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Abstract

Convolutional Neural Networks (CNNs) have been

proven to be extremely successful at solving computer vision

tasks. State-of-the-art methods favor such deep network ar-

chitectures for its accuracy performance, with the cost of

having massive number of parameters and high weights re-

dundancy. Previous works have studied how to prune such

CNNs weights. In this paper, we go to another extreme and

analyze the performance of a network stacked with a single

convolution kernel across layers, as well as other weights

sharing techniques. We name it Deep Anchored Convolu-

tional Neural Network (DACNN). Sharing the same ker-

nel weights across layers allows to reduce the model size

tremendously, more precisely, the network is compressed in

memory by a factor of L, where L is the desired depth of the

network, disregarding the fully connected layer for predic-

tion. The number of parameters in DACNN barely increases

as the network grows deeper, which allows us to build deep

DACNNs without any concern about memory costs. We also

introduce a partial shared weights network (DACNN-mix)

as well as an easy-plug-in module, coined regulators, to

boost the performance of our architecture. We validated our

idea on 3 datasets: CIFAR-10, CIFAR-100 and SVHN. Our

results show that we can save massive amounts of memory

with our model, while maintaining a high accuracy perfor-

mance.

1. Introduction

Since the famous AlexNet [17] outperformed all its com-

petitors on ILSVRC2012 challenge [3] in 2012, Convo-

lutional Neural Networks (CNNs) dominated almost all

other approaches in computer vision tasks in the past 6

years [30, 27, 28, 31]. He et al. [11] proposed Resid-

ual Networks, which allows to build extremely deep CNNs

while still keep them optimizeable. Since then, the gen-

eral trend is that CNNs have grown deeper and wider to

achieve better performance [2, 32, 12]. As a result, current

deep networks often come with vast amount of parameters

and highly redundant weights [4], while the performance
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Figure 1. Example of a network with 13 convolutional layers.

Kernels connected by dash lines represents they share the same

set of weights, color codes denotes different kernel dimensions.

Left: Normal Architecture (14.9 million parameters) as reference.

Middle: Plain DACNN Architecture (0.16 million parameters).

Right: Mixed DACNN (4.73 million parameters). For more de-

tailed model comparison, please refer to Table 6.

gained is very limited compared to the number of param-

eters increased. For instance, ResNet-101 has only 1.1%

gain in accuracy compared to ResNet-50 [11] on ImageNet

classification task, while the number of parameters almost

doubled. This unbalance between model size increment and



performance boost has become a severe problem yet to be

tackled.

To compress CNNs, network weights pruning techniques

have been introduced to remove some of the unnecessary fil-

ters [9, 10, 8, 13, 21, 29, 33]. The aim of such techniques is

to have smaller models without compromising the accuracy

performance. Hao et al. [21] proposed to prune weights ac-

cording to their summed absolute weights. Huang et al. [13]

introduced a pruning agent to help analyze which filters are

to be removed. These pruning methods adapt a “subtrac-

tion” fashion to reduce the number of parameters, which

means that once the original architecture is set, the perfor-

mance of the model can barely increase since they consist

on cutting off filters from it. If one needs further improve-

ments on the model, the only way is to rebuild the orig-

inal architecture and re-run the pruning algorithm again.

Moreover, as far as we know, these techniques are not in-

built in existing deep learning libraries and hence not widely

adopted in most of the applications.

Our work focuses on addressing network memory com-

pression problem in an “addition” fashion. First, we pro-

pose a novel architecture that stacks a single convolution

kernel over all layers (Figure 1, middle), and we extend it

to partially share weights between pooling layers (Figure 1,

right). We call it deep-anchored-convolutional neural net-

work (DACNN). We also introduce an “easy-plug-in” way

to add few extra parameters into the DACNN base model to

boost the performance. Because the number of extra param-

eters introduced is determined by the model designer, this

method provides an easy control of the trade-off between

model size and model performance. In addition, the idea is

easily realizable in code and it is applicable to most of the

existing architectures.

We provide a detailed analysis on different DACNN ar-

chitectures, as well as discuss how to efficiently add extra

parameters to DACNN to achieve better performance with

high memory compression rates. We demonstrate the effi-

ciency and efficacy of our proposed method on CIFAR-10,

CIFAR-100 [16] and SVHN [6] datasets.

2. Related Works

In this section we revisit network pruning techniques, as

well as specific network models, namely ShaResNet [1],

SqueezeNet [14] and residual adapters [25], which are re-

lated to our work.

Network Pruning. Over the past years, network pruning

has become a popular topic to compress the model size of

neural networks. Han et al. [10] developed a method that

replaces weights below a threshold with zeros. It forms a

sparse matrix with less parameters, and then trains it for

several iterations to achieve promising compression versus

accuracy results. They further introduced quantization and

huffman encoding into their Deep Compression [9] pruning

method. Huang et al. [13] proposed a data-driven pruning

method by introducing a pruning agent to remove unneces-

sary CNN filters. They use reinforcement learning to train

the agent to prune the network while retains the network

with a desired performance. Many of these pruning meth-

ods require backbone framework modification of the model,

which reduce their applicability. Some of these methods

even require dedicated hardware support [8]. As a result,

network pruning methods are not adopted on most of the

existing DNN architectures. In addition, due to the nature

of pruning, performance of the network can barely increase,

and reconstruction of the base model and re-running of the

pruning algorithm are required if one wants to improve the

network performance.

ShaResNet. Boulch [1] proposed sharing weights among

residual blocks to reduce the number of parameters without

losing much performance. More concretely, a basic resid-

ual block [11] is composed of 2 convolution operations with

filter size 3 × 3, ShaResNet uses shared weights to replace

all the second convolution kernel within blocks that oper-

ate in the same spatial resolution (between 2 pooling lay-

ers). Thus, nearly half of the parameters from convolution

can be cut off. A similar technique is applied to bottleneck

blocks in deeper ResNets. Despite achieving promising re-

sults, this method is not flexible, as only one convolution is

shared across blocks, and it’s difficult to cut more parame-

ters or increase performance from this architecture.

SqueezeNet. Iandola et al. [14] introduced SqueezeNet,

which consist on replacing some of the 3 × 3 convolution

filters with 1×1 filters as well as reducing the number of in-

put channels to 3×3 filters. They also pushed the downsam-

pling of activation maps towards the end of the architecture

to improve accuracy. With this approach, they were able to

achieve same performance compared to AlexNet [17] while

using 50× less parameters. Yet, their method is not appli-

cable to very deep networks such as ResNets [11], because

it requires carefully designed structure for every layer, and

downsampling in later layers in deep networks greatly in-

creases computational cost.

Residual Adapters. Residual adapters were introduced

by Rebuffi et al. [25] as a technique for multi-task learning.

They plug task-specific residual adapter modules (banks of

1 × 1 convolution kernels) into residual blocks of the net-

work. For different task domains, only these adapters varies

while the rest parameters (90%) remains the same. Since

these 1 × 1 convolution kernels are relatively small in size

and they helps to regulate convolutional layer expressions,

we introduce them as extra parameters to DACNNs to in-
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Figure 2. DACNN base block with residual learning: parameters

for convolution are shared in all layers, while parameters for Batch

Normalization are free.

crease performance efficiently. In our work we call these

1× 1 convolution kernels regulators.

3. Anchored Weights Convolution

Here, we introduce to notation that we use in the rest

of the paper, as well as the components of our proposed

anchored weights convolution architecture.

Notation. Let us consider X0 as an input image to the

convolutional network with L number of layers. Fl(·) de-

notes the transformation of each layer l, which can be a

combination of convolution [19] (weights represented by

W conv

l
), batch normalization [15] (weights represented by

W bn

l
), non-linear activation (ReLU [23] in our case) or

pooling [20] . We refer the output of layer l as Xl.

Weights Sharing. In most of the CNN architectures,

transformation function Fl(·) have different parameters for

each layer: W conv

l
and W bn

l
. A transformation of each

layer can be represented as:

Xl = Fl(Xl−1, {W
conv

l ,W bn

l }) (1)

In our DACNN architecture (figure 1), we first set a con-

stant C as the number of activation map channels for all

layers, then we use one layer of transformation to expand a

3-channel-image to a desired activation map with C chan-

nels:

X1 = F1(X0, {W
conv

1
,W bn

1
}) (2)

From the second layer on wards, we internalize a set of

global convolution weights W conv

G
of shape (C × C ×

filtersize), and those are applied to every transformation

function throughout the entire network:

Xl = Fl(Xl−1, {W
conv

G ,W bn

l }) (for l ≥ 2) (3)

In this way, only weights for the first convolution W conv
1

,

weights for global convolution W conv

G
and weights for each

layer’s batch normalization W bn

l
need to be initialized and

trained, greatly reducing the total number of parameters.

Batch Normalization. Batch normalization [15] was first

introduced as a technique to improve the performance and

stability of deep neural networks. As we will show in the se-

quel, it is a crucial component in our architecture for achiev-

ing a good accuracy performance, as it allows scaling the

activation map Al of each layer:

Xl = W bn

l Al. (4)

Since the parameters of batch normalization for each layer

are different, we can obtain different transformation func-

tions across layers, and thus distinguish our work from sim-

ply stacking convolution kernels. In section 4, we further

discuss that scaling with batch normalization is a crucial

operation in our architecture for performance.

Residual Learning. ResNet [11] is an architecture com-

posed of residual blocks. Each block’s output is an element-

wise addition of input and activation:

Xl = Xl−1 + Fl(Xl−1, {W
conv

l ,W bn

l }). (5)

In our case, we adapt the idea of residual learning by using

residual blocks with shared convolution weights (Figure 2):

Xl = Xl−1 + Fl(Xl−1, {W
conv

G ,W bn

l }) (6)

In this way, we are able to increase the depth of the network

keeping it optimizable. In our case, for all DACNN archi-

tectures that are deeper than 17 layers, residual learning is

applied.

Mixed Architecture. Since convolution kernels may be-

have differently when receptive field changes, we also

adapted our approach of sharing weights on layers that only

operates at same spatial resolution. In other words, instead

of sharing one convolution weights throughout the entire

network, we separate the network into sections by pool-

ing [20] layers, and weights will only be shared within each

section (Figure 3, left). In this way, number of channels can

be expanded as the network goes deeper. As a trade-off,

more parameters will be needed:

- One transition layer for each channel expansion (one

more 1×1 convolutional layer needed if residual learn-

ing is adopted).

- One convolutional layer for each section (as shared

weights).
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Figure 3. Left: Base block for mixed DACNN, parameters are

only shared between blocks operates in the same spatial resolution

(between pooling layers). Right: Base block for mixed DACNN

with regulators, one regulator is appended to each block with free

parameters.

- Batch normalization [15] weights for all layers.

For example, if the number of channels expands 4 times in

an architecture: (3 → 64 → 128 → 256 → 512) , 8 sets of

convolution weights need to be initialized: 4 for expansion

and 4 for section weights sharing.

Regulators. We also provide an easy-plug-in way to im-

prove the performance of DACNNs, which we call regula-

tors. A single regulator is constructed with a 1 × 1 convo-

lution kernel [19], a batch normalization [15] layer and a

ReLU [23] activation layer, as illustrated in Figure 3, right.

All parameters in a regulator are not shared and it can be

plugged in anywhere of the network as long as dimension

matches, it helps to regulate the output of each convolution

layer with shared weights. In deep architectures that adapt

residual learning, we argue that 1 regulator for each resid-

ual block is enough to achieve a desirable performance. We

will also provide detailed experiment results on how many

and where to add these regulators in the later section.

Implementation details. For plain DACNNs, we use a

3 × 128 × 3 × 3 convolution kernel to expand a 3-channel

image to a 128-channel activation map, and then followed

by a 128×128×3×3 kernel stacked L times, where L is the

desired depth of the network, in addition, all convolution

kernels above are followed by a batch normalization [15]

layer (free parameter) and a ReLU [23] activation layer. For

DACNNs that are deeper than 17 layers, residual learning is

adopted to keep them optimizable. For mixed DACNNs,

(3 → 64 → 128 → 256 → 512) is adopted as channel

expansion pattern for all architectures.

w.o BN w BN

DACNN14 (VGG based) 97.48 42.29

DACNN18 (ResNet based) 97.17 38.63

Table 1. TOP-1 error (%) on CIFAR-100 dataset. We compare

DACNN network without batch normalization (BN), and DACNN

with free BN weights for every layer. VGG and ResNet are se-

lected as base template for 14 and 18 layer DACNN, respectively.

Both DACNN architectures have 128 as the fixed number of chan-

nels. The results shows that batch norm is crucial to our architec-

ture.

4. Experiments

In this section, we provide detailed analysis and results

of DACNN on different perspectives. Experiments are con-

ducted on Cifar 10, Cifar 100 [16] and SVHN [6] datasets.

4.1. DACNN Analysis

We conducted thorough experiments on CIFAR-100

dataset [16] to evaluate our DACNN. We analyze the im-

portance of batch normalization, the role of the depth of the

architecture with respect to the number of parameters, as

well as all the proposed additional components described in

the previous section.

Dataset and training settings. We use CIFAR-100

dataset [16] to perform the analysis. The dataset contains

60,000 32x32 color images in 100 different classes (600

images per class). It is split into training set and test set

with the ratio of 5:1. All models in this section are trained

90 epochs with random horizontal flip as data augmenta-

tion [17], for preprocessing, we normalize the data using

the channel means and standard deviations as in [17]. The

networks are updated with ADAGRAD [5] optimizer with

learning rate set to 0.1 and decreases to 0.01 from 45th

epoch on wards.

Importance of Batch Normalization. Here we analyze

the impact of batch normalization (BN) [15] in our DACNN

architectures. We trained 2 models on CIFAR-100 dataset:

a 14-layer plain DACNN (VGG [28] based) and a 18-layer

plain DACNN with residual learning (ResNet [11] based),

they are trained both with and without BN for each layer.

As we show in the results in Table 1, the network performs

poorly without batch normalization in both tested models,

giving an error of almost random guessing. Our hypothe-

sis of this behavior is that BN helps scale the output feature

map after every shared filter, thus introduces some diver-

gence in to the network rather than simply stacking weights.

Therefore, for the rest of the experiments, all DACNN con-

figurations are equipped with free batch norm parameters as

a default setting.



# layers TOP-1 err. (%) # param (M)

3 56.91 (54.41) 0.164 (0.45)

5 40.11 (33.74) 0.164 (0.74)

7 42.22 (32.66) 0.164 (1.03)

9 42.40 (32.67) 0.164 (1.33)

11 42.37 (30.36) 0.165 (1.63)

14 42.29 (30.44) 0.165 (2.06)

18 38.63 (28.31) 0.166 (2.66)

34 38.88 (27.22) 0.168 (5.02)

Table 2. TOP-1 test error (%) on CIFAR-100: Layers vs # param-

eters. Data inside parentheses are for architectures without shar-

ing weights for comparison. All models here have 128 number

of channels through out the network, for architectures deeper than

17 layers, residual learning is applied. For DACNNs, number of

parameters barely increase as the network goes deeper.

Impact of Depth in DACNN. Here, we provide compar-

ison between DACNNs of different depths, we also com-

pare them to networks without sharing the kernel weights

with the same structures. As in the batch normalization ex-

periment, all networks have 128 as fixed number of chan-

nels, pooling layers are inserted in between convolutions.

In addition, for architectures deeper than 17 layers, residual

learning is adopted to the entire network.

Results are shown in Table 2. The error rate of plain

DACNN drops as the network goes deeper up to the 5-th

layer. The next drop is when we introduce residual learn-

ing into DACNNs (see the 18-layer network). Compare to

networks with free weights, model sizes of DACNNs do not

increase much as the network grows. However, we observe

that simply stacking plain DACNN kernels and increasing

the depth barely benefit the performance of our architecture,

we explore further improvements which are discussed in the

sequel.

Mixed DACNN. Next we evaluate mixed architec-

tures for DACNNs. We choose VGG, ResNet18 and

ResNet34 [11, 28] as our base architectures. As we in-

troduced earlier, mixed DACNN architectures require extra

parameters whenever channel dimension expands, since all

architectures above share the same channel expansion pat-

tern, the number of parameters required are almost the same

(for ResNet based architectures, one more 1×1 convolution

is needed for each shortcut expansion).

As shown in results of Table 3, with greatly reduced

number of parameters, performance of mixed DACNNs are

comparable to VGG and ResNets with same number of lay-

ers. Mixed DACNN18 has only 0.41% performance drop

compared to ResNet18, but model number of parameters

is reduced by 55%. Although increasing the depth doesn’t

benefit performance of mixed DACNNs, it doesn’t increase

the number of parameters neither. In later section, we ar-

Template TOP-1 err. (%) param (M)

VGG 30.20 14.90

DACNN-14(MIX) 30.54 4.73

ResNet-18 27.31 11.13

DACNN-18(MIX) 27.72 4.90

ResNet-34 26.10 21.24

DACNN-34(MIX) 27.70 4.91

Table 3. Classification results on CIFAR-100 dataset. We choose

VGG, ResNet18, and ResNet34 as our base models. Mixed DAC-

NNs obtained desirable performances with much less parameters

compared to original VGG and ResNets.

SECTION TOP-1 err. (%) extra param

NONE 38.63 -

section 1 38.28 32K

section 2 38.09 32K

section 3 37.46 32K

section 4 38.07 32K

ALL 35.39 128K

Table 4. Allocations of regulators.Plain DACNN-18 was selected

as the testing model, the network is cut into 4 sections by 3 pool-

ing layers, and regulators are appended to residual blocks in each

section separately. ALL denotes all sections, bold denotes overall

best result and blue denotes best result on single section.

gue that deeper DACNNs have higher capacity for improve-

ments.

Regulators. Here we examine the effectiveness of regu-

lators (1 × 1 convolution kernels) in our DACNN architec-

ture. First we test regulators on a plain 18 layer DACNN

with residual learning, we separate the network into 4 sec-

tions by pooling layers, and experiment to add regulators to

different sections separately (note that we only append one

regulator into each residual block). Results are shown on

Table 4. We observe that the performance of the network

increases by a considerable margin as we append regulators

to different sections. Since each regulator is a 1×1 convolu-

tion kernel, only few extra parameters are added to the net-

work. According to the results, appending regulators to the

3rd section gives the best efficiency, we dropped 1.17% on

the error rate compared to plain DACNN18 using only 32K

parameters, and by appending regulators to all sections, we

are able decrease the error rate by 3.24%.

We also analyze the effect of using regulators to models

with different depth. In this experiment, regulators are ap-

pended to all sections to give better performance. Results

are shown on Table 5. As expected, deeper networks give

better performance since they have more residual blocks to

fit in regulators. On a 34-layer DACNN, we are able to

obtain about 1.5% drop on the error rate compare to a 18-
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Figure 4. Left: TOP-1 test error (%) on CIFAR-100 dataset. Solid curves denote DACNN and it variations, dotted curve denotes ResNet-34

as comparison. Right: Number of parameters of these architectures. Mixed DACNN-34 and mixed DACNN-34 with regulators achieved

similar performance as ResNet34 while using much less parameters.

model TOP-1 err. (%) extra param (M)

DACNN-18 (REG) 35.39 0.32

DACNN-24 (REG) 34.86 0.52

DACNNt-34 (REG) 33.88 0.68

Table 5. The effect of regulators on plain DACNNs. Extra param-

eters are computed with respect to a plain DACNN-18. All net-

works are trained and tested on CIFAR-100 dataset. REG denotes

regulators, bold denotes our best result.

layer DACNN with more regulators appended (0.34M more

parameters).

Lastly, we combine everything above together. We ap-

ply both mixed structure and regulators to DACNNs, the re-

sults can be found at the bottom of Table 6. In comparison

with ResNet-18, Mixed DACNN-34 with regulators obtains

better accuracy while using only half number of the parame-

ters; Comparing to ResNet-34, mixed DACNN-34 with reg-

ulators are 0.56% lower in accuracy, but the model size is

4× smaller.

Model Efficiency. Here, we evaluate model efficiency by

considering model size and performance. Architectures

with higher performance and less parameters will be con-

sidered as high efficiency models.

We provide results of different architectures on CIFAR-

100, as well as their number of parameters on Table 6. On

Figure 4, we plotted the testing curves and model sizes

of 34-layer network architectures with different configura-

tions. From the results, we observe that plain DACNNs are

extremely small in model size but their accuracy are not

competitive. Yet, as we introduce mixed structure and reg-

ulators into the model, the boost in accuracy is tremendous,

while the number of parameters of resulting models are still

smaller than VGG and ResNets [28, 11] by a large margin.
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Figure 5. Model Efficiency. This is a plot of TOP-1 error rate on

CIFAR-100 vs. number of parameters. Architectures with high

model efficiency are at the bottom left of the graph. Mixed DAC-

NNs and mixed DACNNs with regulators (circled with red) give

highest model efficiency among all other models in our experi-

ment.

For instance, mixed DACNN-34 with regulators has 15.1

million parameters fewer than ResNet-34. Figure 5 illus-

trates a plot of parameter efficiency, inwhich architectures

with high model efficiency are expected to be plotted on the

bottom left of the graph. As shown on the figure, DAC-

NNs with mixed structure and regulators are much more ef-

ficient than plain DACNNs and normal architectures (VGG,

ResNets [28, 11]).



method TOP-1 err. (%) # param (M)

VGG (1-fc) 31.20 14.90

ResNet18 27.31 11.13

ResNet34 26.10 21.24

DACNN-14 (plain) 42.20 0.16

DACNN-18 (plain) 38.63 0.16

DACNN-34 (plain) 38.88 0.17

DACNN-18 (REG) 35.39 0.46

DACNN-24 (REG) 34.86 0.56

DACNN-34 (REG) 33.88 0.72

DACNN-14 (MIX) 30.54 4.73

DACNN-18 (MIX) 27.72 4.90

DACNN-34 (MIX) 27.80 4.91

DACNN-18 (MIX, REG) 27.55 5.60

DACNN-34 (MIX, REG) 26.66 6.10

Table 6. Classification results on CIFAR-100 dataset. All DACNN

variations are shown on this table, together with VGG and ResNets

for comparison. Accuracy of DACNN-34 is only a small margin

lower than ResNet34, while cutting off 70% of the parameters.

4.2. Classification Results on CIFAR­10 and SVHN

To validate our method on other datasets, we also trained

DACNNs on CIFAR-10 and SVHN [16, 6]. CIFAR-10

has similar configuration as CIFAR-100 but with only 10

classes. SVHN is a house number recognition dataset ob-

tained from Google Street View images, there are 73,257

images in its training set, and 26,032 images in the test set.

Mixed DACNN-18 with regulators and mixed DACNN-

34 with regulators are selected in this experiment, we also

trained ResNet-18 and ResNet-34 for comparision. On

CIFAR-10, models are trained 90 epochs without data aug-

mentation, learning rate was set to 0.1 and decreases to 0.01

at 45th epoch. On SVHN dataset, models are trained 60

epochs, following common practice, [7, 12, 26, 22] no data

augmentation is applied. Learning rate starts from 0.1, de-

creases as a factor of 10 for every 20 epochs , we use ADA-

GRAD [5] as our optimizer in both cases.

The results are shown on Table 7, and Figure 6 is a plot

of testing curves of both networks on both datasets. With

this experiment, we validate the competitiveness and effec-

tive of our architecture as results are comparable to those

with the architecture with free weights, and using much less

number of parameters.

We also compare our method with 2 other pruning tech-

niques: Agent Pruning by Huang et al. [13], and sparse ma-

trix proposed by Han et al. [10], results are shown on Ta-

ble 8. DACNNs are able to achieve high compression ratios

with low accuracy drops compared to the other 2 methods.

In addition, DACNNs are easier for implementation and de-

ployment, while the rest two require data-driven fine tuning

or additional software/hardware support.

model CIFAR-10 SVHN

ResNet-18 6.47% 4.38%

ResNet-34 6.18% 4.08%

DACNN-18 (MIX,REG) 7.26% 4.37%

DACNN-34 (MIX,REG) 7.23% 4.06%

Table 7. TOP-1 errors on CIFAR-10 and SVHN dataset. Re-

sults shows that DACNNs even outperformed ResNets on SVHN

dataset.

method Accuracy drop (%) Prune Ratio (%)

Agent Pruning 0.3 27.1

Agent Pruning 1.0 37.0

Agent Pruning 1.7 67.9

SM Pruning 1.3 27.1

SM Pruning 6.9 37.0

SM Pruning 6.5 67.9

DACNN(M,R) 0.79 49.6

DACNN(plain) 10.2 98.5
Table 8. Classification results on CIFAR-10 dataset. Agent Prun-

ing [13], SM Pruning denotes sparse matrix Pruning [10] and

(M,R) denotes Mixed Structure and Regulators respectively .

ResNet 18 was selected as base architecture.

4.3. Filter Visualization

Here, we visualize the filters of DACNN. We apply simi-

lar technique as network fooling [24] for filter visualization:

First input an image of random noise, then we optimize the

input image with respect to each convolution layer using

backpropagation [18].

We train a 5 layer plain DACNN on CIFAR-10 (32×32)

and plot the results of some filters on Figure 7. The rea-

son why we choose plain DACNN here, is that we want to

demonstrate the output features can still be very diversified

across layers even without implementations of regulators

and mixed-architecture. This also illustrates the importance

of batch normalization to scale the filter responses.

5. Conclusion

We introduced a new convolutional neural network ar-

chitecture, which we refer it as Deep Anchored Convolu-

tional Neural Network (DACNN). It shares weights for con-

volution kernels across layers while keep parameters for

Batch Normalization free. Due to high weights reusage,

number of parameter of DACNN barely increases as the

network goes deeper. Thus, it is a novel way for model

size compression.

Since we observe that simply increasing the depth of

DACNNs contributes little to the performance, we also pro-

pose two ways to improve the performance of DACNNs:

Mixed Structure and Regulators.

With these two methods, DACNN is an efficient model

compression approach adopting an “addition” fashion: First
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Figure 6. Traning & Testing on CIFAR-10 and SVHN dataset. Solid curves denotes results for DACNNs, and dashed curves denotes

results for ResNets. We observe that ResNets are slightly better on CIFAR-10, while DACNNs are better on SVHN.
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Figure 7. Filter Visualization. Each of the image above is optimized for the corresponding convolutional layer using backpropagation. We

trained a 5 layer plain DACNN on CIFAR-10 dataset and selected 5 filters for demonstration.

initialize a plain DACNN to a desired depth (deeper net-

works have higher capacity for further improvements).

Then, selectively apply mixed structure and append reg-

ulators to achieve a desirable performance. As a result,

DACNNs are able to obtain similar performance with much

less parameters compare to some popular architectures like

VGG and ResNet [28, 11].
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