
Face Synthesis and Recognition Using Disentangled Representation-learning

Wasserstein GAN

Gee-Sern Jison Hsu, Chia-Hao Tang

National Taiwan University of Science and Technology

Taipei, Taiwan

jison@mail.ntust.edu.tw, m10603423@mail.ntust.edu.tw

Moi Hoon Yap

Manchester Metropolitan University

Manchester, UK

M.Yap@mmu.ac.uk

Abstract

We propose the Disentangled Representation-learning

Wasserstein GAN (DR-WGAN) trained on augmented data

for face recognition and face synthesis across pose. We

improve the state-of-the-art DR-GAN with the Wasserstein

loss considered in the discriminator so that the gener-

ative and adversarial framework can be better trained.

The improved training leads to better face disentanglement

and synthesis. We also highlight the influences of imbal-

anced training data on the disentangled facial representa-

tion learning, and point out the difficulty of generating faces

of extreme poses. We explore the recently proposed nonlin-

ear 3D Morphable Model (3DMM) to augment the training

data, and verify the contributions made by the learning on

augmented data. Additionally, we also compare different

data normalization schemes and reveal the benefit of using

the group normalization. The proposed framework is veri-

fied through the experiments on benchmark databases, and

compared with contemporary approaches for performance

evaluation.

1. Introduction

The approaches for face recognition across pose can be

generally split into three categories. One category aims to

rotate a non-frontal face to the frontal view for better ex-

traction of facial features and the problem can be solved

by comparing the extracted features [10, 17, 30]. Another

category aims to learn the pose-invariant features directly

from non-frontal faces [3, 13, 19]. The third category aims

to learn the disentangled representation so that the identity-

preserving features can be disentangled from pose, illumi-

nation and other parameters for better representing the iden-

tity of the face [15, 25]. The approach proposed in this pa-

per belongs to the third category.

Disentangled representation learning refers to the learn-

ing to decompose the representation of an object into multi-

ple independent representations and each independent rep-

resentation characterizes a specific characteristic of the ob-

ject. When the object is a face, the independent rep-

resentations can be composed of the following vectors:

cd, cp, cl, cr, where cd characterizes the identity, cp char-

acterizes the pose, cl characterizes the illumination and cr

characterizes other variables independent of the identity,

pose and illumination. As the Generative Adversarial Net-

work (GAN) offers an effective tool for extracting disen-

tangled representations, several approaches are proposed

recently for better learning of the disentangled facial rep-

resentations [15, 25]. The approach proposed by Peng et

al. combines the multi-source feature embedding, 3D face

modeling and reconstruction-based metric learning to dis-

entangle identity and pose features [15]. It demonstrates

a competitive performance on the Celebrities in Frontal-

Profile (CFP) database [20]. The DA-GAN (Dual-Agent

Generative Adversarial Network) [31] uses synthetic pro-

file face images as augmented data to balance the pose

variance. It leads to compelling perceptual results under

extreme poses and outperforms state-of-the-arts on IJB-

A dataset. The DR-GAN (Disentangled Representation

learning-GAN) [25] learns a generative and discriminative

facial representation which disentangles the face identity

from pose so that it can better handle cross-pose recog-

nition. The DR-GAN is built on the common two-player

GAN architecture, but its generator explores an encoder-

decoder structure, leading to the desired disentanglement.

The input to the encoder is a face image of any pose, and

the output of the decoder is a synthetic face at a specified

pose. The output of the encoder is a latent vector, which

connects a one-hot pose code and a noise to serve as the

input to the decoder. The discriminator follows the same

discriminator design in the Categorical Generative Adver-

sarial (CGA) network [21] which is trained to not only dis-

tinguish synthetic (fake) images from real images, but also

predict the identity and pose of the input face.

Although the DR-GAN demonstrates a good perfor-

mance for cross-pose recognition, our experiments reveal



Figure 1. Data distribution across the angle in yaw, (a) IJB-A, (b)

CASIA-WebFace.

the following issues with the DR-GAN: 1) It is difficult to

stabilize the training. In a few stable cases, the mode col-

lapse often takes place, producing degenerate images; 2)

It can hardly generate faces of extreme poses, e.g., yaw >

60◦. This issue can be caused by the data imbalance across

pose, i.e., very few training data are with nearly profile or

extreme poses. This issue can be one of the reasons that

make the DR-GAN report the face recognition performance

on the MPIE database [8] up to 60◦ only, but the MPIE of-

fers up to 90◦. To circumvent the above issues, we propose

the following improvements: 1) Replacement of the min-

imization of the Jensen-Shannon divergence considered in

the DR-GAN by the minimization of the Wasserstein-1 loss

considered in the Wasserstein GAN (WGAN) [1]; and 2)

Data augmentation by the face images synthesized using the

nonlinear 3D Morphable Model (3DMM) [24] to augment

the training data for better pose distribution. In addition to

these improvements, we also study the benefits of replacing

the batch normalization in the DR-GAN and other GANs

by the recently proposed group normalization [28].

Although it is commonly known that learning based on

imbalanced data would result in biased estimation, the influ-

ence of imbalanced data on the learning of disentangled rep-

resentation has not received much attention so far. Pointed

out in a recent work by Masi et al. [13], several common

databases all exhibit imbalanced pose distribution. Two ex-

amples, the ARPA Janus Benchmark A (IJB-A) [11] and the

CASIA WebFace [29], are illustrated in Fig. 1. Note that

most of the faces are within 40◦ in yaw, and almost none

with profile or nearly profile poses. As our experiments re-

veal that the training based on the imbalanced CASIA Web-

Face leads to undesired face images made by the generator

and deteriorate the learning, we explore the recently pro-

posed nonlinear 3DMM [24] for making the face images

with poses needed to augment the training dataset. In the

following, we first give a brief review to the disentangled

facial representation learning in Sec. 2. The proposed Dis-

entangled Representation-learning Wasserstein GAN (DR-

WGAN) and the nonlinear 3DMM based data augmentation

for handling the imbalanced data are presented in Sec. 3.

The experiments to verify the proposed framework are re-

ported in Sec. 4, followed by a conclusion in Sec. 5.

2. Related Work

Deep generative models can represent high dimensional

data by using a low dimensional representation, which is

often referred to as a code. The relationship between the

data and the code can be described by a conditional prob-

ability distribution parametrized by a deep neural network,

but it is difficult to interpret the relationship in a seman-

tically meaningful way [7]. Disentangled representation

learning offers a good way to better interpret the relation-

ship. To better handle cross-pose recognition, a few ap-

proaches are proposed recently for the disentangled facial

representation learning [15, 25]. The approach proposed by

Peng et al. combines the 3D face modeling, multi-source

feature embedding, and reconstruction-based metric learn-

ing [15]. They first augment the data by generating non-

frontal views of a frontal face using the time-consuming

conventional 3DMM. The augmented data is used to encode

identity and non-identity features by multi-source supervi-

sion. A feature reconstruction metric learning is developed

to disentangle identity and pose by demanding alignment

between the reconstructed features through various combi-

nations of identity and pose features.

The DR-GAN is built on a modified version of the

CASIA-Net [29]. It learns an identity representation I(x)
for a face image x by using an encoder-decoder structured

generator, i.e., G = [Ge, Gd], where the representation is

the output of the encoder Ge and the input of the decoder Gd

so that it can synthesize various poses of faces for the same

identity, making I(x) a generative representation. Besides,

a separate pose code is entered to Gd during training, and

Ge is trained to disentangle the pose variation from I(x),
making I(x) a discriminative facial representation for the

identity. Two objectives are pursued by the DR-GAN. One

is to learn a Ge to transform a face x into a pose-invariant

I(x), and to learn a Gd which takes I(x) together with a

given pose code cp and a noise z as input to synthesize a

face image x̂ that has the same identity as x but in the pose

assigned by cp. The other objective is to learn a multi-task

D to distinguish the synthesized x̂ from the real x, and to

identify the identity and pose of x and x̂. Given a real face

x, D aims to estimate its identity and pose; while given a

synthetic face x̂ made by the generator, D aims to classify

x̂ as fake. The objective considered in training D has two

parts, one is to maximize the probability of x being clas-

sified to the correct identity and pose, and the other is to

maximize the probability of x̂ being classified as fake. The

goal of G is to fool D to accept x̂ to be real, and classify x̂ to

the same identity as of input x with the target pose assigned

by cp.



Figure 2. The proposed framework composed of the DR-WGAN for disentangled representation learning and the nonlinear 3DMM-based

face profiling for data augmentation. The cosine distance is used as the metric for feature matching in test phase.

3. Proposed Framework

The proposed framework is shown in Fig. 2, which

includes the Disentangled Representation-learning

Wasserstein-GAN (DR-WGAN) and the training data

augmentation module made of the nonlinear 3DMM.

The DR-WGAN is revised from the DR-GAN with the

following amendments: 1) The discriminator is built upon

the Wasserstein loss (in contrast to the cross-entropy loss

computed by the softmax function in the DR-GAN) for

better training properties; and 2) the batch normalization

in the DR-GAN replaced by the group normalization [28]

for better feature extraction across the convolution layers.

In the following, we first briefly review the GAN and the

Wasserstein-GAN (WGAN) in Sec. 3.1, then present the

proposed DR-WGAN in Sec. 3.2, and then the nonlinear

3DMM for data augmentation in Sec. 3.3.

3.1. Wasserstein Generative Adversarial Network

The Generative Adversarial Networks (GANs) are a

family of deep learning networks for constructing genera-

tive models based on the two-player game theory. GANs

are designed for achieving two objectives. One objective

is to train a generator network G(·, θG) to learn the best

parameter θ∗G such that the network can transform a noise

distribution pz(z) to the desired model distribution pg(x̂),
where x̂ = G(z, θ∗G), and make pg(x̂) as close as possi-

ble to the real data distribution pd(x). The other objective

is to train a discriminator network D to distinguish the G-

generated fake x̂ from the real x, and in turn, G(z, θ∗G) is

trained to fool D into accepting x̂ as real. This game be-

tween G and D can be written as a min-max objective:

min
θG

max
D

Ex∼pd
[logD(x)] +Ez∼pz

[log (1−D(x̂))] (1)

where x̂ = G(z, θG). It is known that the training of GANs

is difficult and suffers from mode collapse and diminishing

gradients. To partially circumvent these issues, Arjovsky

et al. [1] propose to revise the cost function based on the

Wasserstein-1 distance W (pd, pg) to convert the problem to

the cost of transporting the mass of pg to that of pd, and call

their framework Wasserstein GAN (WGAN). The following

min-max objective is considered in the optimization of D.

min
θG

max
D∈DL

Ex∼pd
[D(x)]−Ex̂∼pg

[D(x̂)] (2)

where DL is the set of 1-Lipschitz functions. When the

discriminator D is being optimized, the parameter update

involved in minθG leads to the minimization of W (pd, pg),
which yields a critic function whose gradient behaves bet-

ter than does the gradient involved in (1). To meet more

requirements, Arjovsky et al. [9] improve the WGAN with

a gradient penalty (GP) added in, resulting in WGAN-GP.

They impose a constraint on the gradient norm of the dis-

criminator’s output with respect to its input, and constitute

the following objective:

minθG maxD∈DL
Ex∼pd

[D(x)]−Ex̂∼pg
[D(x̂)] +

λEx̃∼px̃

[
(||∇x̃D(x̃)− 1||2)

2
]

(3)

The last term is the penalty on the gradient norm computed

at random samples x̃ ∼ px̃. px̃ is implicitly defined as the

distribution of the uniform samples along the straight lines

between the pairs of the data sampled from the pd and pg .

3.2. Disentangled Representation­learning WGAN

The proposed Disentangled Representation-learning

Wasserstein GAN (DR-WGAN) is composed of a genera-

tor G and a discriminator D, and both are built on the same

structure of a base network. We choose the modified CA-

SIA Net [29], same as that used in the DR-GAN, as the



base network, denoted by N0. The modified CASIA Net

N0 is developed on a relatively simple architecture but of-

fers a comparable performance to the DeepFace [23] and

DeepID2 [22] for face recognition. It consists of 5 convo-

lution blocks, including 1 double-convolution block and 4

triple-convolution blocks, followed by an average pooling

(AvePool) layer for feature code extraction. The extracted

feature code cd is processed differently in G and in D.

In D, the AvePool layer is connected to two separate

fully connected (FC) layers, one for handling the classifi-

cation of identities and poses using the cross-entropy loss

computed by the softmax function, and the other for dis-

criminating the real from fake (generated) face images using

Wasserstein loss function. The discriminator can therefore

be written as two parts, i.e., D = [Ddp, Dr], where Ddp is

for identity and pose classification and Dr for real/fake dis-

crimination. Note that the G and D in the DR-GAN all use

the batch normalization to stabilize training.

The generator G is composed of an encoder Ge and a

decoder Gd, i.e., G = [Ge, Gd]. We follow the design

for making G in the DR-GAN. Given a face image x, the

encoder’s output code cd = Ge(x) ∈ RNc from the Ave-

Pool layer is concatenated with a pose code cp ∈ RNp

and a noise z ∈ RNn to form [cd, cp, z], which is used

as the input to Gd. Gd is a deconvolutional neural net-

work that transforms [cd, cp, z] to a decoded face image, i.e.,

x̂ = Gd([cd, cp, z]). G aims to make Ddp classify x̂ as the

same identity as x but in the desired pose cp, and to fool Dr

into determining x̂ to be real. Therefore, in the DR-WGAN,

the loss Lg considered for training G is evaluated via the

softmax function with cross-entropy loss and the Wasser-

stein loss considered in the discriminator D = [Ddp, Dr].

To make Dr, we connect the output of the average pool-

ing layer in N0 to a scalar output. When training Dr with

a given image x, the images are entered in real-fake pairs

(x, x̂), and the interpolated data x̃s = ηx + (1 − η)x̂ can

be determined by choosing η ∼ U [0, 1]. Given x, x̂ and x̃s,

the loss Lr(x, x̂) as shown in (3) can be computed.

The identity-pose discriminator Ddp has two parts

Ddp = [Dd, Dp], where Dd(x) ∈ Rdd is for identity classi-

fication and Dp(x) ∈ Rdp for pose identification. To make

Ddp, we connect the output of the average pooling layer in

N0 to a (dd + dp)-dimensional fully connected layer with

softmax outputs. The loss Ldp is the sum of the cross-

entropy losses from the two parts,

Ldp(x) = Ld,d(x) + Ld,p(x)

= E[logDd(x)] +E[logDp(x)] (4)

Given the above losses considered in D, the loss considered

for training G can be written as Lg = Lr + Ldp.

It is pointed out by Gulrajani et al. [9] that the WGAN-

GP does not work with batch normalization (BN), which

changes the discriminators processing from mapping a sin-

gle input to a single output to mapping from a batch of

inputs to a batch of outputs. Although the layer normal-

ization (LN) is recommended for the WGAN-GP, we have

found that the group normalization [28] performs better.

The group normalization (GN) was proposed as a simple al-

ternative to BN. GN divides the input channels into groups

and computes the mean and variance within each group for

normalization. However, different from BN, the GN com-

putation is independent of the batch size, and the obtained

parameters are stable over a wide range of batch sizes. Al-

though the WGAN-GP processes single inputs, there are

multiple channels for each single input, making the GN an

appropriate choice for normalization. Note that the normal-

ization discussed above is for the real/fake discriminator Dr

with the WGAN-GP built in. The normalization for the G

and Ddp can still be BN or GN, and we report the perfor-

mance comparison of both in Sec. 4.

3.3. Nonlinear 3D MM

We explore the nonlinear 3DMM (3D Morphable Model)

[24] for synthesizing the novel views of a face sample

for data augmentation. The nonlinear 3DMM framework,

proposed by Tran and Liu [24], has three deep networks,

namely the encoder E, the shape decoder DS and the tex-

ture decoder DT . The encoder E : I → m, fS , fT esti-

mates the projection parameter m, the 3D shape parameter

fS ∈ RlS , and the texture parameter fT ∈ RlT for a given

image I. The 3D shape decoder DS : fS → S decodes

the shape parameter fS to a 3D shape S. The texture de-

coder DT : fT → T decodes the texture parameter fT to a

realistic texture T ∈ RU×V .

For reconstructing an input face image, the three deep

networks work together with a geometry-based rendering

layer. The problem can be formulated as follows: Given a

set of 2D face images {Ii}
N
i=1, we need to learn the three

deep networks E,DS , DT with the objective that the ren-

dered image with m,S, and T can approximate the original

image well. The objective function considered is:

argmin
E,DS ,DT

∑N

i=1 ‖R(Em(Ii), DS(ES(Ii)), DT (ET (Ii)))− Ii‖1 (5)

where R(m,S,T) is the face image rendering layer. In

the following, we summarize the nonlinear 3DMM in three

sections: first is the shape and texture representations in

Sec. 3.3.1, followed by the making of face image render-

ing layer in Sec. 3.3.2, and then the network loss functions

in Sec. 3.3.3. We use the code available at [12] in our ex-

periments.



3.3.1 Shape and Texture Representations

The shape representation S ∈ R
3×Q is a set of Q vertices

on the face surface. The shape decoder DS is a Multi-Layer

Perceptron (MLP) with the shape parameter fS as input.

The texture representation is an unwrapped 2D texture. As-

suming that the face mesh has the top pointing up the y

axis, the projection of a 3D vertex vS = (x, y, z) onto the

UV space, denoted as vT = (u, v), is computed as:

v → α1.arctan
(x
z

)
+ β1, u → α2.y + β2, (6)

where α1, α2, β1, β2 are scale constants and translation

scalars to enclose the unwrapped face into the image bound-

aries. The texture decoder DT is a deep network imple-

mented by fractionally-strided convolution layers [16].

3.3.2 Making of Face Image Rendering Layer

The making of the face image rendering layer R(m,S,T)
has three steps: In Step 1, the texture value of each vertex

in S is determined by its predefined location in the 2D tex-

ture T. In Step 2, the 3D shape/mesh S is projected onto

the image plane by using the following weak perspective

projection model:

g(m) = V = f ∗Pr ∗R ∗ S+ t2d = M(m) ∗

[
S

1

]
, (7)

where g(m) gives the 2D positions of the 3D vertices, f is

the scale factor, Pr is the orthographic projection matrix,

R is the rotation matrix, and t2d is the translation vector.

While the projection matrix M has dimensions 24, it has

six degrees of freedom, which is parameterized by a 6-dim

vector m.

In the last Step 3, the 3D mesh is rendered using a Z-

buffer renderer, where each pixel is associated with a single

triangle of the mesh, computed as follows

Î(m,n) = R(m,S,T)m,n =
∑

vS∈Φ(g,m,n)

λTS(vS), (8)

where Φ(g,m, n) = {v
(1)
S ,v

(2)
S ,v

(3)
S } is an operation re-

turning three vertices of the triangle that encloses the pixel

(m,n) after applying the projection g. In order to handle

occlusions, when a single pixel resides in more than one

triangle, the triangle that is closest to the image plane is

selected. The value of each pixel is determined by inter-

polating the intensity of the mesh vertices via barycentric

coordinates {λ(i)}3i=1.

3.3.3 Network Loss Function

See [24] for the architecture of the network. The network

is end-to-end trainable to reconstruct the input images with

the following loss function:

L = Lrec + λadvLadv + λLLL, (9)

where the reconstruction loss Lrec =
∑N

i=1 ||̂Ii − Ii||1
makes the rendered image Îi close to the input Ii, the ad-

versarial loss Ladv makes Îi look real, and the landmark loss

LL makes Îi obey the geometrical constraint. The networks

that generate the rendered image Îi form the generator. The

discriminator DA aims to distinguish Îi from the real image

Ii. During training, the texture model DT will be updated

with the objective that Îi is being classified as real by DA.

As the global structure of the face image has been handled

by the aforementioned face rendering, the adversarial loss

is computed on the textures of local facial regions by using

the patchGAN [6] in DA.

As the fully unsupervised training may lead to degener-

ate outcomes due to common undesired initialization, the

pre-training loss (to be described next) is considered in the

beginning phase of the training. The 3DMM shape pa-

rameter S̃ and projection parameter m̃ given in the linear

3DMM [32] are used to create the pseudo ground-truth tex-

ture T̃ by mapping the pixels in the UV space back to the

input face image, and compute the pre-training loss. As the

pre-training loss and the landmarks are the only supervision

needed, the learning of the whole framework is considered

as weakly supervised.

4. Experimental Evaluation

The experiments are designed to highlight the follow-

ing: 1) The advantages of the real/fake discriminator with

Wasserstein loss over that with softmax function with cross-

entropy loss; 2) The advantages of the using augmented

data for disentangled representation learning; 3) Compar-

ison with other contemporary approaches. The advantages

can be shown in terms of 1) the performance of face recog-

nition across pose and 2) the visual quality of the generated

(synthesized) face images.

We select the MPIE [8] and CASIA-WebFace for train-

ing, and the CFP (Celebrities in Frontal-Profile) database

[20] and IJB-A for testing. The MPIE is one of the most

popular in-the-house databases, and it contains more than

750,000 images of 337 people recorded in four sessions

over the span of five months. Subjects were imaged un-

der 13 view points and 19 illumination conditions while

displaying 6 facial expressions. The view points make 13

poses across −90◦ ∼ 90◦ in yaw with 15◦ interval. The

CASIA-WebFace offers 494,414 face images of 10,575 sub-

jects taken in the wild, and a great majority of poses with

< 45◦ in yaw. We removed 1103 subjects out of the

CASIA-WebFace because of poor image quality and mis-

labeling. We use the Face Alignment Network (FAN) [2] to

locate the landmarks of each face in the database, and ex-

ploit the nonlinear 3DMM [24], as summarized in Sec. 3.3,



Figure 3. Faces with large orientations generated by nonlinear

3DMM with the original given on the left of each raw.

Figure 4. The blue shows the pose distribution of the CASIA-

WebFace, and the orange shows the augmented segments gener-

ated by using nonlinear 3DMM.

to synthesize face images for data augmentation. We have

generated 361,782 additional faces with 30◦ ∼ 90◦ in yaw.

Fig. 3 shows a few cases generated by the nonlinear 3DMM,

and Fig. 4 shows the pose distribution before and after the

data augmentation. Although the pose does not appear

uniformly distributed after data augmentation, most of the

missing pose segments are partially compensated. The CFP

database is composed of 500 subject with 10 frontal images

and 4 profile images per subject. The evaluation protocol

contains 2 different phases including frontal to frontal(FF)

and frontal to profile(FP) face verification, each having 350

intra pairs and 350 extra pairs. The IJBA contains images

and videos of 500 subjects captured in the wild. The pro-

tocol contains identification (search) and verification (com-

pare) for unconstrained face recognition.

All experiments were preformed with the following set-

tings. All face images were aligned to a canonical view of

100×100 in size. Random sampling of 96×96 regions from

the aligned face were cropped for augmenting the data. The

image intensity was linearly scaled to the range of [1, 1]. All

weights in the networks were initialized in a normal distri-

bution with 0 mean and standard deviation 0.02. The Adam

optimizer was set with a fixed learning rate 0.0001 and mo-

mentum 0.5. The batch size was set to be 64. All exper-

iments were run with GTX 1080 Ti GPU and CUDA 8.0

with cuDNN6.0 on Pytorch.

Table 1. Performance on MPIE, Avg is the average rate for 0◦ ∼

60◦ and (·) is the average rate for 0◦ ∼ 90◦

Method 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Avg

Zhu et al.[33] 95.7 92.8 83.7 72.9 60.1 - - 79.3

Yim et al.[30] 99.5 95 88.5 79.9 61.9 - - 83.3

DR-GAN[25] 97 94 90.1 86.2 83.2 - - 89.2

Peng et al.[15] - 97.2 96.6 95.6 92.7 85.7 74.9 (90.5)

DR-WGANLN 99.5 97.4 93.8 89.5 86.5 81.9 70.4 92.1 (87.4)

DR-WGANGN 99.5 98.2 95.7 93.3 89.6 84.8 72.2 94.3 (89.5)

In addition to the training with the MPIE and CASIA

WebFace and testing on the CFP and IJB-A, we also con-

ducted an experiment on MPIE, which offered samples with

poses uniformly distributed (thus no data augmentation per-

formed on MPIE). We selected the first 188 subjects for

training and the rest 149 subjects for testing. The trained

DR-WGAN was used to generate faces of all needed poses

for each face from the gallery of the testing set. The gallery

is composed of one image per subject with frontal view

and neutral illumination, and the probe set contains the rest

of images. The performance is shown in Table 1 along

with other contemporary approaches. The proposed DR-

WGAN is reported with two normalization settings: 1) DR-

WGANLN is the discriminator D with layer normaliza-

tion (LN)1 and the generator G with batch normalization

(BN), and 2) DR-WGANGN is both D and G with group

normalization (GN). The DR-WGANGN outperforms DR-

WGANLN , demonstrating the better appropriateness of us-

ing GN for normalization. The DR-WGANLN outperforms

DR-GAN and other approaches, showing that the stabi-

lized training induced by the Wasserstein GAN leads to bet-

ter disentangled representation learning and improves the

recognition performance. Given a profile face as input, the

faces of other poses synthesized by the DR-WGANGN are

shown in Fig. 5, compared with the faces generated by the

DR-GAN. The faces made by DR-WGANGN look more

similar to the ground truth, and better in shape, texture and

overall image quality.

Fig. 6 shows the face synthesized by the DR-WGAN and

DR-GAN. The faces synthesized by the DR-WGAN again

appear better than those made by the DR-GAN in shape,

texture and preserving the characteristics of the identities.

The recognition performance of the DR-WGAN is given in

Table. 2, with several different settings. The DR-WGANC

refers to training on CASIA WebFace only, and the DR-

WGANC,Aug refers to training on the CASIA WebFace

and the augmented data. As mentioned above, the CA-

SIA WebFace is imbalanced in pose distribution, and the

pose distribution before and after data augmentation is illus-

trated in Fig. 4. Table. 2 reveals that the DR-WGANC,Aug

outperforms DR-WGANC,Aug , especially for the Frontal-

1Note that the Wasserstein discriminator does not work with BN, and

can work with LN or GN.



Figure 5. Given a profile face on the top, the top row shows the

faces made by DR-GAN, the middle row shows the face made by

DR-WGAN, and the bottom row shows the ground truth.

Figure 6. The bottom row gives the images from the dataset used

as the inputs, the top row shows the faces made by DR-GAN and

the middle row shows the face made by DR-WGAN. The left three

are frontal-to-frontal, the right three are profile-to-frontal.

Table 2. Performance on CFP
Method Frontal-Frontal Frontal-Profile

Sengupta et al.[20] 96.40±0.69 84.91±1.82
Sankarana et al.[18] 96.93±0.61 89.17±2.35

Chen et al.[5] 98.67±0.36 91.97±1.70
DR-GAN[25] 97.13±0.62 90.82±0.28
Peng et al.[15] 98.67 93.76

Pal et al.[14] 98.11 91.70

DR-WGANC 90.71±1.00 81.62±1.08
DR-WGANC,Aug 93.76±1.05 88.07±1.76

DR-WGANLN 98.07±1.01 91.67±1.03
DR-WGANLN,Aug 98.07±1.42 92.32±0.74

DR-WGANGN 98.64±0.97 92.87±1.07
DR-WGANGN,Aug 98.43±1.24 93.19±1.40

to-Profile performance, as the dataset before augmentation

does not provide sufficient data with large orientations in

yaw.

Upon the same training data as that reported in other

works, i.e., CASIA WebFace and MPIE, we provide four

versions in Table 2: the DR-WGANLN is D with LN and

G with BN; DR-WGANGN is both G and D with GN;

Table 3. Performance comparison on IJB-A

Verification Identitfication

Method @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

Wang et al.[26] 72.9±3.5 51.0±6.1 82.2±2.3 93.1±1.4
PAM [13] 73.3±1.8 55.2±3.2 77.1±1.6 88.7±0.9
DCNN [4] 78.7±4.3 - 85.2±1.8 93.7±1.0

DR-GAN [25] 77.4±2.7 53.9±4.3 85.5±1.5 94.7±1.1
Wu et al. [27] 98.7±0.1 93.9±0.9 97.7±0.3 99.0±0.1

DR-WGANGN 78.9±2.1 54.5±2.7 84.9±1.9 95.5±1.4
DR-WGANGN,Aug 80.4±2.2 57.9±3.8 87.6±1.0 96.3±0.9

the DR-WGANLN,Aug and DR-WGANGN,Aug are DR-

WGANLN and DR-WGANGN trained on the data with

augmented data added in. It can be seen that the DR-

WGANLN performs slightly better than DR-GAN, and it

is slightly outperformed by the DR-WGANLN,Aug . This

shows that although the DR-WGAN performs better than

the DR-GAN in stabilizing the training, their performances

are also affected by the training data. Because the MPIE

offers a large set of data with extreme poses, the pose in-

sufficiency of CASIA WebFace can be partially treated by

adding in the MPIE to the training set. Nevertheless, the

better training induced by the WGAN and the data augmen-

tation by the nonlinear 3DMM are both verified to be able

to improve the performance. In addition, the improvements

made by the GN can also be verified by the performance for

DR-WGANGN and DR-WGANGN,Aug .

To demonstrate the contribution made by the data aug-

mentation to face synthesis, Fig. 7 shows a comparison of

the faces made by the DR-WGAN trained on the CASIA

WebFace only and that trained with the augmented data

added in. The faces with large yaw can hardly be generated

by the DR-WGAN trained on the CASIA WebFace only,

although the synthesized faces look well in preserving the

identities. However, when using the DR-WGAN trained on

the database with the augmented data added in, the poses

can be well synthesized.

Table 3 shows the performance on the IJB-A. We

only show the best performing DR-WGANGN and DR-

WGANGN,Aug , and compare with DR-GAN and other ap-

proaches. It again shows that the DR-WGANGN,Aug out-

performs all for its integration of the WGAN, the data aug-

mentation and group normalization.

5. Conclusion

To address the issues of disentangled facial representa-

tion learning and better handle cross-pose face recognition

and synthesis, we improve the state-of-the-art DR-GAN

with three ingredients: embedding the Wasserstein loss to

the discriminator, augmenting the training data by the non-

linear 3DMM and incorporation of the group normaliza-

tion, and propose the DR-WGAN. Experiments show that

the DR-WGAN framework is competitive to state-of-the-



Figure 7. Face synthesis on pose augmented data. Given a frontal

and a profile images of two subjects in the top row as input, the

second and fourth rows show the faces synthesized by the DR-

WGAN trained on CASIA WebFace only; the third and fifth rows

show that faces synthesized by the DR-WGAN trained on the aug-

mented CASIA WebFace. The augmentation is undertaken by the

nonlinear 3DMM.

art approaches for handling cross-pose face recognition and

face synthesis.
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