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Abstract

Soft biometric traits have been proven to enhance per-

son identification accuracy, when used complementary to

primary biometric traits. They present a series of advan-

tages such as compliance to the human language, robust-

ness to low quality data, non-intrusive and consent free ac-

quisition, and privacy preservation, increasing their appli-

cability in realistic conditions. They can be extracted from

a variety of individual modalities, with the human face be-

ing considered as the most informative source of attributes,

as it provides rich geometrical and texture features. Recent

advances in computer vision have allowed the accurate de-

tection of such features under varying, non-ideal capturing

conditions, with this increase in detection capacity, how-

ever, coming at the cost of high computational complexity.

Meanwhile, the research and market interest has shifted to-

wards the implementation of such methods on low power

devices (i.e mobile phones), with data security concerns fa-

voring on-device offline computation instead of cloud-based

services. Towards this end, and taking into consideration

recent advances in computationally efficient CNN design

and multitask learning, we propose a novel CNN architec-

ture, suitable for real time implementation on low power

devices, which simultaneously performs gender, age, race,

eyes state, eyewear, smile, beard and moustache estimation

from unconstrained face images. The architecture employs

the Mobilenet architecture and exploits the correlation be-

tween the individual biometric features, performing compa-

rably to three state-of-the-art face analysis systems, while

requiring significantly lower computational resources.

1. Introduction

Soft biometrics can be defined as non-unique personal

attributes of physical, behavioral or material nature, which

can be used for person description and identity verifica-

tion. They are typically gleaned from primary biomet-

ric data, in automated fashion, and classify people in pre-

defined human-language interpretable categories [64, 15,

Figure 1. The proposed methodology utilizes a computationally ef-

ficient deep network architecture to simultaneously extract 8 facial

soft biometric features from unconstrained faces images

46]. While they do not present the discriminative capac-

ity to allow accurate person identification on their own [3],

soft biometric features have been proven to increase person

identification accuracy in unconstrained settings, when used

complementary to primary biometric traits (also known as

hard biometrics) [71, 79, 28], leading to several research

approaches towards the fusion of soft and hard biometric

features [93, 66, 2, 68, 26].

In addition to their complementary utilization towards

person identification, soft biometrics further present multi-

ple benefits, including:

• Compliance to human language: Soft biometrics pro-

vide a description that can be interpreted and easily un-

derstood by humans (i.e. “tall, blonde, female”) mak-

ing them suitable for scenarios where only a verbal de-

scription is available (i.e. eyewitness statement), such

as surveillance or police reports [73, 71].

• Robustness to challenging conditions: The lower dis-

criminative capacity of soft biometrics allows their de-

duction from data of low quality, as they present ro-

bustness to viewpoint variance, illumination, occlu-

sions and low resolution [45].
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• Non-intrusive, consent-free: Their robustness to low

quality data, allows the extraction of soft biometrics in

unconstrained settings (i.e. from long distance), thus

not requiring the consent or cooperation of the subject,

rendering the data acquisition process almost imper-

ceptible.

• Privacy preservation: Soft biometric traits are non-

unique personal attributes, which provide only a par-

tial description of a person’s appearance and behavior,

thus allowing the preservation of his identity. This fea-

ture can be of high significance when it comes to the

capture and storage of such data, especially in the light

of recent strict personal data protection regulations (i.e

EU GDPR).

The human face is considered as the most informative

source of attributes, as the facial features provide a rich and

highly discriminative representation of the human appear-

ance, allowing the extraction of a multitude of soft biomet-

ric traits (i.e. gender, age, race, facial hair, eyewear etc.),

with the field of person recognition from facial soft bio-

metrics having garnered a significant amount of attention

from the research community [49, 80, 93, 5, 4, 28]. Even

though facial soft biometrics are relatively robust to low

quality data, their extraction in unconstrained settings (“in

the wild”) can still be a challenging process, as the large

variability in capturing conditions (viewpoint, illumination

etc.) as well as the diversity of similar facial features among

people of different race [19], can significantly impact the

prediction accuracy. While initial approaches would under-

take the extraction of only a single soft biometric trait, fo-

cusing mainly on age [35, 18, 65], gender [59, 71] and race

[22], not leveraging the potential correlation between those

features, recent works have shown that jointly learning cor-

related tasks can improve the overall performance of each

individual task [97, 9, 69, 7].

This increase in detection capacity, however, has come

at the cost of computational complexity, as high complexity

detection models are usually employed [69, 7, 31], requir-

ing high performance hardware to perform in timely fash-

ion. Meanwhile, the research and market interest has shifted

towards the implementation of such methods on low power

devices (i.e mobile phones). While cloud-based services of-

fer an indirect solution to this need, executing the complex

calculations remotely in high performance workstations, the

increased data transmission latency, and more importantly

the significant security concerns in regards to the transmis-

sion, Over-the-Air, of potentially sensitive personal data to

third-party vendors, have reinforced the requirement for of-

fline, on-device computation.

Towards this end, and taking into consideration recent

advances in computationally efficient CNN design and Mul-

titask learning, we propose a novel CNN architecture, suit-

able for real time implementation on low power devices,

which simultaneously performs gender, age, race, eyes

state, eyewear, smile, beard and moustache estimation from

unconstrained face images. The proposed method employs

the Mobilenet [40] architecture, along with the Tensor-

flowLite quantization scheme [44], and exploits the corre-

lation between the individual biometric features, perform-

ing comparably to three state-of-the-art face analysis sys-

tems, while requiring significantly lower computational re-

sources. The main contributions of this paper are:

• A deep CNN architecture that simultaneously per-

forms gender, age, ethnicity, eyes state, eyewear,

smile, beard and moustache estimation from uncon-

strained face images, taking advantage of the correla-

tion of each of these tasks

• The architecture employs a computationally efficient

and parameterizable design, significantly reducing the

computational complexity, compared to other SOA

methods, thus offering real-time performance in low

power devices

• Through experimental evaluation on a publicly avail-

able facial soft biometrics dataset, the proposed

methodology achieves very high recognition rates,

comparable to three state-of-the-art face analysis sys-

tems

The rest of the paper is organized as follows. Section 2

provides a summary of the state-of-the-art in the field of fa-

cial soft biometrics detection and efficient network design.

Section 3 describes the proposed network architecture. Sec-

tion 4 presents the results from the experimental evaluation

and the computational complexity estimation and Section 5

concludes the paper.

2. Related Work

2.1. Individual Facial Soft Biometrics

Early facial soft biometric-based approaches undertook

the extraction of individual soft biometric traits, with the

majority of the research work focusing on age [35, 18, 65],

gender [59, 71] and race [22] estimation from face images.

Towards age estimation, a variety of face representation

models have been utilized including: Wrinkle Models [37],

Active Appearence Models (AAM) [51], Aging Pattern Sub-

space [25], Age Manifolds [32] and Biologically Inspired

Models [34]. Moreover, general-purpose image features

have also been employed, such as Local Binary Patterns

(LBPs) [30] and Gabor Features [23]. Meanwhile, in recent

years facial age estimation approaches have moved towards

the utilization of deep network architectures, with a large

number of CNN architectures proposed for age estimation

and grouping from a single face image [57, 63, 16, 11, 55]



Towards gender classification, early attempts employed

networks such as ANNs [27] and HyberBF [67], while sub-

sequent approaches used global image features utilizing

SVM [14] and AdaBoost [6] classifiers. The same classi-

fiers were also later used in conjunction with local image

features including LBPs [75], SIFT features [81] and Haar

wavelets [90]. Meanwhile the use of Lookup Tables was

proposed in [84].

Towards race estimation (also referred in literature as

ethnicity), similar to the above mentioned traits, a multi-

tude of methods have been proposed, utilizing global color

features [88] and local image features, such as LBPs [72],

Gabor features [39], Haar wavelets [85]. Moreover, as in

the case of age estimation, more recent research efforts have

been mainly focused towards the use of deep CNNs, com-

bining convolutional structures for image feature extraction

and fully-connected layers for the final race classification

[83, 96, 38].

Similar efforts, albeit more limited, have been carried

out towards the detection of other facial traits, utilizing, in

a similar manner to the methods mentioned above, feature

/ classifier combinations, as well deep CNNs, for eyewear

[86, 20, 17], smile [76, 24, 10], facial hair [62, 53, 52] and

eyes state [92, 94, 29] detection.

2.2. Joint Facial Feature Learning

While the individual facial feature extraction methods,

described above, have achieved high accuracy results, re-

cent research efforts have shown that jointly learning cor-

related tasks, known as Multitask learning [8], can improve

the overall performance of each individual task. Zhu and

Ramanan [97] presented a unified model for face detection,

pose estimation, and landmark estimation in real-world,

cluttered images, using a model based on a mixture of trees

with a shared pool of parts. Chen et al. [9] combined face

alignment with detection, learning the two tasks jointly in

the same cascade framework, while in [33] a framework for

joint estimation of age, gender and ethnicity was proposed,

exploring Canonical Correlation Analysis and Partial Least

Square based models. Meanwhile, Eidinger et al. [18] ex-

tracted LBP features to train linear-SVM models for age and

gender estimation in unconstrained face images.

Moving towards CNN architectures, Levi and Hassner

[54] were the first to utilize them for simultaneous age and

gender classification. In [69] the Hyperface model was in-

troduced, a deep multi-task learning framework for face de-

tection, landmark localization, pose estimation, and gender

recognition, with [70] extending it towards more extensive

face analysis. Gunther at al. [31] present an alignment-

free facial attribute classification technique, while Cao et al.

[7] integrate Partially Shared (PS) structures and local con-

straints together to help the framework learn better attribute

representations.

2.3. Computationally Efficient CNNs

Multiple recent research efforts have focused in build-

ing small and efficient neural networks suitable for systems

with limited resources, such as mobile devices. A com-

mon approach is to reduce the number of parameters in

the convolutions, with the MobileNet [40, 74], Shufflenet

[95, 58] and Xception[13] models utilizing depth-wise sep-

arable convolutions [77]. An alternative approach was pro-

posed in [82], introducing factorized convolutions, while

Jin et al. [47] proposed the use of topological connections

for further reducing computational requirements (Flattened

networks). Other small networks include the Squeezenet

[42] which used a bottleneck approach to design a very

small network, structured transform networks [78] and deep

fried convnets [91].

Instead of reducing the convolution parameters before

training, a different approach is to obtain a small network

by shrinking, factorizing or compressing pre-trained net-

works. The most popular techniques for compressing pre-

trained networks are 1) quantization [87, 44], in which fil-

ter kernels and weighting matrices are quantized, 2) hash-

ing [12], which uses a low-cost hash function to randomly

group connection weights into hash buckets, and all connec-

tions within the same hash bucket share a single parameter

value and pruning, and 3) Huffman coding [36] that is able

to further reduce the size of the networks using Huffman

coding on the weights of the network.

3. Proposed Methodology

The proposed methodology follows the MobileNet [40]

deep network architecture, combined with a fully connected

multi-part classification layer, in order to jointly estimate 8

facial soft biometric traits, described in Table 1 below, from

unconstrained RGB face images.

Table 1. The facial soft biometric traits extracted by the proposed

method

Gender male / female

Age Group infant / child / young adult / adult / senior

Race caucasian / african / asian / hindi / mixed

Eyes State open / partially open / closed

Eyewear glasses / no glasses

Smile smiling / not smiling

Beard beard / no beard

Moustache moustache / no moustache

3.1. Depthwise Separable Convolutions

The Mobilenet network architecture utilizes a highly ef-

ficient convolutional structure, called Depthwise Separable



Figure 2. The proposed network architecture: The feature extraction stage (light blue) generates the low level image features from a

160 × 160px face image (light gray). It employs a truncated version of the MobileNet [40] network architecture, composed of multiple

stacked depthwise weparable convolution layers. The output of the final convolutional layer is passed through an Average Pooling layer

and is fed to the classification stage (green), which encodes the classification-specific information for the detection of facial soft biometric

traits, using an individual two-fully-connected-layer structure for each of the target facial soft biometrics

Convolution [77] (Figure 2) in order to reduce the computa-

tional complexity of standard convolutional layers, without

affecting their representational capacity. Depthwise Sepa-

rable Convolutions are composed by an computationaly ef-

ficient 3× 3 depthwise convolution, which applies a single

filter to each input channel, followed by a standard 1 × 1
pointwise convolution which combines the outputs of the

former, with Batch Normalization[43] and Relu6 [50] acti-

vation applied after each layer.

While a standard convolution both filters and combines

inputs into a new set of outputs in a single step, the depth-

wise separable convolution splits this process into two steps,

with this factorization significantly reducing computation

cost and model size.

3.2. Network Architecture

The network architecture, presented in detail in Figure 2,

is split in two stages: feature extraction and classification.

The feature extraction stage generates the low level im-

age features from the input. It employs a truncated version

of the Mobilenet [40] network architecture, using only the

fully-convolutional layers, since the final fully-connected

layers are used for specific-object classification and thus are

discarded. More specifically, the feature extraction stage is

comprised of an initial dense 3× 3× 32 layer, followed by

12 depthwise separable convolutional layers which gradu-

ally reduce the spatial dimensions of the feature maps while

increasing their depth. The output of the final convolutional

layer passes through an average pooling layer in order to

reduce the spatial dimensions of the feature maps to 1 × 1,

transforming them into a 1024 dimensional feature vector.

The classification stage encodes the classification-

specific information for the detection of facial soft biomet-

ric traits. It receives as input the feature vector generated

by the feature extraction stage and passes it to 8 individual

two-layer classification structures, one for each of the target

facial soft biometrics. Each structure is comprised of two

fully connected layers: a 256 neuron layer which reduces

the dimensionality of the input feature vector, followed by

a second layer which produces the final probability.



3.3. Computational Complexity Configuration

In order to easily manipulate the trade-off between com-

putational complexity and accuracy, a width multiplier hy-

perparameter a ∈ (0, 1] is introduced. The width multiplier

is applied to all the convolutional and fully connected lay-

ers, uniformly reducing the width of the network at each

layer. The baseline configuration described above corre-

sponds to a = 1, while typical values of 0.75, 0.50 and

0.25 are commonly used to define smaller models.

Moreover, post-training quantization [44] is employed,

significantly reducing the computational cost by substitut-

ing floating point operations with inexpensive fixed point

arithmetic. While training is performed in floating point ac-

curacy, during integer-arithmetic-only inference, the input

and output are represented as 8-bit integers according to an

affine mapping of integers q to real numbers r:

r = S (q − Z) (1)

where S and Z the quantization parameters, with S > 0 an

arbitrary real scaling factor, and Z an integer corresponding

to the real value 0. The quantization scheme uses a sin-

gle set of quantization parameters for all values within each

activations array and within each weights array; separate ar-

rays use separate quantization parameters.

3.4. Training

Loss function During the training phase, the individual

loss Lf is estimated for each of the eight target facial bio-

metric traits f :

• for the binary biometric features b ∈
{gender, eyewear, smile, beard,moustache}
the binary cross entropy loss is computed:

Lb = − (1− b) · log (1− pb)− b · log (pb) (2)

where b = 0, 1 the two possible labels and pb the prob-

ability that the input is assigned to label 1.

• for the multidimensional features m ∈
{age group, race, eyes state} the softmax multi-

nomial cross entropy loss is employed:

Lm = −

K∑

k=1

mk log (pmk) (3)

where mk = 1 if the input belongs to class k and pmk

is the probability that the input is assigned to class k.

The overall loss L is defined as the sum of the individual

losses of each facial biometric feature:

L =
∑

b

Lb +
∑

m

Lm (4)

Optimization For the optimization of the objective func-

tion, the Adam [48] gradient-based optimization algorithm

is employed, with learning rate a = 0.0004 and momentum

b = 0.9

4. Experimental Evaluation

The proposed methodology is trained and experimen-

tally evaluated on the LFW Soft Biometrics dataset [28].

The dataset is an extension of the Labelled Faces in the

Wild (LFW) [41] dataset, and includes manually annotated

groundtruth values for 11 facial attributes (gender, age,

race, glasses, beard moustache, forehead, mouth, eyes,

smiling and pose) for 13233 unconstrained face images of

5749 people, sized 250× 250px.

Since the authors do not provide a train/test split, the

dataset is randomly divided into four non-overlapping sub-

sets, and is trained and evaluated using the leave-one-out

strategy: one subset is used as the test set, while the other

three are used as the training set. This process is performed

once for each subset with the average prediction accuracy

calculated for every one of the eight target facial biometric

traits. Each training session is performed for 50 epochs, us-

ing a batch size of 32 samples, with the feature extraction

stage initialized from the pre-trained Mobilenet model.

4.1. Biometrics Detection Accuracy

Table 2 presents the accuracy results from the exper-

imental evaluation of multiple configurations of the pro-

posed methodology on the 8 target facial soft biometric

traits of the LFW Soft Biometrics dataset. The overall accu-

racy score of all the features for the baseline model (a = 1)

is 92.1%, showcasing the architecture’s potential towards

accurate facial biometric detection.The proposed method

achieves very high accuracy scores for the gender, eyes

state, eyewear, beard and moustache features, exceeding

94% accuracy, while the race and smile features surpass the

89% accuracy threshold. Age group estimation, on the other

hand, presents a lower accuracy score of 75.6%, which is

mainly attributed to large overlap between the young adult

/ adult and adult / senior age groups.

For smaller width multiplier values (a < 1), the results

follow a similar pattern, with the a = 0.75 and a = 0.50
models presenting an average reduction in accuracy of less

than 1% compared to the baseline model, while even the

extremely narrow a = 0.25 model achieves a mean accu-

racy score of 90%. Furthermore, the quantized models also

report high accuracy results, presenting, on average, just

a ∼ 1% drop in overall accuracy, compared to the corre-

sponding floating point models.

Moreover, the proposed method is comparatively evalu-

ated to three state-of-the-art face analysis systems, Hyper-

face [69], Face++ [60] and Microsoft Cognitive Services



Table 2. Comparative experimental evaluation of multiple configurations of the proposed methodology and three state-of-the-art face

analysis methods, on the 8 target facial soft biometric traits of the LFW Soft Biometrics dataset. Accuracy scores for Hyperface were

extracted by retraining the Hyperface-Alexnet architecture on the dataset, while the results for Face++ and MS Cognitive services were

taken from [28]

Model Gender Age Race Eyes state Eyewear Smile Beard Moustache MEAN

a=1.00 0.967 0.756 0.897 0.941 0.980 0.891 0.979 0.961 0.921

a=0.75 0.957 0.752 0.893 0.915 0.979 0.871 0.975 0.962 0.913

a=0.50 0.961 0.740 0.886 0.936 0.974 0.884 0.976 0.967 0.915

a=0.25 0.958 0.728 0.858 0.898 0.963 0.876 0.963 0.956 0.900

a=1.00 quan 0.968 0.745 0.892 0.942 0.979 0.891 0.936 0.928 0.910

a=0.75 quan 0.958 0.751 0.890 0.918 0.978 0.874 0.935 0.935 0.905

a=0.50 quan 0.962 0.736 0.886 0.937 0.973 0.884 0.935 0.931 0.906

a=0.25 quan 0.959 0.726 0.855 0.904 0.958 0.878 0.936 0.919 0.892

Hyperface [69] 0.979 0.772 0.901 0.936 0.980 0.902 0.981 0.970 0.928

Face++ [60] 0.911 0.388 0.874 - 0.922 - - - -

MS Cognitive Services [61] 0.929 0.593 - - 0.917 - 0.938 0.941 -

[61]. The baseline model almost matches the overall accu-

racy of Hyperface, while even the smallest a = 0.25 quan-

tized model performs comparably, with an average drop in

accuracy of 3.5%. Meanwhile, all model configurations

outperform Face++ and MS Cognitive Services on almost

all target facial soft biometrics 1.

Finally, some qualitative results from the experimental

evaluation on the LFW Soft Biometrics dataset, including

both successful and failed examples, are presented in Fig-

ure 4. Additionally, some examples from the NIST SD32 -

MEDS [21] and Adience [18] datasets are also shown.

4.2. Computational Complexity Evaluation

While the proposed methodology performs comparably

to SOA face analysis methods, one of the main goals of

this work is the generation of a model of low computational

complexity, suitable for implementation in low power de-

vices, thus making it necessary to establish an absolute met-

ric that will describe the computational cost of an architec-

ture and provide an estimation about its runtime. While ac-

tual runtime measurements could be used as such a metric,

they cannot be considered an absolute metric as their values

depend on the platform upon which the algorithm is bench-

marked, presenting significant variations between different

hardware and software configurations.

Meanwhile, the task in hand requires framework agnos-

tic metrics. Towards this end, the following metrics are in-

troduced (Table 3):

• Multiply-Accumulate Operations (MACs): MACs

describe the number of arithmetic computations re-

quired to perform a function. In the case of neural

1accuracy scores for Hyperface were extracted by retraining the

Hyperface-Alexnet architecture on the LFW Soft Biometrics dataset, while

the results for Face++ and MS Cognitive services were taken from [28]

networks most of the computations are dot products

(multiplication followed by addition), with a single

multiplication-addition corresponding to 1 MAC

• Memory Access Operations (MEMs): MEMs de-

scribe the amount of memory access operations re-

quired in order to read all the data necessary for the

computation and save its result. Following, for sim-

plicity, a naive approach, where each value has to be

read and written every time (discarding advanced tech-

niques such as caching etc.), for each layer there are

three memory access operation groups: a) read the in-

put data, b) read the filter weights, c) write the output.

• Network Parameters: The size of a network is calcu-

lated by counting the number of trainable variables at

each layer. It not only affects the computational cost

(more parameters equal more MACs and MEMs) of

a network, but also dictates the minimum amount of

storage required to save it

Table 3. Estimation of the framework agnostic computational com-

plexity metrics for fully connected and convolutional layers (bi-

ases skipped for simplicity)

Layer Type Fully Connected Convolutional

Input Dims K H ×W × Cin

Layer n neurons

k × k × Cout

stride= s
groups= g

MACs K · n
H ·W · Cin · k2 · Cout

g · s2

MEMs K +K · n+ n

H ·W · Cin+
Cin · k2 · Cout/g+
H ·W · Cout/s

2

Params K · n Cin · k2 · Cout/g



Figure 3. Estimation of the MACs, MEMs and Network Parameters for multiple configurations of the proposed method and the Hyperface-

Alexnet model [69]. The bars correspond to the relative increase of the metrics for each model relevant to the a = 0.25 model (logarithmic

scale), while the data labels present the absolute values for each metric. Only the cost of the convolutional and fully connected layers was

estimated, as the rest of the layers (pooling, activation, normalization etc.) do not significantly impact the overall values.

Based on the above metrics, the computational complex-

ity of the proposed method, for multiple width multiplier

values, is estimated and compared with the state-of-the-art

Hyperface-Alexnet [69] model (Figure 3). From the re-

sults, it becomes evident that the proposed methodology

presents a significant reduction in computational complex-

ity, with the baseline model a = 1.00 requiring approxi-

mately 4.3× less MACs and MEMs, and 9× less network

parameters than Hyperface. Moreover, when compared to

the narrow a = 0.25 model the gains in computational com-

plexity are even more extreme with a massive 60× reduc-

tion in MACs, 25× in MEMs and 128× in Network param-

eters. These results, combined with high accuracy scores

presented in Section 4.1, clearly showcase the capacity of

the proposed method for accurate and computationally ef-

ficient facial soft biometrics detection, suitable for imple-

mentation on low power devices.

4.3. Inference

The proposed algorithm is implemented in Python, uti-

lizing the Tensorflow/Lite deep learning framework [1] for

training the network and deploying the final inference mod-

els. Since the proposed method requires as input only facial

images, a face detector needs to be employed to provide

the face regions. Staying in line with the computationally

efficient design, the quantized Mobilenet-SSD [56] detec-

tor is used, trained on the WIDERFACE [89] face detection

dataset.

In order to better showcase the real-life performance of

the proposed method, the final inference models are bench-

marked on two mobile devices based on ARM platforms.

The baseline model takes 90ms to process an image on

a single mid-range Qualcomm Snapdragon 636 processor,

and 178ms on a older HiSilicon Kirin 650 processor. Re-

ducing the width multiplier by 0.25 approximately doubles

the inference speed on both devices, while moving to the

quantized versions further reduces the latency by a factor of

2×, with the smallest quantized a = 0.25 model requiring

just 7ms to process an image, and only 300KB in storage

space. The detailed benchmark results are presented in Ta-

ble 4 below.

Table 4. Actual inference time and model size on two mobile de-

vices (a smaller number represents better performance). The plat-

forms are based on single Qualcomm Snapdragon 636 and a HiSil-

icon Kirin 650 processors

Model
Inference Time (ms) Model

SDM 636 Kirin 650 Size (MB)

Mbnet SSD quan 75 60 3.1

a=1.00 90 178 17

a=0.75 50 110 9.6

a=0.50 25 65 4.3

a=0.25 13 28 1.1

a=1.00 quan 45 70 4.3

a=0.75 quan 30 48 2.4

a=0.50 quan 17 25 1.1

a=0.25 quan 7 11 0.3

5. Conclusion

This paper introduced a computationally efficient CNN

architecture for the simultaneous estimation of 8 facial soft

biometric features from unconstrained face images: gen-

der, age, race, eyes state, eyewear, smile, beard and mous-

tache, suitable for deployment on low power devices. The

proposed method employs the Mobilenet architecture along

with a post-training quantization scheme, exploiting the

correlation between the individual biometric features, and

achieves very high accuracy results on a publicly available



Figure 4. Qualitative results from the experimental evaluation of the baseline model on the LFW Soft Biometrics (first and second rows),

Adience (third row) and NIST SD32 - MEDS (fourth row) datasets . Facial features depicted in bold italics indicate wrong detections. The

facial regions were cropped using the quantized Mobilenet-SSD face detector.

facial soft biometrics dataset. The architecture matches the

performance of state-of-the-art face analysis models, while

requiring significantly lower computational resources, with

benchmarking on two low power mobile platforms show-

casing its applicability in real life conditions.
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