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Abstract

Despite the recent works on knowledge distillation (KD)

have achieved a further improvement through elaborately

modeling the decision boundary as the posterior knowl-

edge, their performance is still dependent on the hypoth-

esis that the target network has a powerful capacity (rep-

resentation ability). In this paper, we propose a knowledge

representing (KR) framework mainly focusing on modeling

the parameters distribution as prior knowledge. Firstly, we

suggest a knowledge aggregation scheme in order to an-

swer how to represent the prior knowledge from teacher

network. Through aggregating the parameters distribution

from teacher network into more abstract level, the scheme

is able to alleviate the phenomenon of residual accumula-

tion in the deeper layers. Secondly, as the critical issue of

what the most important prior knowledge is for better dis-

tilling, we design a sparse recoding penalty for constrain-

ing the student network to learn with the penalized gradi-

ents. With the proposed penalty, the student network can

effectively avoid the over-regularization during knowledge

distilling and converge faster. The quantitative experiments

exhibit that the proposed framework achieves the state-of-

the-arts performance, even though the target network does

not have the expected capacity. Moreover, the framework is

flexible enough for combining with other KD methods based

on the posterior knowledge.

1. Introduction

The deep neural network has achieved the significant

improvement in different fields with years, but it also re-

quires higher computational and memory costs. For the

purpose to apply these networks to the real-time indus-

trial tasks, the neural network compression [4] is arguably
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Figure 1. The pipeline of knowledge representing algorithm: The

prior knowledge in teacher network is represented by the knowl-

edge aggregation scheme into higher abstract level. Then the

sparse recoding penalty is further used to regularize the gradients

in student network for efficient learning these prior knowledge.

the most crucial strategy. As for the network compression

problem, the typical solutions are designed to slim [27, 37]

the network directly, or quantify their parameters distribu-

tions [14, 16, 25], and filter the redundant layer dimensions

[9, 21].

In contrast to these techniques which aim at directly

compressing the network while preserving its performance

as much as possible, an alternative solution is to preset

a smaller target network as the student, and employ the

knowledge from the larger network as teacher to improve

student’s performance. Therefore, knowledge distillation

[11] (KD) is proposed. The KD mainly assumes the sam-

ples distribution is anisotropy [1], but annotations of the

samples are not able to represent this intrinsic. Based

on the hypothesis, these methods evaluate the samples in

the teacher network to produce the decision boundary as a

strong posterior distribution, and then use to regularize the

gradients optimization of student network. While this helps

prevent the student network from being over-fitting, the ex-

tra risk of non-convergence is introduced.



A possible solution is to refine the posterior distribu-

tion from the teacher network, in order to provide more

valuable knowledge for better distilling. The Neuron Se-

lectively Transfer (NST) [12] is proposed to align the dis-

tribution selectively with the Maximum Mean Discrepancy

(MMD) metric, and the generative adversarial network with

KD (KDGAN) [30] is further used to produce a more robust

decision boundary for student classifier. However, consid-

ering the student network which contains a very limited ca-

pacity - the representation ability, this limitation gradually

becomes a major bottleneck in network training to further

improve the performance of knowledge distillation. In a

word, the fine-grained posterior distribution is usually un-

deremployed.

With the constraint from network capacity, an instinc-

tive approach is to introduce the parameters distribution [6]

from the teacher network as the prior knowledge [26, 34].

For the typical one, Romero et al. [26] constructs the Hint

layer to estimate a parameters distribution with less filter

numbers, through using the intermediate features represen-

tation of the teacher, and it uses these knowledge to guide

the update of student parameters. However, the Hint layer

suffers from the over-regularization if the teacher network

is too deep.

In this paper, we produce a KD solution mainly focus-

ing on modeling the prior knowledge, while avoiding the

negative impacts from over-regularization, and the solution

is flexible enough, for combining with other KD methods

based on the posterior knowledge. Specially, we propose

a knowledge representing (KR) framework, which aims at

representing the prior knowledge at more abstract level,

and taking full advantage of these knowledge. For answer-

ing the question of how to represent the prior knowledge,

a knowledge aggregation scheme is firstly suggested. In-

spired by the theory of optimal transportation [23, 24], the

scheme is designed to alleviate the phenomenon of resid-

ual accumulation in the deeper layers. Then, as for the

most critical issue of what the dominant prior knowledge is

for better distilling, a sparse recoding penalty is proposed.

Through employing a learnable threshold in the penalty, it

can enhance the gradients of dominant neurons and smooth

inactive ones. With these two proposed terms, the proposed

framework can prompt the student network to preserve the

key features of teacher network, even without a strong rep-

resentation ability.

Our paper makes the following contributions:

• A new penalty is proposed to constrain the optimiza-

tion of knowledge distillation. It helps the student

network to avoid the over-regularization and converge

faster. Moreover, the penalty can be further applied on

other network optimization problems.

• A new scheme is suggested for aggregating the prior

knowledge. It is able to produce more abstract fea-

tures and alleviate the phenomenon of residual accu-

mulation.

• According to the proposed framework, the more flex-

ible architecture is allowable for both teacher and

student network, without the constraints from model

depths or filter scales.

2. Related Work

The latest deep networks are usually accompanied with

carefully designed modules [7, 8] and enormous parame-

ters. Though the performance of targeted tasks is obviously

being improved, the computation and memory cost grad-

ually become the challenge to employ these networks in

real-life applications [16, 28]. Comparing to the traditional

neural network compression methods [4] which focus on

compressing the original network directly, a solution with

the knowledge distillation to compress the deep network

attracts more attention from research community in recent

years, such as in the tasks of image recognition [34], object

detection [2, 22], or recommender systems [39], as the flex-

ibility to obtain an arbitrary architecture of target network.

In summary, the KD methods can be categorized into two

main groups:

1) Distilling the posterior distribution from training

data: Considering the possibility to extract the knowledge

in an ensemble (teacher) into a single model (student), Hin-

ton et al. [11] introduces the idea of knowledge distilla-

tion as a regularizer. Through employing a penalized ver-

sion [10, 13, 33] of final features of the teacher network, a

joint learning is processed with the knowledge from poste-

rior distribution. For refining the posterior distribution to

provide more valuable knowledge, the Neuron Selectively

Transfer (NST) [12] is proposed to align the distribution

selectively with the Maximum Mean Discrepancy (MMD)

metric. Furthermore, considering the sample bias is un-

avoidable, the generative adversarial networks for knowl-

edge distillation (KDGAN) [30] is further used to produce

a more robust posterior distribution for student classifier.

However, these methods haven’t take the capacity of stu-

dent network into consideration, so the fine-grained poste-

rior distribution is underemployed.

2) Distilling the prior distribution from model parame-

ters: An alternative approach is to introduce the parameters

distribution from teacher network as the prior knowledge

[26, 34, 36]. Romero et al. [26] designs the Hint layer to

estimate the parameters distribution by using the intermedi-

ate hidden layers from the teacher, and used the Hint layer

to guide the distillation. Net2Net [3] suggests a function-

preserving transform for extracting the prior knowledge

from teacher network to initialize the parameters of the stu-

dent network. And Yim et al. [34] suggests a representation



operator named FSP matrix. It uses not only the parameters

distribution but the intermediate features from the neigh-

bor layers. However, these methods either are constrained

by the depth of teacher network, or suffer from the over-

regularization.

3. Method

For obtaining a student network that faithfully preserves

the key representation ability of the teacher, Sec. 3.1

presents the objective function of the knowledge represent-

ing framework. Accordingly, we firstly answer the key

problem of what the most important prior knowledge is for

distilling in Sec. 3.2, through introducing the mathematical

expression of the sparse recoding penalty. Then, we sug-

gest how to represent the prior knowledge from the teacher

network, with a knowledge aggregation scheme in Sec. 3.3.

Finally, Sec. 3.4 shows the optimization procedure of the

objective function.

3.1. Knowledge Representing

As one of the most typical feature representation tech-

nique, the deep model produces the decision boundary

through modeling the data distribution with the parameters

in layers. Given a trained decision boundary yt(x,W t),
where yt is generated by teacher network with data distribu-

tion x and the parameters W t, the objective of knowledge

distillation is to find the parameters W s for the student net-

work. Specially, with the W s and x, the ys from student

network is jointly optimized with the yt. Through minimiz-

ing the dissimilarity of two decision boundaries, the objec-

tive function of knowledge distillation is defined as:

argmin
W s

N
∑

i=1

£(yti(xi,W
t), ysi (xi,W

s)) + λΦ(W s) (1)

Algorithm 1: Training the Knowledge Representing

Algorithm

Input: Weights W t of teacher network and W s of

student network

Output: Aggregation knowledge W̃ t and optimized

weights of student network W s

Initialization: W̃ t, W s, MaxIter;

while less than the MaxIter do

Optimizing W̃ t with W t;

Knowledge aggregation for teacher in Eq. 9 ;

Optimizing W s with W̃ t;

Sparse recoding for student in Eq. 10 ;

end

(a) (b)

Figure 2. The properties of proposed sparse recoding penalty (best

viewed in color): (a) the sparse recoding penalty is able to ap-

proximate more strict sparseness; (b) the properties with different

setting of ε.

where £ represents the metric for evaluating the similar-

ity between the yt and ys, and the cross entropy, KDGAN

[30], or NST [12] are allowable. Different from the KD

methods only evaluating the decision boundary, we further

introduce a penalty Φ(·) in Eq. 1, in order to measure

the representation ability of student network. However, if

the representation ability of student network is weak, the

fine-grained posterior distribution will be underemployed.

Then, we extend the objective function Eq. 1 through fur-

ther introducing the prior knowledge W t from the teacher

network, and the objective function is:

argmin
W s,W̃ t

N
∑

i=1

£(yti(xi,W
t), ysi (xi,W

s)) +£(W̃ t,W s)

+ γΨ(W̃ t,W t) + λΦ(W s)

(2)

Instead of directly employing the parameter distributions

W t from the teacher network as prior knowledge, we firstly

represent these distributions as more abstract level, and a

knowledge aggregation scheme Ψ(·) is suggested to aggre-

gate W t into the W̃ t. With the prior knowledge W̃ t, the

£(W̃ t,W s) is used to guide the update of parameters distri-

butions W s for the student. Moreover, we propose a sparse

recoding penalty to specify the Φ(·). Through enhancing

the magnitude of dominant gradients and filtering the in-

active ones, the optimizer no longer requires the parame-

ters distribution W s of student network to strictly close to

the teacher one, and prompts the student network to firstly

learn with the most valuable knowledge. In summary, the

optimization procedure is represented in Algorithm 1, and

we leave over the details in following sections.



3.2. Sparse Recoding Penalty

As demonstrated by previous works [31, 32, 38],

prompting the neurons connection being sparse is benefi-

cial for obtaining a well generalization ability. However,

such penalties are designed to directly clip the parameters

distribution, and the extra risk of over-regularization is in-

troduced. After we analyze the distribution of prorogated

gradients in the previous KD methods, we found that major

reason for the convergence of oscillatory is that the gradi-

ents are not discriminative enough, especially in the student

network with a weak representation ability.

Therefore, we propose a sparse recoding penalty Φ(·),
which can penalize the prorogated gradients during the

training of deep network. Given an input parameters ten-

sor W , it enhances the high gradients gj of dominant neu-

rons, and filters the low gradients of inactive neurons. The

function is defined as:

Φ(W ) =
∑

j

Φ0(gj) (3)

where

Φ0(g) =

{

1

ε
(|g|+ g2), if |g| ≥ ε

0, otherwise
(4)

where Φ0(·) is a piecewise function that enhances the

gradients when |g| ≥ ε, and smooths the |g| by zero in oth-

ers. The ε is a learnable threshold within the update of gra-

dient optimization, and it is initialized with the mean value

of parameters distribution. For fairly comparing with other

penalties, the Fig.2 shows the curves of Φ(·) by comparing

with the L1 and L2 norms. It exhibits that Φ(·) is a more

strict sparse constraint. Moreover, with different parameter

setting, properties of the sparse recoding penalty are shown

in the figure, and we leave over the further discussion in

experiments.

3.3. Deep Knowledge Aggregation

For representing the prior knowledge as more abstract

level, we design a deep knowledge aggregation scheme

through stacking the neighbor layers in a very deep network.

Specially, with the analysis of prior knowledge distilling in

previous methods, we notice that the optimization errors be-

tween two networks will be accumulated from layers, since

the higher layer in teacher network usually contains a strong

representation ability. However, the situation is simply re-

garded as the phenomenon of gradient vanishing, and cause

an over-regularization if the teacher network is too deep.

So we name this phenomenon as the residual accumulation,

and the proposed scheme will mainly considers this phe-

nomenon. Based on the theory of optimal transportation

[23, 24], the scheme try to reduce the residual accumula-

tion during gradient optimization, through minimizing the

inter-domain transportation cost. Given a P1 and P2 being

two distribution space with probability measures µ and ν
respectively, the transportation T preserving P1 → P2 has

equal total measure

µ(T (p1)) = ν(p2) (5)

where p1 and p2 is any measurable subset of P1 and P2.

Then the total transportation cost for sending p1 ⊂ P1 to

p2 ⊂ P2 by transportation cost τ(p1, p2) can be defined by

min
T :P1→P2

∫

P1

τ(p1, T (p1))dµ(p1) (6)

With minimizing the total transportation cost, the distri-

bution P2 progressively approximates P1 on measures µ.

Assuming a series of neighbor layers ℓk, ..., ℓn as set Łn
k ,

for sending parameter distribution WŁn

k
to W̃ with measur-

able subset w ⊂ Wℓk,...,ℓn , the deep knowledge aggregation

scheme merges the neighbouring layers to form the higher

abstract parameters knowledge. In this case, the function

Ψ(·) is formulated as

Ψ(W̃ ,WŁn

k
) = min

T :WŁn
k
→W̃

∫

WŁn
k

τ(w, T (w))dµ(w) (7)

3.4. Optimization

Instead of directly optimizing the proposed objective

function, we design an joint optimization method as the al-

ternative solution. In details, our method uses two stages

optimization to alternatingly solve the Eq. 2.

Optimizing W̃ t with W t
Ł
n

k

Given an elaborate teacher

network with parameter distribution W t
Łn

k

, we first aggre-

gate the knowledge W̃ t with T (W t
Łn

k

) in here as:

argmin
W̃ t

N
∑

i=1

£(yti(xi,W
t), ysi (xi,W

s))

+ γ

∫

W t

Łn
k

τ(wt, T (wt))dµ(wt)

(8)

As the Eq. 8 involves a transportation cost and the defi-

nition of probability measures, it is difficult to directly inte-

grate with gradient descent optimizer. In this case, we use

the feature representation FW as an approximation proba-

bility measures, which means the set of features maps F

generated by parameters set W . If the transportation cost

τ(·) is defined as the simple L2 distance, we revise the Eq.

8 as:



argmin
W̃ t

N
∑

i=1

£(yti(xi,W
t), ysi (xi,W

s))

+ γµ(W t
Łn

k

)‖FW t

Łn
k

− F
W̃ t‖2

(9)

where γ is a predefined parameter to control the penalty

from optimal transportation. The µ(W t
Łn

k

) as a measures

function is used to penalize more on the layer with higher

accumulation error, and the standard deviation is employed

here. Moreover, we remove the part of terms during the

derivation for Eq. 8 for fast computation. Then, the solution

of W̃ t can be obtained by gradient descent optimization.

Optimizing W s with W̃ t Given an aggregate knowledge

W̃ t, our goal here is further to solve the W s on student

network with sparse recoding penalty, as:

argmin
W s

£(W̃ t,W s) + λ
∑

j

Φ0(g
s
j ) (10)

where Φ0(g
s
j ) is designed for prompting the student net-

work to firstly learn with the penalized gradients, and the

parameter λ is predefined to control the importance of the

sparse recoding penalty.

Instead of directly solving the global optimum for objec-

tive function Eq. 2, the two sub-objective functions Eq. 9

and Eq. 10 are designed to overcome the conflict between

optimizing the prior knowledge and posterior knowledge si-

multaneously. Through alternatively minimizing the dis-

tribution dissimlarity £(W̃ t,W s) and £(yt, ys), the opti-

mization for Eq. 2 is regarded as an joint optimization pro-

cedure. Once the posterior knowledge is dominant during

optimization, the optimizer for prior knowledge will penal-

ize the total loss more, and the opposite is also. The gradient

is only allowed to descend on the direction that makes both

two optimizers are optimal.

4. Experiments

In this section, we evaluate the proposed knowledge dis-

tillation framework with several benchmark datasets. For

the base of experiments, we use the deep residual network

[8] as the network architecture, and the excerpt of the pro-

posed framework in this architecture is shown in Fig. 3.

The c in residual module means the number of aggregated

convolution layers. For the problem of optimizing these lay-

ers with different spatial scales, the identity mapping (ID)

layer [35] is employed also. To ensure a fair comparison,

the same data augment strategies are used. Moreover, we

employ the similar settings of learning rates, optimization

iterations and computation precision (32 float points). The

implementation details will be shown in corresponding sub-

sections.

Knowledge  Aggregation 

Residual Module (c=2) 

Figure 3. The excerpt of proposed framework on the residual net-

work.

In Sec. 4.1, through comparing with the typical penal-

ties, the property of the sparse recoding penalty is anal-

ysed. Then, through comparing with the state-of-the-arts,

we evaluate the performance of student networks in gen-

eral image recognition tasks, and further explore their gen-

eralization ability in a revised dataset TCIFAR-100, as de-

scribed in Sec. 4.2. Finally, the discussions about the opti-

mization procedure of the proposed framework is shown in

Sec. 4.3.

4.1. Analysis of Proposed Penalty

As for the sparse recoding penalty, its property through

comparing with typical methods is analysed, and we further

explore the reason of why the proposed penalty is able to

boost the convergence of knowledge distilling. Based on

the experiment result, we address that the proposed penalty

can be applied on other network optimization problems if

the gradients distribution is not discriminative enough.

Penalty Property Given a specific parameters distribu-

tion, the traditional penalties [31, 38] form a convex func-

tion and obtain the maximal reward in the unique extreme.

It penalizes the parameter with higher value to reduce the

total loss, for encouraging the value of parameter to close to

0. In contrast to these methods, the sparse recoding penalty

is designed to penalize the gradients directly. For the propa-

gated gradients, it filters the gradients with an equal reward

within the learnable threshold, in order to slow down the

update of inactive neurons. For the gradients out of the

threshold, it boosts the update to highlight the dominant

neurons. For validating our hypothesis, we visualize the

convolutional kernels with the constraint by different penal-

ties in image recognition tasks. The Fig. 4 shows that the

sparse recoding penalty can prompt the parameters distri-

bution of the network to be more sparse, through directly

regularizing the optimized gradients.

Convergence We have observed fast convergence in our

experiment result. In Fig. 5, it illustrates the training loss



[38] 

Figure 4. With the penalized gradients, the sparse recoding penalty

is also to produce more discriminative parameters distribution

(best see in color).

on MNIST over the beginning 20,000 iteraitons. The stu-

dent network with sparse recoding penalty is better than the

traditional penalties. We think one possible reason is that

the proposed penalty is designed to penalize the gradients

firstly, so it can produce a bigger step for gradients descent

in the beginning of network training. Moreover, we eval-

uate the different types for initializing the parameters dis-

tribution in the experiment, and we also found the similar

conclusion.

4.2. Performance Analysis

In this section, we firstly conduct the experiments in the

image recognition task on CIFAR-10, CIFAR-100 [18] and

ILSVRC 2012 [5], in order to evaluate the performance of

the proposed knowledge representing framework with the

state-of-the-arts. Then, we design a TCIFAR-100 based on

CIFAR-100, for further verifying their generalization abil-

ity. As the focus of this experiment is analysing the per-

formance of student network with a small capacity, so we

reserve the comparison on different tasks as future works.

[38] 

[31] 

Figure 5. Convergence speed; the traditional penalties [31, 38] and

the sparse recoding penalty (best see in color).

4.2.1 CIFAR-10

The CIFAR-10 is an image recognition dataset [18] which

includes 50,000 training images and 10,000 test images, and

per training class has 5,000 images while test class has 1000

images. For all images, they store in RGB format with size

of 32×32. We use a trained teacher network with 26 layers,

which is structured as 5 residual modules. For student net-

work, it contains 8 layers with 2 residual modules, which

has roughly 1/3 parameters of the teacher. In details, with

the same parameters settings and training strategies, we re-

duce about 1/3 number of the filters on each layer for the

student network, in order to evaluate the case if the target

network contains a weak representation ability. And we set

the c of knowledge aggregation as 3, which aggregates each

three layer of teacher network into higher abstract level for

one layer in student network.

Accuracy Params

Teacher ResNet-26 91.91 ∼ 0.36M

Student ResNet-8 (Original) 87.91 ∼ 0.12M

FitNet [26] 88.57 ∼ 0.12M

FSP [34] 88.70 ∼ 0.12M

Proposed-Dense 89.11 ∼ 0.09M

Proposed 90.65 ∼ 0.09M

NTS [12] 88.98 ∼ 0.12M

KDGAN [30] 88.62 ∼ 0.12M

Proposed + KDGAN [30] 91.35 ∼ 0.09M

Table 1. ResNet-8 in CIFAR-10 Classification rates(%). Proposed:

the KR framework. Proposed-Dense: the KR framework but re-

moving the sparse recoding penalty.

In Tab. 1, it summarizes the obtained results. Based on

the proposed framework, the student network which con-

tains less parameters wins the methods [26, 34] focusing on

prior knowledge with a significant improvement. For the

state-of-the-arts [12, 30] by modeling the posterior knowl-

edge, the proposed framework also achieves the compara-

ble performance. For the self-comparison, we remove the

sparse recoding penalty in KR framework and name it as

the KR-Dense. And the experiment proves the importance

to sparsely penalize the gradients during the distilling opti-

mization, if the student network only has a small capacity.

Besides, through combining with the KDGAN [30], a fur-

ther improvement confirms that our method is flexible for

the extension.

4.2.2 CIFAR-100

The CIFAR-100 is an augmented version of CIFAR-10. It

contains the same amount of images and size of CIFAR-

10, which includes 50,000 training images and 10,000 test

images, so only has 100 samples per class. Similar the set-

ting to CIFAR-10, we use a trained teacher network with



Accuracy Params

Teacher ResNet-32 64.06 ∼ 0.46M

Student ResNet-14 (Original) 58.65 ∼ 0.19M

FitNet [26] 61.28 ∼ 0.19M

FSP [34] 63.33 ∼ 0.19M

Proposed Method 63.95 ∼ 0.17M

NTS [12] 63.78 ∼ 0.19M

KDGAN [30] 63.96 ∼ 0.19M

Proposed Method + KDGAN [30] 63.98 ∼ 0.17M

Table 2. ResNet-14 in CIFAR-100 Classification rates(%). With

the similar network architecture, we further reduce the output

channels in each layer for saving the total parameters.

32 layers as 6 residual modules, and student is composed of

14 layers as 3 residual modules. Besides, the reduction of

about 1/3 filter number is still used, and c is set as 3.

Tab. 2 shows results of student network with evaluated

methods. Though the proposed method achieves the com-

parable performance than the state-of-the-arts [12, 30] with

less parameters, the improvement for our method is not ob-

vious. We think one possible reason is that the ResNet-14

has a stronger representation ability that the ResNet-8.

4.2.3 ILSVRC 2012

The ILSVRC 2012 classification challenge involves the

recognition task to classify one image into 1,000 leaf-node

categories in the ImageNet hierarchy [19]. It has about

1.2 million images for training, 50,000 for validation and

100,000 testing images. Although training the very deep

network on such enormous datasets to achieve satisfied per-

formance has been a solvable issue, how to obtain the com-

parable performance with a tiny network by the knowl-

edge distillation still confuses the research community, es-

pecially for the methods [22, 26, 34] with prior knowledge.

We think the major reason is that the depth of teacher net-

work in ILSVRC 2012 is very deep, so the student net-

work in these methods seriously suffers from the over-

regularization.

Tab. 3 shows the errors of Top-1 and Top-5. With the

c which is set as 4 in knowledge aggregation scheme, we

found the situation of over-regularization is alleviated, and

it prompts the KR framework to achieve the better perfor-

mance.

4.2.4 Generalization Ability

We further explore the generalization ability of previous

methods and the proposed framework. Based on the data

resource from CIFAR-100, we reproduce the CIFAR-100

as the TCIFAR-100 with the data distortion strategies. In

details, each image in training and test set is distorted by

Top-1 Top-5

Teacher ResNet-101 22.68 6.58

Student Inception-BN [15] 25.74 8.07

FitNet [26] 25.30 7.93

NTS [12] 24.34 7.11

KDGAN [30] 24.11 6.98

Proposed Method 23.47 6.85

Proposed Method + KDGAN [30] 23.18 6.79

Table 3. ImageNet Classification errors (Top-1 and Top-5%).

the artifacts, from a gaussian distribution (σ = 1) with the

random sample. The Fig. 6 shows the examples. In Tab. 4,

it shows the proposed framework achieves a significant im-

provement than state-of-the-arts. We believe the KR frame-

work is able to produce a student network with stronger gen-

eralization ability, since the joint optimization prevents the

optimizer from being trapped in local extremum.

Figure 6. left CIFAR-100; right TCIFAR-100

Accuracy Params

Teacher ResNet-32 61.25 ∼ 0.46M

Student ResNet-14 (Original) 54.37 ∼ 0.19M

FitNet [26] 56.77 ∼ 0.19M

FSP [34] 57.31 ∼ 0.19M

Proposed Method 60.03 ∼ 0.17M

NTS [12] 57.88 ∼ 0.19M

KDGAN [30] 58.15 ∼ 0.19M

Proposed Method + KDGAN [30] 60.33 ∼ 0.17M

Table 4. ResNet-14 in TCIFAR-100 Classification rates(%). The

transformed CIFAR-100 dataset is reproduced by the CIFAR-100.

4.3. Optimization Discussion

In this section, we further discuss the implementation de-

tails of optimizing the proposed framework, and analysis

the optimization procedure with different settings.

Implementation Details As for the training on CIFAR-

10 and CIFAR-100, the learning rate for Eq. 9 is set as

0.1, and was changed to 0.01, and 0.001 at two steps (30k

and 48k) respectively. The optimizer for Eq. 10 started at

a smaller learning rate 0.01, but also is reduced according

to similar strategies. For the ILSVRC 2012, the learning

rate for Eq. 9 is set as 0.1 with a ploy decreasing in each 6

epoch, and the optimizer for Eq. 10 started at learning rate

0.005. The weight decay of 0.00001 and momentum of 0.9



are all used. For the works related to quantization strate-

gies [16, 25], we try to evaluate the performance if com-

bining these works with our framework. Since the quanti-

zation techniques transfer the parameters distribution into a

discrete space, we found the optimization will be seriously

impacted and convergence performance also be influenced.

However, this analysis is out of the scope of this paper, so it

is left as future work.

Joint Optimization For optimizing the W̃ t with W t by

Eq. 9 and the W s with W̃ t by Eq. 10, we use two differ-

ent optimizers to separately training these two sub-objective

functions. Moreover, we tried different initialization tech-

niques for parameters, and we found the objective function

is harder to converge, if the initialization on W̃ t is very dif-

ferent from W s. We also consider the types for different

optimizers [17, 20, 29]. Through changing the two opti-

mizers as Adam [17] or RMS [29], we found it caused a

performance oscillation but less than 1%.

5. Conclusion

In this paper, we propose a knowledge representing (KR)

framework mainly focusing on modeling the parameters

distribution as prior knowledge. We suggest a knowledge

aggregation scheme to represent the parameters knowledge

from teacher network into more abstract level, for alle-

viating the phenomenon of residual accumulation in the

deeper layers. We also design a sparse recoding penalty

for constraining the student network to learn with the pe-

nalized gradients. It helps the student network to avoid

the over-regularization during knowledge distilling and con-

verge faster. In conclusion, the proposed framework can

prompt the student network to preserve the key features of

teacher network, even though the student network does not

have a strong representation ability.

Acknowledgements. We thanks all reviewers for provid-

ing the constructive suggestions.
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