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Abstract

Convolutional Neural Networks (CNNs) have proven

very successful in extracting discriminative features from

video data. These deep features can be summarized using

spatial covariance descriptors for further analysis. How-

ever, due to large number of potential features, the covari-

ance descriptors are often very high dimensional. To facil-

itate large scale data analysis, we propose a novel, metric-

based dimension-reduction technique that reduces large co-

variances to small ones. Then, we represent videos as time

series trajectories on the space of covariance matrices, or

symmetric-positive definite matrices (SPDMs), and use a

Riemannian metric on this space to quantify differences

across these trajectories. These distance features can then

be used for classification of video sequences. We illustrate

this comprehensive framework using data from the UCF11

dataset for action recognition, with classification rates that

match or outperform state-of-the-art techniques.

1. Introduction

Action recognition is an important area of research in

computer vision. The goal here is to develop automated sys-

tems that can understand human actions common in daily

life. Such systems should ideally be able to recognize and

classify various human actions, and be applicable in areas

such as surveillance systems, sports video analysis, health-

care systems, and human-computer interfaces.

CNN-based methods have led a tremendous progress in

this area, especially in extracting powerful features from

video frames [1, 2, 3, 4]. The deep features capture var-

ious characteristics of input images, and are further used

for video classification or analysis. Since videos essentially

form time-series data, the use of curves and trajectories

parametrized by time to represent and quantitatively com-

pare videos is natural [5, 6, 7, 8, 9]. Other approaches in-

clude a hierarchical clustering, multi-task learning method

for joint human action grouping and recognition [10]; a

deep progressive reinforcement learning (DPRL) method

which aims to distill the most informative frames and dis-

card ambiguous frames in sequences for recognizing actions

[11]; and Long Short-Term Memory (LSTM) [12] related

approaches that have shown great promise in action recog-

nition tasks recently [13, 14, 15].

Despite a significant progress in recent years, it is still

quite challenging to efficiently utilize high-dimensional fea-

tures for comprehensive analysis of large-volume video

data. One can summarize these features in the form of co-

variance descriptors. However, these covariances are often

very high-dimensional. To handle this issue, we provide

a metric-based, dimension-reduction method that helps re-

duce large covariance matrices into small ones, and signif-

icantly improves computational efficiency. Inspired by past

works, we propose a framework that utilizes a trajectory-

based representation of video clips on the space of sym-

metric positive-definite matrices (SPDM). Combined with

dimension-reduction of SPDMs, this provides both perfor-

mance and efficiency in the framework. The pipeline for

the framework is shown in Fig 1 – we first extract fea-

tures from video frames using existing CNN frameworks.

Each frame is represented by a covariance matrix estimated

from the extracted features and, thus, a video is represented

as a sequence of covariance matrices. Next, we apply a

dimension-reduction approach, based on the chosen Rie-

mannian metric of SPDMs, to bring down dimensions of

individual covariances, and then compare these reduced tra-

jectories using a Riemmanian metric on the reduced space.

Finally, the distance features acquired from these trajecto-

ries are used for video classification.

The novel aspects and contributions of this paper are as

follows:

1. Video Representation and Comparison with SPDM

Trajectories Using Deep CNN Features: We repre-

sent videos as SPDM trajectories constructed from ex-
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tracted CNN features and compares these trajectories

based on a Riemannian metric. The distance features

from these trajectories are used for classification.

2. Metric-Based SPDM Dimension Reduction: We ap-

ply a metric-based unsupervised dimension-reduction

from large SPDMs to small ones introduced in [16],

making comparisons between covariance trajectories

(with thousands of dimensions) practically feasible

and significantly improving computational efficiency.

3. Combining SPDM Trajectory Distance Features for

Classification: We combine distance vectors between

trajectories, and use them as the last layer input for

classification.

We evaluate the proposed framework on UCF11 dataset

[17], and obtain results that outperform state-of-art meth-

ods.

2. Related Work

A large number of methods have been developed for

video representation and classification. Here we focus on

those methods that closely relate to our approach.

CNN-based: Karpathy et al. [18] studied the performance

of convolutional neural networks in large-scale video clas-

sification. They found that CNN architectures are capable

of learning powerful features from weakly-labeled data that

surpass traditional feature-based methods in performance.

Ji et al. [19] developd a 3D CNN model for automated

recognition of human actions in surveillance videos. This

model extracts features from both the spatial and the tem-

poral dimensions by performing 3D convolutions, thereby

capturing the motion information encoded in multiple ad-

jacent frames. Zhou et al. [20] proposed the Mixed 2D/3D

Convolutional Tube (MiCT) which enables 3D CNNs to ex-

tract deeper spatio-temporal features with fewer cost. Their

deep network MiCT-Net based on the MiCT outperforms

traditional 3D CNNs for action recognition in their exper-

iments. Kong et al. [21] proposed a deep sequential con-

text networks (DeepSCN) for action prediction, which uti-

lize sequential context information to capture the appear-

ance evolution and temporal structure of the full video ob-

servations. Ullah et al. [4] proposed an action recogni-

tion framework by utilizing frame level deep features of

the CNN and processing it through bi-directional LSTM,

which is capable of learning long term sequences and can

process lengthy videos by analyzing features for a certain

time interval. Acharya et al. [22] exploited the use of

SPDNet on facial expression recognition problems. They

leveraged covariance pooling to capture the temporal evolu-

tion of per-frame features for video-based facial expression

recognition. After that they applied SPDNet on covariance

of convolutional features. As in [22], we use deep features

extracted from 2D CNN networks to calculate covariance

descriptors, but instead of using them to train another neural

network model, we propose a more explainable approach to

quantify the difference between these descriptors and clas-

sify actions based on these differences.

Covariance descriptor for images: Tuzel et al. [23]

introduced the use of covariance features and related al-

gorithms for object detection and texture classification.

They demonstrated the superior performance of the covari-

ance features and algorithms on several examples. Sanin

et al. [24] proposed an action and gesture recognition

method based on spatio-temporal covariance descriptors

and a weighted Riemannian locality preserving projection

approach. The weighted projection was then used to cre-

ate a classification algorithm that employed the most useful

spatio-temporal regions. Tabia et al. [25] proposed a novel

method for 3D shape analysis using the covariance matri-

ces of the descriptors. They stated that covariance matri-

ces enable efficient fusion of different types of features and

modalities, which capture not only the geometric and the

spatial properties of a shape region but also the correlation

of these properties within the region. Liu et al. [22, 26] ex-

ploited the feasibility of representing such deep CNN image

feature set with sample covariance matrix and the advantage

of using such second-order statistics. Instead of using sam-

ple covariance matriix as the descriptor, in this paper we use

the approach in [27] for covariance estimation from deep

CNN features and represent each video clip as a covariance

trajectory.

Trajectory-based: Papadopoulos et al. [7] proposed a

human-tailored trajectory extraction scheme, in which tra-

jectories are clustered using information from the human

pose. Wang et al. [28] improved dense trajectories by ex-

plicitly estimating camera motion. They showed that per-

formance can be significantly improved by removing back-

ground trajectories and warping optical flow with a robustly

estimated homography approximating the camera motion.

Peng et al. [29] proposed Stacked Fisher Vectors (SFV),

a representation with multi-layer nested Fisher vector en-

coding, for action recognition. The combination of the tra-

ditional FV and SFV achieved high accuracies on various

datasets. Zhang et al. [6] proposed a metric-based approach

for simultaneous alignment and comparisons of covariance

trajectories, and applied the framework to an application to

the hand gesture recognition. Other trajectory-based rep-

resentations have also been studied in video action recog-

nition tasks as in [8, 9]. Trajectory-based approaches of-

ten encounter the problem of dealing with high dimensional

representations of features.



Single video processing:

Multiple videos classification:

Cov 
Estimation

Dim 
Reduction

video1 … videoN

n × n × T trajectory d × d × T trajectory features

CNN2 

frame1 … frameT

 … 

 … 

 … 
 Distance 

Calculation 

d × d × T × N 

 

 … 
 … 

Classifier 

CNN

 … 

CNN1 

Figure 1. Pipeline of proposed framework.

3. Proposed Framework

In this section we introduce different components of

our framework. After extracting deep features from video

frames using existing CNN frameworks, we represent each

frame as a covariance matrix estimated from the extracted

features, and thus obtain a time series of covariance matri-

ces or SPDM trajectory for each video clip. Next we apply

a dimension-reduction approach based on the chosen Rie-

mannian metric of SPDMs to bring individual covariances

to smaller dimensions, and then compare these trajectories

using a Riemmanian metric. We use the resulting distance

features calculated from these trajectories for classification.

3.1. Mathematical Representation of Video Clips

Existing CNN frameworks such as ResNet [30] and VG-

GNet [31] have shown remarkable success in extracting

powerful features from images. The covariance matrix pro-

vides a natural way of combining multiple correlated fea-

tures. Liu et al. [22, 26] exploited the combination of

deep CNN image feature set with sample covariance ma-

trix and took advantage of using such second-order statis-

tics. As they stated, one image frame can be treated as a

set of feature vectors F = {f1, f2, ..., fk}, where fi ∈ Rn

represents the i-th vector with an n-dimensional feature de-

scription. The sample covariance matrix is calculated as:

S = 1
k−1

∑k

i=1(fi − f̄)(fi − f̄)
T

∈ P̃ , where P̃ is the

space of n× n SPDMs. Despite a simple form, the sample

covariance matrix is not a good estimator in high dimen-

sional space. In this paper we use the approach from [27]

where the estimated Σ is an optimal convex linear combi-

nation of the sample covariance matrix S and the identity

matrix I , i.e., Σ = ρ1I + ρ2S ∈ P̃ , where the optimal

weights ρ1 and ρ2 are estimated from the data. The opti-

mality is defined with respect to a quadratic loss function,

asymptotically as the number of observations and the num-

ber of variables go to infinity together. Extensive Monte

Carlo simulations confirm that the asymptotic results tend

to hold well even in finite sample situations. Please refer to

[27] for more details. After estimating a n × n covariance

matrix for each frame, we obtain a n × n × T covariance

trajectory α : [0, T ] →∈ P̃ , for the full video clip with T
frames.

3.2. Riemannian Structure on Symmetric Positive
Definite Matrices (SPDMs)

In order to quantify differences in covariance matrices

and covariance trajectories, we need a metric structure on

the manifold of SPDMs. While there are several Rieman-

nian structures in the literature [6, 32, 33, 34, 35], we use

the one introduced in [35] and [6], since it has the advan-

tage of having closed forms for many operations we need on

the SPDM manifold, e.g., geodesic distance, parallel trans-

port, exponential map, inverse exponential map. Zhang et

al. [6] also have demonstrated that this metric is superior

over other metrics such as the log-Euclidean one [32] in

some medical imaging contexts.

Let P ⊂ P̃ be subset of n × n SPDM matrices with

determinant one. In our approach, we impose separate dis-

tances on the determinant one matrices and the determi-

nants themselves. For any square matrix G with unit de-

terminant, i.e. G ∈ GL(n), we can write it as a prod-

uct of two square matrices G = PS, where P ∈ P and

S ∈ SO(n) (SO(n) is the set of all n × n rotation ma-

trices). This is called the polar decomposition. It moti-

vates us to analyze P by representing it as a G after re-

moving S. More formally, we identify P with the quotient

space SL(n)/SO(n). This identification is based on the

map π : SL(n)/SO(n) → P , given by π([G]) =
√

G̃G̃t,

for any G̃ ∈ [G], where the square-root is the symmetric,

positive-definite square-root of a symmetric matrix. The

notation [G] stands for all possible rotations of the matrix

G, given by [G] = {GS|S ∈ SO(n)}. The inverse map



of π is given by: π−1(P ) = [P ] ≡ {PS|S ∈ SO(n)}.

This establishes a one-to-one correspondence between the

quotient space SL(n)/SO(n) and P . Skipping further de-

tails, this process leads to the following geodesic distance

between points in P . For any P1, P2 ∈ P :

dP(P1, P2) = ‖A12‖F , (1)

where A12 = log(P12), P12 =
√

P1
−1P2

2P1
−1 , and ‖·‖F

denotes the Frobenious norm of a matrix. Since for any

P̃ ∈ P̃ we have det(P̃ ) > 0, we can express P̃ as a pair

(P, 1
n
log(det(P̃ ))) with P = P̃

det(P̃ )1/n
∈ P . Thus, P̃ is

identified with the product space of P × R+ and we take

a weighted combination of distances on these two compo-

nents to reach a metric on P̃ :

d
P̃
(I, P̃ )2 = dP(I, P )2 +

1

n
(log(det(P̃ )))2. (2)

For any two arbitrary covariances P̃1 and P̃2, let P̃12 =

P̃1
−1

P̃2S12 for some optimal S12 ∈ SO(n) (using Pro-

crustes alignment). Also, note that for P̃12 ∈ P̃ , we have

det(P̃12) = det(P̃2)/ det(P̃1). Therefore, the resulting

squared geodesic distance between P̃1 and P̃2 is:

d
P̃
(P̃1, P̃2)

2 = dP(I, P12)
2+

1

n
(log(det(P̃2))−log(det(P̃1)))

2.

(3)

Note that in Eqn 3, the distance between covariance ma-

trices is made up by two components – the determinant

term and the unit symmetric matrix term. We can choose

arbitrary relative weights on these terms to combine the

two components. While, in some simple cases, it has been

shown that one can obtain decent classification performance

using only the determinant term, in general the other com-

ponent provides important critical information about actual

difference between covariance trajectories.

Next we want to calculate distances between covariance

trajectories. Let α denote a smooth trajectory on the Rie-

mannian manifold of SPDMs P , where P is endowed with

the Riemannian distance in Eqn 3. Let M denote the set of

all such trajectories: M = {α : [0, 1] → P |α is smooth}.

Let α1 and α2 be two smooth trajectories in M, a simple

way to establish a metric between them is

dM(α1, α2) =

∫ 1

0

d
P̃
(α1(t), α2(t))dt . (4)

We will use this metric to generate inputs for machine learn-

ing classifiers.

3.3. Dimension Reduction for SPDMs

Comparing covariance trajectories for large values of n,

say n ≈ 1000, can be computationally very expensive. For

such situations we seek a method for the data reduction,

while preserving the symmetric, positive-definite nature of

covariance matrices. The basic idea, introduced in [16], is to

find a linear projection that maps high-dimensional SPDMs

to low-dimensional SPDMs in a principled, near-optimal

manner. In addition to providing computational simplifi-

cation, the low-dimensional SPDMs also facilitate our anal-

yses in the following ways:

1. Such a projection can bring trajectories associated with

different dimensions of features to the same smaller di-

mension, and make comparisons between them possi-

ble.

2. In the case that not all image features carry the same

amount of information, dimension reduction can help

filter out some noise components.

The problem of dimension reduction of SPDMs has been

studied and used in a variety of computer vision and pattern

recognition problems, see e.g. [32, 36, 37, 38]. In this pa-

per, we use the dimension reduction technique based on the

Riemannian metric presented in Section 3.2. The reduced

SPDMs are especially suitable for analyzing under the pro-

posed Riemannian framework.

Given a set of n × n unit-determinant SPDMs {Pi},

where n is a large integer, our goal is to find orthogonal ma-

trix B ∈ R
n×d, where d << n and BTB = Id, to project

Pi to Qi in R
d×d according to Qi = BTPiB. The space of

such orthogonal matrices is called a Stiefel manifold, often

denoted as Sn,d. The next question is: What should be the

optimality criterion for defining an optimal B? A simple

yet important idea is that the pairwise distances between

the given SPDMs should be preserved as much as possi-

ble after the projection. That is, find B ∈ Sn,d such that

dPd
(Qi, Qj) ≈ dPn

(Pi, Pj) for all i, j in the training set.

This criterion can be formulated as:

argmin
B∈Sn,d

∑

i,j

(dPn
(Pi, Pj)− dPd

(Qi, Qj))
2
.

A direct optimization of this quantity over B ∈ Sn,d is com-

plicated due to the complexity of the chosen Riemannian

metric. Instead, [16] develops an approximation where the

comparison of distances is replaced by the comparison of

relevant matrices directly.

In the original space, P , the distance between matrices

Pi and Pj is governed by the matrix Pij = P−1
i P 2

j P
−1
i .

Similarly, the distance in the smaller space is determined by

the matrix Qij = Q−1
i Q2

jQ
−1
i . In order to compare these

matrices, we need to bring them to the same space. Let P̂i

denotes the reconstruction of Pi from its projection Qi, i.e.

P̂i = BQiB
T ∈ R

n×n. Our goal is to find B ∈ Sn,d that

minimizes the quantity:

argmin
B∈Sn,d

∑

i,j

‖P−1
i P 2

j P
−1
i − P̂−1

i P̂ 2
j P̂

−1
i ‖2. (5)



However, this specification requires the following proviso.

Since P̂i is rank d, it is not invertible, and one needs to use

its pseudoinverse instead. Let P̂−

i = BQ−1
i BT denote the

pseudoinverse of P̂i. Then, we have the following result.

Lemma 1. Under the conditions specified above, we have,

for all i, j,

‖P−1
i P 2

j P
−1
i − P̂−

i P̂ 2
j P̂

−

i ‖2 = ‖Pij −BQijB
T ‖2.

To prove this, one only needs to show that P̂−

i P̂ 2
j P̂

−

i =

BQijB
T and that proof is left out. This lemma essentially

provides another interpretation of the objective function.

Lemma 2. The optimization of quantity in Lemma 1 can be

rephrased as follows.

B∗ = argmin
B∈Sn,d

N
∑

i,j=1

‖Pij −BQijB
T ‖2

= argmax
B∈Sn,d





N
∑

i,j=1

tr(BTPijBBTPijB)



 .

We solve the optimization problem on the Stiefel mani-

fold using the Matlab toolbox Manopt [39].

4. Experiments

In this section, we present experiments using video

datasets to illustrate the proposed methodology.

4.1. Dataset

We use an extension of Youtube Action dataset [17]

that contains 11 action categories: basketball shooting, bik-

ing/cycling, diving, golf swinging, horse back riding, soccer

juggling, swinging, tennis swinging, trampoline jumping,

volleyball spiking, and walking with a dog. This data set is

very challenging due to large variations in camera motion,

object appearance and pose, object scale, viewpoint, clut-

tered background, illumination conditions, etc. For each

category, the videos are grouped into 25 groups with more

than 4 action clips in each group. The video clips in the

same group share some common features, such as the same

actor, similar background, similar viewpoint, and so on. In

the previous YouTube Action dataset, most groups contain

4 video clips, resulting a total of 1168 video clips. In our

experiment we used all video clips of the 11 acitivies from

UCF101 dataset [40], with a total of 1523 video clips.

4.2. Implementation Details

For each video clip, we extracted image frames using

the OpenCV [41]. We used full images to extract features

with pre-trained ResNet50 [30] and VGG16 [31] networks

using Keras [42] with Tensorflow [43] Backend. Outputs

from final convolutional layers were flattened to estimate

covariance matrices using the approach described in Section

3.1. Each video then was represented as a sequence of n×n
covariance matrices with sequence length Ti, where Ti is

the number of frames in video i; thus, each sequence is size

n× n× Ti. For example, covariance descriptors estimated

using deep features from ResNet50 have n = 2048.

Comparison between trajectories in such high dimen-

sions are almost computationally impossible. Thus, we im-

plement the proposed dimension reduction technique and

reduced the ith trajectory to dimension d×d×Ti. Since Ti

differs from video to video, here we resampled all trajecto-

ries to T = 50, and the final dimension for each trajectory

is then d×d×T . In Fig 2, we present an example to demon-

strate the effect of dimension reduction. Here we calculate

pairwise distances between trajectories using first 5 videos

in each category and VGG16 model for feature extraction.

In this example we present results for d = 100, 50, 20, and

5, respectively. We can see that our dimension-reduction

successfully preserves the block structure of distance pat-

tern within classes, except when d gets very small.

Since the space complexity of storing a d × d × T tra-

jectory is O(d2 × T ), and it would use too much space to

store high dimensional trajectories (d > 100). Thus, we

did not run the full experiment in high dimensions given

limited memory and time. One could try to find an optimal

d given an evaluation metric for a specific problem, but also

need to consider the tradeoff between its performance and

cost. In the following experiments we set d = 20 for consis-

tency. After obtaining such trajectories from multiple video

clips, we calculated paiwise distances between them using

Eqn 4. The average time for computing distances between

two 20×20×50 trajectories is 0.11s using Intel i7-6700HQ

CPU in Matlab. The distances features were used as input

to eventual classifiers.

To further illustrate the effectiveness of our framework,

we performed simple experiments comparing with dimen-

sion reduction using PCA, and, classifications using trajec-

tories as input instead of their distance features. The di-

mension reduction step using PCA was performed on the

flattened CNN features. Table 1 shows average classifica-

tion rates from different setups using VGG16 features with

SVM classifier. Exploring various classifiers could poten-

tially improve results, especially in the case where one uses

trajectories as input, but in this paper we mainly focus on

showing our framework and use SVM classifier as an ex-

ample.

Since different CNN models capture features with differ-

ent characteristics [44], the resulting distance patterns be-

tween covariance trajectories naturally differ from network

to network. In this paper we have explored combining dis-



(a) (b)

(c) (d)
Figure 2. Pairwise distances between 55 covariance trajectories

after dimension reduction. The trajectories were calculated from

first 5 videos in each category of UCF11 dataset with VGG16 fea-

tures. (a), (b), (c) and (d) show the distance matrices after reducing

the dimension to d=100, 50, 20 and 5 respectively.

Table 1. Average classification rates on UCF11 dataset using

VGG16 features when d = 20.
DR method Distances as input Accuracy(%)

PCA No 24.6

PCA Yes 33.8

Ours No 80.6

Ours Yes 88.9

tance features, calculated using deep features from different

CNN models, by adding the distance vectors with different

weights together, and compared with results from individ-

ual CNN model. Denoting distance vector from VGG16 as

F1, with weight w1, and distance vector from ResNet50 as

F2, with weight w2, the final distance vector F is calcu-

lated as F = w1F1 + w2F2, where w1 + w2 = 1. We

search the weight combinations from different data splits

and try to find the pattern of a good weight combination for

this dataset based on overall accuracy. At last step, we use

SVM classifier with RBF kernel for classification. In the ex-

periments we have used all 1523 video clips and randomly

split the data into 80% training set and 20% test set. The ex-

periments were mainly performed with GPU GeForce GTX

1080 Ti.

4.3. Results and Comparisons

Classifications of videos directly utilize distance features

calculated from the corresponding covariance trajectories.

In Fig 3 we display the full pairwise distance matrix as

an image to show the clustering of videos from various

groups and activities. As shown in Fig 3, videos within

  

Full distance matrix

A small portion of distance matrix

Figure 3. Sum of two distance matrices between 1523 covariance

trajectories. One distance matrix is calculated using ResNet50 fea-

tures and the other is calculated using VGG16 features. Left: the

full distance matrix. Right: A small portion of distance matrix to

show the block patterns within groups.

Figure 4. Overall classification rates vs distance feature compo-

nents in 10 random splits of UCF11 dataset. For each line the

weight of distance feature calculated from VGGNet goes up from

left to right. The weight of distance feature calculated from

ResNet goes down from left to right.

each group reveal explicit block structure. In most cases

distances within a block are smaller than those outside the

blocks, which makes it easy for activity classification. A

few trajectories are found to have large distances from other

samples.

To find an optimal weight between the two CNN models,

we display overall accuracy vs weight of distance vectors

from VGG16 for 10 random splits in Fig 4. From the pic-

ture we see that despite different data splits, overall results

show common pattern across lines, i.e., a good combina-

tion should consider both components with similar weights.

In the following experiments, we use w1 = 0.5 for consis-

tency.

When a new video comes to the system for recognition,

one only needs to implement the following steps:



Figure 5. Classification accuracy for each class in UCF11 dataset.

1. Transform the video into a covariance trajectory and

project it to the same dimension as trajectories in the

database.

2. Calculate distances between this trajectory and others

in the database.

3. Feed the distance vector into a pre-trained classifier.

For Step 2, one can use the mean of trajectories or a few

typical videos in each class as templates to save time and

storage cost. Time cost for calculating distance between two

low dimensional trajectories using Eqn 4 is small, which

makes the system computationally very efficient.

Experimental outcomes showing average overall accura-

cies, and using deep features extracted from different CNN

models based on 5-fold cross-validation, are shown in Ta-

ble 2. Classification rates for all categories are shown in

Fig 5. Success rates for most classes are over 90%, with

some classes reaching 100% accuracy. The only class with

low (77%) success rate is walking with a dog. This can be

due to very different backgrounds and angles at which the

videos were recorded. The confusion matrix for classifica-

tion is presented in Fig 6.

Table 2. Average classification rates on UCF11 dataset by using

deep features extracted from different CNN models for the pro-

posed framework for action recognition.

Network Feature size Accuracy(%)

ResNet50 7× 7× 2048 89.5

VGG16 7× 7× 512 88.9

ResNet50+VGG16 94.2

Figure 6. Confusion matrixes of UCF11 dataset for the proposed

framework for classification.

In the literature, some researchers have used a total of

1168 video clips from YouTube Action Dataset [17] in their

studies. In our experiments, we used an extension with a

total of 1523 video clips. With different amounts of data

and experiment setups, it is hard to compare our results with

other methods directly. Still, we present performances com-

paring various works in Table 3 for reference.

Table 3. Result comparison on YouTube Action dataset and the

extended UFC11 dataset.
Method Accuracy(%)

Liu et al. [17] 71.2

DT + BoVW [45] 85.4

Discriminative Parts [46] 84.5

Fisher Vectors [29] 93.4

Hierarchical clustering [10] 89.7

Bi-directional LSTM [4] 92.8

Proposed 94.2

5. Conclusion and Future Work

In this paper we present a comprehensive framework

for action recognition tasks. We represent video frames as

covariance descriptors estimated using deep CNN features

and classify videos based on distances between the corre-

sponding covariance trajectories. We also apply a method

for SPDM dimension reduction, which saves significant

computational costs while preserving pairwise distances as

much as possible. The propsed ensemble model provides

a way of combining different deep CNN features and use

the distances of their descriptors for classification. Exper-

imental results achieve high classification accuracies in a



multi-class classification problem.

In the future we aim to explore the performance involv-

ing features from more powerful models, and implement the

proposed method on more challenging datasets to validate

the adaptivity of our framework.
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