
Revisiting Depth-based Face Recognition from a Quality Perspective

Zhenguo Hu, Qijun Zhao

College of Computer Science,

Sichuan University, Chengdu, China

qjzhao@scu.edu.cn

Feng Liu

College of Computer Science

and Software Engineering,

Shenzhen University, Shenzhen, China

feng.liu@szu.edu.cn

Abstract

Face recognition using depth data has attracted increas-

ing attention from both academia and industry in the past

five years. Despite the large number of depth-based face

recognition methods in the literature, high quality data are

usually required for high recognition accuracy. In this pa-

per, we measure the quality of 3D face data in terms of reso-

lution and precision, and evaluate how the accuracy of three

deep face recognition models varies on several benchmark

databases as the facial depth data resolution changes from

dense to sparse and as the precision changes from high to

low. From the experimental results, several observations

are made. (i) Given a high precision, a low resolution of

3K is sufficient to represent a 3D face; when the precision

decreases, using higher resolutions can benefit face recog-

nition, but the recognition accuracy becomes saturated as

the resolution reaches 10K. (ii) Depth precision is more

critical than resolution in depth-based face recognition, and

a precision of 1mm is generally preferred as a good bal-

ance between accuracy and cost. (iii) The deep models

trained with low-quality data perform more stable across

data of different quality levels. We believe that these obser-

vations are beneficial for both depth sensor manufacturers

and depth-based face recognition system developers.

1. Introduction

Three-dimensional (3D) face recognition has been stud-

ied for several decades with a large variety of methods pro-

posed [18, 13, 15, 16]. It is believed that 3D face data have

intrinsic advantages over 2D face images in detecting pre-

sentation attacks and in providing additional discriminative

features for face recognition [3]. Yet, 3D face recognition

had not gained popularity in real-world applications until

Apple Inc. released its iPhone X with TrueDepth camera

and Face ID in 2017. One reason is due to that the scanners

used for acquiring 3D faces in previous studies are mostly

bulky and expensive, and are thus not feasible in practi-

cal scenarios, though previous studies [18, 13, 15] obtained

very high recognition accuracy by using the captured high

quality 3D face data (see Table 1).

The emergence of low-cost RGB-D sensors, such as

Kinect [26] and RealSense [9], makes it possible to cap-

ture 3D faces more efficiently and more cost-effectively.

Many attempts [1, 8, 14, 10, 27] have been made in the past

years to develop practical face recognition systems based

on RGB-D sensors. As shown in Table 1, with depth im-

ages as auxiliary information, researchers [27, 14] show that

face recognition accuracy can be improved compared with

using only RGB images. However, the accuracy achieved

by using depth images captured by low-cost RGB-D sen-

sors [1, 8, 14, 27] is still much lower than that by using 3D

faces captured by 3D scanners [18, 15]. This is because the

quality of the depth images captured by low-cost RGB-D

sensors is generally poor (see Fig. 1).

Figure 1. Depth images captured by different devices or under dif-

ferent conditions show different quality levels. From left to right:

Facial depth images captured by Konica Minolta Vivid 910 [17]

and 3dMD [23] in lab, Kinect II in lab [28], RealSense in lab and

in the wild.

Inspired by the success of deep learning in computer

vision tasks including face recognition with RGB images,

some researchers proposed deep networks either for pre-

processing facial depth images [7] or for learning effective

depth feature representations of faces [7, 27]. They reported

impressive improvement on face recognition accuracy, and

demonstrated the potential of facial depth images as promis-

ing identity evidence. Yet, from the viewpoint of practical

applications, there are still many open issues: e.g., How

many points should be used to represent a 3D face? How
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precise should the depth values be for reliable face recogni-

tion? Is it more significant to increase the number of points

in the point cloud of a 3D face or to improve the precision of

its depth values? How will a depth-based face recognition

model generalize across data of different quality levels? To

answer these questions, it is highly demanded to further in-

vestigate the capacity of depth-based face recognition tech-

nology under various conditions such that the technology

can be deployed in a more effective way. This paper thus

provides a revisit to depth-based face recognition from a

quality perspective with the aim of assessing the impact of

facial depth image quality on face recognition accuracy.

To this end we focus on two intrinsic factors affecting the

quality of 3D face data, i.e., resolution and precision. Reso-

lution (also known as density) refers to the number of points

used to represent a 3D face, and precision refers to the mea-

suring accuracy of depth values (in terms of millimeter or

mm). Table 1 summarizes these two quality metrics of 3D

face data in different databases. In this paper, we conduct

comprehensive face recognition experiments by using three

well-known deep learning based models on five databases

that are constructed with different 3D/RGB-D sensors. Par-

ticularly, we quantitatively evaluate the potential of low-

quality facial depth images in identity recognition with re-

spect to both resolution and precision of the underlying 3D

face data.

According to the experimental results, several observa-

tions are made. i) Given a high precision, a low resolution

of 3K is sufficient to represent a 3D face; when the pre-

cision decreases, using higher resolutions can benefit face

recognition, but the recognition accuracy becomes saturated

as the resolution reaches 10K. ii) Precision is more crit-

ical than resolution in depth-based face recognition, and a

precision of 1mm is generally preferred as an acceptable

tradeoff between accuracy and cost. iii) Face recognition

models trained on low quality depth images usually general-

ize better than models trained on high quality depth images.

We believe that these observations can provide helpful ref-

erences for manufacturers of depth sensors and developers

of depth-based face recognition systems.

The rest of this paper is organized as follows. Section II

introduces the databases and face recognition models used

in this study. Section III introduces in detail the evalua-

tion protocols. Section IV presents the obtained experimen-

tal results along with analysis and discussion. Section V

finally concludes the paper with suggested future research

directions.

2. Databases and Face Recognition Models

2.1. Databases

We use five databases in this paper, two of which are con-

structed with high-cost 3D scanners and the other three with

low-cost RGB-D sensors. Below, we introduce the detail of

these databases.

FRGC v2 [17] consists of 4, 007 3D facial scans of 466
subjects acquired by using a laser 3D scanner, i.e., Konica

Minolta Vivid 910. These 3D scans have relatively high res-

olution and precision. Specifically, their resolution ranges

from 50K to 170K, and their precision is about 0.1mm.

They are captured at frontal pose and with limited expres-

sion variations of low intensity. FRGC v2 is one of the most

widely used benchmark databases in 3D face recognition re-

search. In this paper, we will use it to generate depth images

of varying resolutions and precisions for both training and

testing.

BU3DFE [23] contains 3D faces of 100 subjects with

different expressions, including neutral expression and six

types of universal expressions (i.e., happiness, anger, sad-

ness, surprise, fear, and disgust) at four intensity lev-

els. The 3D faces are acquired by using a high-cost 3D

scanner at a resolution around 8K and a precision about

0.2mm. BU3DFE is among the most widely used bench-

mark databases for 3D facial expression recognition. In this

paper, we generate depth images from the 3D faces of neu-

tral and first-level happy and sad expressions in BU3DFE as

test data to evaluate the generalization ability of face recog-

nition models.

BUAA database [28], also known as Lock3DFace, cap-

tures face data by using the low-cost RGB-D sensor Kinect

II in lab. It contains totally 5, 711 RGB-D video sequences

of 509 Chinese subjects with variations in pose, expression,

and occlusion. During acquisition, the subjects are asked

to rotate their heads in both pitch and yaw directions by up

to 90◦, and display the six types of universal expressions at

low intensity. The resolution and precision of the obtained

3D face data are 20K and ≥ 2mm, and hence Lock3DFace

is a low quality RGB-D face database. This database is es-

tablished particularly for the purpose of evaluating the per-

formance of face recognition with low-cost RGB-D sensors.

SCU-RGBD is a low quality RGB-D face database col-

lected in lab by ourselves with the low-cost RGB-D sensor

RealSense [9]. It contains 900 RGB-D video sequences of

247 Chinese subjects, who are asked to rotate their heads in

yaw direction by −90◦ to +90◦ with neutral, surprise and

smile expressions under varying illuminations. 3D faces in

this database have a resolution of 45K and a precision of

≥ 2mm. We will release this database in the public domain

for research usage.

RGBD-W is also collected by ourselves with the Re-

alSense sensor. Unlike SCU-RGBD, this database is con-

structed in the wild rather than in lab. Specifically, we

mounted the RealSense sensor on a gate at the entrance of

a railway station. When a person passed through the gate,

he/she had to stand in front of the gate and had his/her iden-

tity card and ticket checked. RGB-D face data was col-
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Table 1. Benchmark databases and state-of-the-art recognition accuracy on them when using depth images only, RGB images only, or both

depth and RGB images. SCU-RGBD and RGBD-W are our collected databases.

Databases
No. of

Subjects
Devices Resolution

Precision

(mm)

Rank-1 Identification Rate Using

Depth RGB Depth+RGB

FRGC v2 [17] 466 Vivid 910 60K 0.1 99.6% [18] – –

BU-3DFE [23] 100 3dMD 8K 0.2 99.3% [15] – –

BUAA [28] 509 Kinect II 20K ≥ 2 66.0% [27] 92.5% [27] 93.2% [27]

SCU-RGBD 200 RealSense 45K ≥ 2 73.0% – –

RGBD-W 2, 239 RealSense 45K ≥ 2 64.0% 94.7% –

IIIT-D [5] 106 Kinect I 13K 2− 4 [26] 26.8% [1] 99.0% [27] 98.7% [1]

CurtinFaces [8] 52 Kinect I 13K 2− 4 72.5% [8] 87.0% [8] 91.3% [8]

Eurecom [14] 52 Kinect I 13K 2− 4 69.7% [14] 94.6% [14] 96.3% [27]

lected during that time. We finally acquired 100 RGB-D

face images for each of 2, 293 subjects. Neither illumina-

tion nor expression/pose of the subjects was controlled in

this database. RGBD-W is used to evaluate the performance

of depth-based face recognition models for in-the-wild ap-

plications.

Example depth images from the above five databases are

shown in Fig. 1. Obviously, the quality of the depth images

in FRGC v2 and BU-3DFE is much better than that of the

depth images in the other three databases in terms of preci-

sion. As for low-cost depth sensors, it seems that RealSense

can capture more detailed depth information than Kinect II,

and acquisition under uncontrolled conditions usually re-

sults in even lower quality depth images.

2.2. Face Recognition Models

Three deep face recognition models, Lightened CNN

[24], CASIA-Net [25] and SphereFace [11], are consid-

ered in this study. All are relatively light-weight models.

This enables us not only to fine tune the models but also to

train them from scratch by using relatively small data sets

of facial depth images that were available to us. Note that

although some models in our experiments obtain state-of-

the-art results, our main goal in this paper is to assess the

impact of quality factors rather than to promote the state-

of-the-art of depth-based face recognition. Therefore, we

do not employ complex or very deep models like VGG [20]

and GoogleNet [21].

The structure of Lightened CNN is the same as in [24].

Its input image size is 128×128, and the 256−dimensional

output of FC1 layer is taken as the extracted feature. For

CASIA-Net, motivated by [22], we add batch normalization

[12] and exponential linear unit [2] after each convolutional

layer. The input image size is changed from 100 × 100 to

96 × 96, and the 320−dimensional output of Pool5 layer

is taken as the extracted feature. For SphereFace, we em-

ploy SphereFace-20 as defined in [11]. Its input image size

is 112 × 96, and the 512−dimensional output of FC1 is

taken as the extracted feature. For all the three deep mod-

els, cosine similarity is employed to measure the similarity

between the extracted features of different facial depth im-

ages.

3. Evaluation Protocols

In order to evaluate the impact of depth data quality (in

terms of resolution and precision in this paper) on face

recognition accuracy, we conduct evaluation experiments

using both synthetic and real-world data. The synthetic

data, including 3D faces of varying resolution and preci-

sion, are generated from the high quality data in FRGC v2.

When training the deep models, we also augment the 3D

face data via rotating them by different amounts to generate

multi-pose faces. The 3D face data are mapped to 2D planes

via weak perspective projection, resulting in depth images

that are required by the deep face recognition models. The

depth images, after necessary pre-processing, are organized

into training and testing subsets to assess the performance

of the deep face recognition models. Below we introduce in

detail our evaluation protocols.

3.1. Generating Depth Images of Varying Quality
Levels

Using a set of facial depth images with systematic varia-

tions in resolution and precision is very helpful for assessing

the impact of these quality factors. However, as introduced

in the last section, existing databases can not provide such

data. Therefore, we synthesize facial depth images of vary-

ing quality from the high quality 3D faces in FRGC v2. For

this purpose, we choose for each of the 466 subjects the

frontal 3D face scan with neutral expression as the original

3D face. All the chosen original 3D faces have their nose

tips aligned in a common coordinate system, and are then

cropped by using a sphere whose center is at the nose tip

and radius is set as 120mm, resulting in 3D faces whose

resolution is in between 35K and 85K. These 3D faces

are further down-sampled by re-sampling the point clouds
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at different resolutions, including 20K, 15K, 10K, 5K and

3K in our experiments. To further augment the pose varia-

tions in the data sets, we rotate the 3D faces along yaw di-

rection by ±10◦, ±20◦, ±30◦, ±40◦ and ±45◦, and along

pitch and roll direction by ±10◦ and ±15◦.

To simulate 3D faces of different precisions, we

add random Gaussian noises to the depth values (i.e.,

z−coordinates) of the 3D faces. In our experiments, we

consider two types of Gaussian noises whose means are

zero and standard deviations are 10 and 20. Given that

the precision of the original data is 0.1mm, the obtained

3D faces with these two Gaussian noises have approximate

depth precisions of 1mm and 2mm, respectively. These 3D

faces are finally projected to 2D planes via weak perspective

projection, resulting in 275 depth images per quality level

(i.e., at certain resolution and precision) per subject. Figure

2 shows some obtained 3D face shapes and corresponding

depth images at different quality levels.

3.2. Data Preprocessing and Organization

The depth images are first aligned based on the five land-

marks of left and right eye centers, left and right mouth cor-

ners, and nose tip on them such that the two eyes locate on

a horizontal line, and then cropped and resized to the spe-

cific input size required by different models (refer to Sec.

II.B). Here, the landmarks on the depth images in FRGC

v2 and BU3DFE are directly obtained from the landmarks

annotated on the source 3D faces, while the landmarks for

the other databases are either automatically detected by us-

ing MTCNN [29] or manually marked (if MTCNN fails).

Note that since depth images are registered with their cor-

responding RGB/NIR images, the landmarks are detected

by applying the publicly available MTCNN model to the

RGB/NIR images. Finally, the pixel values on each depth

image are normalized to the interval [0, 1] via min-max nor-

malization.

As introduced above, FRGC v2, BUAA, SCU-RGBD

and RGBD-W are used for both training and testing. Hence,

we divide each of them into training, validation and testing

subsets. For FRGC v2, the first 314 subjects are chosen for

training; after shuffling their 86, 350 facial depth images,

the first 15, 000 images are picked as validation subset, and

the remaining images are used as training subset. The im-

ages of the other 152 subjects in FRGC v2 compose the test-

ing subset, among which a frontal depth image per subject

is chosen as gallery and the rest images are used as probes.

In BUAA, we randomly select 330 subjects for training

and validation, among whose images 80K images are ran-

domly chosen as training subset and the remaining 20K im-

ages as validation subset. For the other 179 subjects in the

testing subset, one of the frontal neutral images is chosen

per subject to form the gallery, while the other frontal neu-

tral images compose one probe subset BUAA-NU, and all

the rest images with varying poses and expressions compose

another probe subset BUAA-ALL.

In SCU-RGBD, 147 subjects are randomly chosen for

training and validation, and the other 100 subjects for test-

ing. More specifically, the training and validation subsets

contain 45K and 5K images, respectively. In the testing

subset, the gallery consists of one frontal neutral image per

subject, and the probe consists of all the remaining images.

In RGBD-W, 1, 293 subjects are randomly chosen for

training and validation, and the other 1, 000 subjects for

testing. As a result, the training and validation subsets con-

tain 200K and 20K images, respectively. As in RGBD-W,

the gallery in the testing subset consists of one frontal neu-

tral image per subject, while the probe consists of all the

remaining images.

The BU3DFE database is used only for testing. One

frontal neutral image of each subject is chosen as gallery,

while all the other images are used as probe. Note that the

3D faces in BU3DFE are augmented via rotation in the same

way as in FRGC v2 (refer to Sec. 3.1).

3.3. Model Training and Performance Metrics

We train the three deep models in two different ways,

training from scratch and fine-tuning a pre-trained model.

When training Lightened CNN and SphereFace from

scratch that are implemented on Caffe, we set dropout rate

to 0.7, momentum and weight decay to 0.9 and 5e− 4, and

initial learning rate to 1e− 3, which is gradually reduced to

1e−5. As for CASIA-Net, we implement it on TensorFlow

[4]. When training it from scratch, the model is initialized

by a zero-centered normal distribution with a standard devi-

ation of 0.02, and optimized by using the Adam optimizer

[6]. The learning rate is first set as 2e − 4 and updated to

1e− 4 when the training is saturated. We finish the training

when the loss on validation subset is below 1e − 3. When

fine-tuning Lightened CNN and SphereFace, the pre-trained

models provided by [24] and [11] are used, and the learning

rate is set to 1e− 5. When fine-tuning CAISA-Net, we first

train the model by using the RGB face images in CASIA-

Webface [25], and then fine-tune the obtained model on fa-

cial depth images with a learning rate of 1e − 5. We eval-

uate the depth-based face recognition performance of these

deep models in identification mode, and compare their rank-

1 identification rates when depth images of different quality

levels are used.

4. Results and Discussion

In this section, we first report the evaluation results on

synthetic data generated from FRGC v2, and then report

the results on real-world data. Discussion will be presented

along with the results.
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Figure 2. Procedure of generating depth images of various quality levels. Given a high quality 3D face, it is first aligned and cropped, then

downsampled to different resolutions (including 20K, 15K, 10K, 5K and 3K) and added with depth noise (resulting in a precision of

0.1mm, 1mm or 2mm), and finally projected to 2D plane to form depth images. Note that the pose augmentation step is not shown for

the sake of highlighting the simulation of different quality levels.

4.1. Results on Synthetic Data

Experiments using synthetic data consider both homoge-

neous and heterogeneous face recognition. In homogeneous

face recognition, training and testing data share the same

resolution and precision, i.e., the same quality level. In het-

erogeneous face recognition, training and testing data could

have different resolutions or precisions. Below, we report

the respective results.

Figure 3. Rank-1 identification rates of (a) Lightened CNN and (b)

CASIA-Net in homogeneous face recognition on the depth images

generated from FRGC v2 at different quality levels.

4.1.1 Homogeneous Face Recognition

Figure 3 summarizes the results of Lightened CNN and

CASIA-Net for homogeneous face recognition. In this ex-

periment, all the models are trained from scratch. As can

be seen, given a specific precision, the recognition accuracy

is in general decreases as the resolution drops from 20K
to 3K. Given a specific resolution, similar trends can be

observed for the impact of precision on the recognition ac-

curacy. However, when one quality factor is at high level

(e.g., a resolution of 20K or a precision of 0.1mm), the ac-

curacy degradation due to the decline of the other quality

factor becomes less serious. Especially, for example, at the

precision of 0.1mm, the accuracy of both models remains

almost stable when the resolution changes; in contrast, at

the precision of 2mm, their accuracy both decreases obvi-

ously (about 12% for Lightened CNN and 18% for CASIA-

Net) when the resolution is reduced from 20K to 3K.

On the one hand, these results reveal the potential bene-

fit of enhancing depth image quality. A real-world practice

of this idea is Kinect fusion [19], which aims to generate

3D data with higher resolution (and possibly higher preci-

sion also) by fusing multiple continuous frames captured by

Kinect. On the other hand, the gain of quality improvement

becomes marginal at certain levels. Taking the CASIA-Net

as an example, at the precision of 1mm, the contribution

of improved resolution seems saturated at the resolution of

10K.

To sum up, when the precision is high (i.e., 0.1mm), a

relatively low resolution (i.e., 3K) is sufficient to represent

a 3D face. As the precision decreases, higher resolutions
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will be needed to maintain a relatively high recognition ac-

curacy. However, when the resolution is as high as 10K,

the gain of increased resolutions becomes marginal.

4.1.2 Heterogeneous Face Recognition

Figure 4. Rank-1 identification rates of (a) Lightened CNN and (b)

CASIA-Net in heterogeneous face recognition on the depth images

generated from FRGC v2. The training and testing data have the

same precision, but may differ in resolution.

Figure 4 and Table 2 present the recognition accuracy

of Lightened CNN and CASIA-Net for heterogeneous face

recognition. In Figure 4, we assume that the training and

testing data have the same precision (i.e., either 0.1mm

or 2mm), and may differ in resolution. It can be clearly

seen from the results that when the precision is as high as

0.1mm, variations in resolution do not have apparent ef-

fect on the recognition accuracy. This again demonstrates

that given a sufficiently high precision, a resolution of 3K
would be sufficient for representing a 3D face. However,

when the data have a low precision of 2mm, the accuracy

changes much more obviously on probes of different reso-

lutions.

In Table 2, we assume that the training and testing data

have the same resolution (i.e., either 20K or 3K), and may

differ in precision. Unlike the results in Figure 4, obvi-

ous variations in recognition accuracy can be observed here

when training and testing depth images have different pre-

cisions. Moreover, the effect of precision heterogeneity on

face recognition accuracy is more striking on data of lower

resolution (i.e., 3K). These results reveal the relatively

more significant importance of precision than resolution for

reliable depth-based face recognition.

According to Figure 4 and Table 2, it is also worth men-

tioning that the models trained with relatively lower quality

depth data (e.g., resolution of 3K and precision of 1mm)

perform more stable when applied to probes of different

Table 2. Rank-1 identification rates (%) of Lightened CNN /

CASIA-Net in heterogeneous face recognition on the depth im-

ages generated from FRGC v2. The training and testing data have

the same resolution, but may differ in precision.

Precision of

Training Data

Precision of Testing Data

0.1mm 1mm 2mm

Resolution of both training and testing data: 20K

0.1mm 98.7 / 99.5 93.5 / 84.4 70.2 / 32.1

1mm 83.1 / 81.5 97.8 / 96.0 83.9 / 79.5

2mm 39.0 / 58.5 66.2 / 80.0 95.2 / 89.4

Resolution of both training and testing data: 3K

0.1mm 98.8 / 99.7 58.4 / 28.2 25.6 / 8.5

1mm 78.6 / 60.0 90.8 / 86.5 66.7 / 46.6

2mm 33.6 / 35.7 53.5 / 55.0 83.7 / 73.4

Table 3. Rank-1 identification rates (%) of Lightened CNN /

CASIA-Net in heterogeneous face recognition on real-world data

sets.

Training

Data Sets

Testing Data Sets

BU3DFE BUAA SCU-RGBD RGBD-W

FRGC v2 37.5 / 51.9 – – –

BUAA – – 46.3 / 55.6 12.0 / 30.0
RGBD-W – 56.2 / 57.2 51.5 / 46.9 –

quality levels. This demonstrates their better generalization

ability, although their accuracy on high quality data might

be not as high as that of the models also trained with high

quality data. To further verify this observation, we evaluate

the model trained with synthetic data of resolution 10K and

precision 0.1mm and the model trained with BUAA and

RGBD-W on BU3DFE, SCU-RGBD and RGBD-W. The

obtained results as shown in Table 3 lead to the same obser-

vation. The accuracy of both Lightened CNN and CASIA-

Net models trained on FRGC v2, when tested on BU3DFE,

decreases by about 50%. On the contrary, when they are

trained on low quality depth data, their accuracy degrada-

tion on other data sets is within 25%. Note that the scale of

RGBD-W is much larger than that of BUAA, which leads

to a substantial decrease of recognition accuracy.

4.2. Results on Real­World Data

We also evaluate the accuracy of the considered deep

face recognition models on real-world data. The results are

shown in Table 4. As can be seen, the deep models achieve

reasonably good accuracy on the real-world data collected

with low-cost RGB-D sensors (i.e., Kinect or RealSense),

compared with the state-of-the-art results in Table 1 and the

results on synthetic data. Also, the decrease of performance

on synthetic data from high quality to low quality is con-

sistent with the one on real-world data, which demonstrates

the reasonability of the data generation.

Comparing the results obtained by different training
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Table 4. Rank-1 identification rates (%) of Lightened CNN,

CASIA-Net and SphereFace in homogeneous face recognition on

different data sets when the models are either trained from scratch

or first pre-trained on RGB face images and then fine-tuned with

depth images.

Deep Models Databases
Identification Rate (%)

From Scratch Fine-tuned

Lightened CNN

BUAA-NU 78.43 80.0

BUAA-ALL 57.22 57.75

SCU-RGBD 66.5 71.9

RGBD-W 58.7 56.7

CASIA-Net

BUAA-NU 90.9 91.0

BUAA-ALL 76.7 73.0

SCU-RGBD 72.7 73.0

RGBD-W 64.0 63.5

SphereFace

BUAA-NU 73.0 77.6

BUAA-ALL 50.8 54.0

SCU-RGBD 52.3 55.8
RGBD-W 54.2 55.7

methods, we obverse that using RGB face images to pre-

train the deep models and then using facial depth images

to fine-tune the pre-trained models can effectively improve

the face recognition accuracy in most cases. Comparing the

results across different databases, we find that variations in

pose and expression are other quality factors than resolution

and precision that could significantly affect the depth-based

face recognition accuracy. Comparing the results across dif-

ferent deep models, we can see that although SphereFace

performs best for RGB-based face recognition, its perfor-

mance on depth images is worse than that of the other two

deep models. A possible reason is because its complexity is

one order of magnitude higher than that of the other models

and the number of subjects in the training data is quite small

with respect to the number of its parameters.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a revisit to depth-based face recogni-

tion from the quality perspective. Three deep face recogni-

tion models are evaluated on both synthetic and real-world

data from five benchmark databases. The comprehensive

evaluation results demonstrate that (i) a low resolution of

3K is sufficient to represent a 3D face at a high precision,

and as the precision decreases, improving the resolution can

significantly benefit face recognition until the resolution is

as high as 10K, (ii) compared with resolution, depth pre-

cision can more significantly affect the accuracy of depth-

based face recognition systems, and (iii) training the face

recognition models with low quality data is helpful in im-

proving their generalization ability across data of different

quality levels. One limitation of this study is due to the

relatively small-scale datasets. Yet, we believe that the ob-

servations made in our evaluation are helpful for both re-

searchers and practitioners in the field of depth-based / 3D

face recognition.

Our evaluation results also suggest the following valu-

able research directions in depth-based face recognition.

• As precision is more critical than resolution, it de-

serves to explore software-based methods for enhanc-

ing the precision of the depth data captured by low-cost

RGB-D sensors.

• Considering the quality variations commonly occur-

ring in practical applications, it is of significant impor-

tance to develop effective depth-based face recognition

methods that are robust across data of different quality

levels, and especially for in-the-wild applications.

• Existing databases of facial depth data in the public do-

main are relatively small-scale. It is highly demanded

to establish large-scale depth-based face databases to

enable large-scale evaluation of relevant technology as

well as large-scale verification of relevant conclusions.
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