image of C-SRIP, but does also introduces lesser distortions

with images of other blur and noise levels. A similar obser-

vation can also be made for the remaining FH models based

on the results in Fig. 3, where average structural similarity

(SSIM) values computed over the entire LFW dataset are

shown for different levels of noise and blur. Here, the com-



puted SSIM scores are shown in the form of interpolated

heat maps for all five FH models and the baseline (bicubic)

interpolation procedure. The first thing to notice is that the

degradation in reconstruction quality is also visible for the

(learning-free) interpolation method. This suggests that the

reconstruction problem gets harder with increased noise and

blur levels and the worsened reconstruction quality is not

linked exclusively to the mismatch in the degradation func-

tion. However, the heat maps also clearly show that per-

formance degrades much faster for the FH models than for

the interpolation approach and that the degradation is par-

ticularly extreme for the C-SRIP model, which otherwise

results in the highest peak SSIM score among all models.

In general, all FH models achieve significantly higher

SSIM scores with matching degradation functions (see

green point in Fig. 3) than the interpolation approach, but

their performance falls below bicubic interpolation at the

highest noise and blur levels - see lowest heat map part in

Fig. 3. This is an important finding and implies that for

imaging conditions that are difficult to model and challeng-

ing to reproduce using (1), interpolation may still be a better

choice for recovering HR faces than FH models, which re-

quire representative HR-LR image pairs for training.

The presented results are consistent with recent stud-

ies [32, 33], which suggest that the performance of CNN

models may come at the expense of robustness and that try-

ing to learn models that are more robust to varying imaging

conditions leads to less accurate results. We observe simi-

lar behaviour with the tested FH models (compare the heat

maps of C-SRIP and URDGN, for example) and hypothe-

size that the relatively narrow focus of the models on spe-

cific degradation functions may be one of the reasons for the

convincing performance of recent CNN-based FH models.

4.2. Bias exploration with synthetic and real data

Next, we explore the impact of dataset bias with syn-

thetic LR images from LFW and with real-world surveil-

lance data from SCFace, where the observed image degra-

dations due to the acquisition hardware are not well mod-

elled by the training degradation function. Since there is no

HR ground truth available for the SCFace data, measuring

the reconstruction quality is not possible with this dataset.

We therefore focus on face recognition, which is regularly

advocated in the literature as one of the main applications

for FH models [8, 13, 24, 34], and use it as a proxy for face

hallucination performance. Because this task is different

from the reconstruction task studied above, we first run ex-

periments with artificially degraded LFW images to have a

baseline for later comparisons with results obtained on real-

world SCFace data. We note that recognition experiments

add another dimension to our analysis, as we now also ex-

plore the impact of the dataset bias on the semantic content

of the reconstructed HR data and not only on the perceived
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Figure 4. Examples of LR LFW and SCFace images used in the

experiments. Left: the first row shows LFW samples degraded

using the matching scheme (MS), the next row shows LFW images

degraded with the non-matching scheme (NMS) and the last row

shows images from SCFace. Right: distribution of SCFace image

widths/heights (in px) for faces captured at the largest distance.

quality of the hallucinated faces.

For the experiments, we use a ResNet-101 model [14]

and train it for face recognition on a dataset of close to 1.8×
106 images and 2622 identities [29]. We select the model

because of its state-of-the-art performance [26, 30] and the

fact that an open-source implementation is readily available.

We perform network surgery on the trained ResNet-101 and

use the activations from the penultimate network layer as a

512-dimensional descriptor of the input face images.

For the experiments with artificially down-sampled LFW

data, we consider two different degradation schemes:

• A matching scheme (MS), where each full-resolution

LFW image is first filtered with a Gaussian kernel of

σb = 8

3
and the generated image is then decimated to

the target size using bicubic interpolation. No noise is

added. This scheme matches the training setup.

• A non-matching scheme (NMS), where σb is selected

randomly from a uniform distribution, i.e., U (0.5, 4), for

each LFW image. After filtering and down-sampling, im-

ages are corrupted through additive Gaussian noise with

standard deviation σn, drawn randomly from U(0, 20).
This ensures a mismatch between the applied degradation

function and the one used during training. Furthermore,

it results in a different degradation for every test image.

The two schemes generate LR data of size 24× 24 and dif-

ferent characteristics as shown in Fig. 4. The generated im-

ages are then fed to the FH models for up-sampling and the

HR results are used as inputs for ResNet-101.

For the experiments with the SCFace data, we use a sub-

set of 650 images captured by the five surveillance cameras

at the largest of all recorded distances. After removing the

interlaced rows from the images as well as a corresponding

number of columns to ensure a correct aspect-ratio, we end

up with images, where the facial area covers an image re-

gion close in size to the 24× 24 pixels expected by the FH

models - a distribution for the SCFace face widths/heights

is shown on the right of Fig. 4. We rescale all images to

the correct input size (using bicubic interpolation) and then



(a) HR images (b) Bicubic (c) URDGN (d) LapSRN (e) CARN (f) SRResNet (g) C-SRIP
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Figure 5. Visualization of ResNet-101 features extracted from hallucinated HR images using t-SNE [38]. Results are shown for the 10

largest classes of LFW. The plots show distributions for: (a) the original HR images, and (b-g) hallucinated HR face images images

down-sampled using the matching (MS) or non-matching (NMS) degradation schemes. Best viewed in color and zoomed in.

Table 1. Average KL divergence for the 10 largest LFW classes

with the MS and NMS degradation schemes estimated in the 2D

space generated by t-SNE. Arrows indicate an increase or decrease

in value compared to the baseline bicubic interpolation method.

Approach
LFW

MS NMS Change

Bicubic (baseline) 0.5389 0.2135 −0.3254

URDGN 0.5561 ↑ 0.2143 ↑ −0.3418

LapSRN 0.6346 ↑ 0.2087 ↓ −0.4259

CARN 0.6851 ↑ 0.1957 ↓ −0.4894

SRResNet 0.7148 ↑ 0.1962 ↓ −0.5222

C-SRIP 0.7676 ↑ 0.1972 ↓ −0.5704

feed the hallucination results produced by the FH models to

ResNet-101 for descriptor computation.

Experiments on data separability. Using the experi-

mental setup described above, we explore whether data sep-

arability is improved when facial details are hallucinated

and how the separability is affected by the mismatch in the

degradation function. To this end, we visualize the distribu-

tion of ResNet-101 feature descriptors extracted from hal-

lucinated HR images of the 10 largest LFW classes (i.e.,

the 10 subjects with the highest number of images) using

t-SNE [38] in Fig. 5. In order to quantitatively evaluate the

separability of the presented distributions, we also compute

a separability measure in the form of the Kullback-Leibler

(KL) divergence between the distribution of a given class

and joint distribution of all remaining classes in the 2D t-

SNE embedding space and report average values calculated

over all 10 considered LFW classes in Table 1.

We observe that for the original HR images (before

down-sampling) the classes are well separated and show no

overlap. After down-sampling with the matching scheme

(MS) and subsequent up-sampling (top row in Fig. 5), we

see considerable overlap in the class distributions for bicu-

bic interpolation. The FH models, on the other hand,

improve the data separability over the interpolation-based

baseline and result in significantly higher KL-divergence

Table 2. GSI values achieved by the FH models in the ResNet-101

feature space. Note the decrease in the data separability due to

mismatched degradation functions. Arrows indicate an increase or

decrease in value compared to the baseline bicubic interpolation.

Approach
LFW

SCFace
MS NMS Change

Bicubic (baseline) 0.6283 0.5032 −19.9% 0.5963

URDGN 0.6481 ↑ 0.4866 ↓ −24, 9% 0.5346

LapSRN 0.6657 ↑ 0.4906 ↓ −26.3% 0.6218

CARN 0.7130 ↑ 0.4858 ↓ −31.8% 0.5691

SRResNet 0.7084 ↑ 0.4927 ↓ −30.4% 0.5840

C-SRIP 0.7104 ↑ 0.4893 ↓ −31.1% 0.5712

scores. C-SRIP performs particularly well and generates

compact class clusters with very little overlap.

With the non-matching scheme (NMS) all models per-

form noticeably worse, as shown in the bottom row of

Fig. 5. Similarly as with the reconstruction experiments,

we again see a drop in performance for bicubic interpola-

tion, which is a learning-free approach and was hence not

trained for specific image characteristics. This suggests that

ensuring good data separation is a harder task for LR images

generated by NMS and that the drop in the KL divergence

is not only a result of mismatched degradation functions.

However, if we take the performance drop of the interpola-

tion approach as our baseline, we observe that the FH mod-

els are much more sensitive to the characteristics of the LR

data. The KL divergence of all models drops to a com-

parable value around 0.2 and for the majority (except for

URDGN) even falls slightly behind bicubic interpolation.

To further analyze the separability of the ResNet-101 de-

scriptors of the hallucinated images, we report values for

another non-parametric separability measure. i.e., Thorn-

ton’s Geometric Separability Index (GSI), however, this

time for the entire LFW and SCFace datasets and all FH

models in Table 2. The index is defined as the fraction

of data instances of a given dataset, S , that has the same

class-labels as their nearest neighbors, i.e. [35]: GSI =
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Figure 6. Recognition results on LFW (left) and SCFace (right). With a matching degradation function all models improve upon interpola-

tion. The results are less predictable with image characteristics not seen during training. Best viewed in color.

1

n

∑n

i=1
f(zi, z

′

i), where n stands for the cardinality of S

and f is an indicator function that returns 1 if the i-th

ResNet-101 descriptor zi and its nearest neighbor z′i share

the same label and 0 otherwise. GSI is bounded between 0
and 1, where a higher value indicates better separability. We

use the cosine similarity to determine nearest neighbors.

The results in Table 2 again show that the data separabil-

ity is improved with all FH models compared to the baseline

with the MS scheme on LFW. With the NMS scheme all

models perform worse than the baseline and also exhibit a

larger drop in separability than simple bicubic interpolation.

On SCFace we see a similar picture. Only LapSRN results

in better separability than the interpolation-based baseline,

while all other FH models decrease separability. These re-

sults again point to the importance of suitable training data,

as FH models do not generalize well to unseen image char-

acteristics and perform different than expected when ap-

plied on real-world imagery.

Recognition experiments. In our last series of exper-

iments we look at the recognition performance achieved

by the FH models and extracted ResNet-101 descriptors on

LFW and SCFace. For LFW we follow the so-called “unre-

stricted outside data” protocol and use the 6000 pre-defined

image pairs in verification experiments. We keep one of

the images in each pair unchanged (at the original resolu-

tion), and down-sample the second one using either the MS

or NMS scheme. The LR images are then upscaled with

the FH models and used to extract ResNet-101 descriptors.

Matching is done with the cosine similarity. We report ver-

ification accuracy for the 10 predefined experimental folds.

For SCFace we perform a series of identification experi-

ments, where we try to recognize subjects in the upscaled

HR probe images based on the HR gallery data.

Fig. 6 shows that on HR LFW images the ResNet-101
model achieves a median verification accuracy of 95.1%.

When the image size is reduced to 24 × 24 pixels with the

MS scheme and the LR images are upscaled with bicubic in-

terpolation, the performance drops to 84.5%. The FH mod-

els improve on this and achieve significantly better results.

The highest median accuracy of 91.8% comes from C-SRIP,

which is the top performer in this setting. With the NMS

scheme the drop in performance is larger for all methods

compared to the HR data. URDGN, LapSRN and CARN

are only able to match the performance achieved by bicubic

interpolation, while SRResNet and C-SRIP degrade results.

Results for SCFace are shown separately for each of the

five cameras and in the form of the overall mean identifica-

tion accuracy (i.e., rank-1) in Fig. 6. We see that none of the

FH models outperforms the bicubic baseline on all cameras.

Overall, LapSRN offers a slight improvement over bicubic

interpolation considering the average identification accu-

racy, but the performance gain is modest and in the range of

3%. The ranking of the models is also not consistent across

different cameras, which generate LR data with very differ-

ent characteristics. Observe, for example, C-SRIP, which

performs worst with images from camera 2, but is one of the

top performers on camera 4, where it gains around 10% in

performance over bicubic interpolation. These results show

that without suitable mechanisms that are able to compen-

sate for the bias introduced into FH model by the training

data, hallucination results with real-world images are unpre-

dictable and findings made with artificially down-sampled

images cannot simply be extrapolated to real-world data.

5. Conclusion, discussion and outlook

We have studied the impact of dataset bias on the prob-

lem of face hallucination and analyzed five recent CNN-

based FH models on artificially degraded as well as real-

world LR images. Below is summary of the main findings:

• Reconstruction and robustness: FH models achieve

better reconstruction performance than the learning-free

interpolation baseline on LR images matching the train-

ing data in terms of characteristics. However, their supe-



riority fades away quickly as the LR image characteristics

diverge from the training setting. The rather sudden drop

in reconstruction quality points to an accuracy-robustness

trade-off with FH models not present with learning-free

approaches, as also observed for other CNN-based mod-

els by recent studies [32, 33].

• Separability and recognition: We observe statisti-

cally significant improvements in data separability and

face recognition performance, when LR images are pre-

processed with FH models (as opposed to interpolated),

but only for LR images degraded with the same approach

as used during training. For mismatched image charac-

teristics (with real-world data) we found no significant

improvements in separability or recognition performance

for any of the FH models, which in most cases fall behind

simple interpolation.

Overall, our results suggest that despite recent progress,

FH models are still very sensitive to the characteristics of

the LR input data. We found limited empirical proof of

their usefulness for higher-level vision tasks (e.g., recogni-

tion) beyond improvements in perceptually quality – which

might be important for representation-oriented problems,

such as alignment or detection. Our analysis shows that

we, as a community, need to move away from the standard

evaluation methodology involving artificially degraded LR

images and focus on more challenging real-world data when

developing FH models for specific vision problems.

A common way to mitigate the effects of dataset bias in

CNN-based models from the literature are domain adaption

(DA) techniques or ensemble approaches [7]. These have

not been explored extensively for the problem of face hal-

lucination yet (see [4] for initial attempts), but seem like an

good starting point to improve the generalization abilities of

FH models and make them applicable to real-world data.
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