
 

 

 

Abstract 

 

Benefit from the powerful features created by using deep 

learning technology, salient object detection has recently 

witnessed remarkable progresses. However, it is difficult 

for a deep network to achieve satisfactory results in low 

contrast images, due to the low signal to noise ratio 

property, thus previous deep learning based saliency 

methods may output maps with ambiguous salient objects 

and blurred boundaries. To address this issue, we propose 

a deep fully convolutional framework with a global 

convolutional module (GCM) and a boundary refinement 

module (BRM) for saliency detection. Our model drives the 

network to learn the local and global information to 

discriminate pixels belonging to salient objects or not, thus 

can produce more uniform saliency map. To refine the 

localization and classification performance of the network, 

five GCMs are integrated to preserve more spatial 

knowledge of feature maps and enable the densely 

connections with classifiers. Besides, to propagate saliency 

information with rich boundary content, a BRM is embed 

behind each convolutional layer. Experiments on six 

challenging datasets show that the proposed model 

achieves state-of-the-art performance compared to nine 

existing approaches in terms of nine evaluation metrics. 

 

1. Introduction 

Salient object detection aims to locate the most 

distinctive objects in an image that are consistent with 

human visual perception. By serving as a preprocessing 

step, it facilitates a wide range of computer vision tasks such 

as image retrieval [1], semantic segmentation [2], human 

pose estimation [3] and person re-identification [4]. 

Although the deployment of deep convolutional neural 

network is beneficial to saliency detection and achieves 

significant improvements compared with the traditional 

hand-crafted features based approaches in recent years, it is 

still a challenging research problem when it comes to the 

low contrast images, the main reasons lie in: 1) the 

definition of saliency region is strongly impacted by the 

fuzzy visual identity and excessive noise of low contrast 

images, which mislead the deep models to predict the true 

salient object; 2) due to the repeated pooling operations in 

deep learning architectures, it is inevitable to lose object 

semantic and image structure information, which is severely 

missing in low contrast scenes, thus the results of deep 

networks usually suffer from inaccurate shape and poor 

localization of salient object; 3) since the pixels around the 

object boundaries are centered at the similar receptive fields 

and the deep networks only discriminate the binary labels of 

image pixels, it is difficult for a trained network to learn the 

boundary knowledge. As Fig. 1 shows, the state-of-the-art 

deep models [5-6] can hardly highlight the right salient 

objects and the real object boundaries in low contrast 

images. 

In order to address these challenges, this paper proposes 

a deep fully convolutional neural network for salient object 

detection in low contrast images by adequately exploiting 

the complementary local and global information encoded in 

feature maps which are generated from different layers. To 

capture the global context, the features at multiple 

convolution layers are combined and compressed into a 

multi-level integrated global feature map. To gather the 

local context and promote features with strong local 

contrast, the multiscale local features of convolution layers, 

contrast features by local dissimilarity, and unpooled 
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(a) Images (b) GT (c) NLDF (d) RAS (e) OURS 

Figure 1. Examples of salient object detection in low contrast 

images. From left to right: input low contrast images, ground 

truth, saliency maps of two state-of-the-art models (NLDF [5]

and RAS [6]), and our saliency maps. 



 

 

features of deconvolution layers are concatenated into 

multi-level local feature maps. By fusing the local and 

global features via a softmax function, the saliency 

probability of each pixel can be computed exactly. The 

overview of the proposed network is illustrated in Fig. 2. 

To effectively leverage the available visual information 

in low contrast image, the network is refined by two 

modules: a global convolutional module (GCM, shown in 

Fig. 3(a)) and a boundary refinement module (BRM, shown 

in Fig. 3(b)). GCM aims to expand the valid visual receptive 

field of feature maps and add dense connections with 

classifiers, which enables our new network to locate the 

most attentive regions and acquire more object semantic 

information with very few extra costs. BRM is a residual 

structure, which is embedded behind each convolutional 

layer of the network to keep the details of object boundaries. 
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Figure 3. The structures of global convolutional module (GCM) 

and boundary refinement module (BRM). 

 

To verify the effectiveness of our network, the proposed 

model is evaluated on six datasets and compared with nine 

state-of-the-art saliency models. Extensive experimental 

results demonstrate that our approach quantitatively and 

qualitatively outperforms other methods with respect to the 

accuracy of salient objects and the integrity of object 

boundaries. To summarize, the contributions of this work 

can be summarized as follows: 

1) We found that the deep models are not enough for 

salient object detection task in low contrast images and 

formulated a deep fully convolutional encoder-decoder 

network in both local and global forms to learn saliency 

maps. 

2) We embed a global convolutional module and a 

boundary refinement module into our network. The former 

focuses on the object semantic and spatial distribution of 

low contrast images to help better refine the structure and 

location information of salient objects. The latter helps 

maintain the completeness of object boundaries. 

3) Compared with nine state-of-the-art saliency methods, 

the proposed model achieves superior performance on five 

benchmark datasets and our nighttime image dataset in 

terms of nine evaluation metrics. 

2. Related Works 

Generally, existing salient object detection methods can 

be mainly categorized into two streams: traditional 

hand-crafted models and deep learning based models. 

Traditional hand-crafted models [7-12] mainly 

employed low-level visual features (e.g., color [9], contrast 

[10]) and heuristic priors [11-12] to distinguish salient 

objects from background. These features can be effective in 

simple scenarios, however they are of limited ability to 

represent salient objects in complex scenes and capture the 

object semantic knowledge, thus the traditional methods are 

incapable of producing satisfactory salient objects in 

challenging low contrast images. Therefore, it is necessary 

to consider high-level image information for salient object 

detection. 

Deep learning based models [13-19] can learn the 

high-level semantic features from the training samples, 

which are more effective in locating the salient object in 

complex scenes and have achieved near human-level 

performance in various computer vision tasks. These 

models can be broadly classified into region-wise and 

pixel-wise saliency detection approaches. The region-wise 

methods predict saliency score by leveraging the image 

patch as basic processing unit. Zhao et al. [13] designed a 
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Figure 2. Overview of the proposed network for salient object detection in low contrast image. 



 

 

multi-context deep learning framework by integrating the 

global and local context information of image superpixels. 

Li and Yu [14] estimated the saliency score of each 

superpixel by employing the multiscale features extracted 

from deep network. Wang et al. [15] incorporated the local 

estimation and global search to capture the saliency 

information of image patches and candidate objects. Since 

these methods treat each image patch as an independent 

unit, the spatial knowledge is easily lost in the training 

procedure. Moreover, to predict the saliency scores of all 

patches in the image, the processing procedure is repeated 

over and again, thus the computation is redundant and 

time-consuming. To overcome these drawbacks, the 

pixel-wise methods map an input image to a saliency map 

directly by exploiting a trained deep fully convolutional 

saliency network. Wang et al. [16] developed a recurrent 

fully convolutional network by introducing the saliency 

prior information to automatically refine the detection 

results. Hou et al. [17] introduced short connections to 

optimize the detailed structures of salient object by 

transforming features from deeper to shallower side-output 

layers. Liu et al. [18] presented a pixel-wise contextual 

attention network to select the local or global informative 

contexts to detect salient objects. Hu et al. [19] incorporated 

the recurrently aggregated deep features into a deep 

saliency network to improve the accuracy of salient objects. 

In general, these deep learning based saliency models can 

achieve desirable performance even when handling the 

image of complex scenarios. However, due to the lack of 

well-defined features to encode saliency information in low 

contrast images, the salient results of these models tend to 

lose some structure details and boundary parts of salient 

object and simultaneously contain many non-salient objects 

and background contents when directly merging multiple 

high-level features in the network. Inspired but differed 

from these deep models, we employ a global convolutional 

module and a boundary refinement module in a top-down 

manner to guide progressive saliency learning. Benefit from 

it, more semantic properties, accurate spatial information, 

and rich boundary knowledge can be learned, thus lead to 

significant improvement of salient object detection in low 

contrast images. 

3. The Proposed Model 

Targeting at mapping a low contrast image to a 

pixel-level saliency map, a deep fully convolutional 

framework is designed to combine the local and global 

saliency information. To accurately highlight the visual 

salient objects and further refine the object contours, five 

global convolutional modules (GCMs) and twenty 

boundary refinement modules (BRMs) are embedded into 

the deep network. 

3.1. Network Architecture 

The proposed model is built on the fully convolutional 

neural network as salient object detection framework and 

mainly utilize the pretrained VGG-16 net [20] as the feature 

extraction network. The whole architecture is composed of 

convolution and deconvolution layers with different output 

dimensions, which can make our model possess the 

capability of capturing the local and the global features from 

various resolutions. 

Given an image I , which is resized to 416 416×  as the 

input unit, five feature maps 
1 2 3 4 5

{ , , , , }F F F F F  are 

generated from the five convolution blocks (Conv-1 to 

Conv-5), each block has a kernel size 3 3×  and contains a 

max pooling operation of stride 2 to decrease the spatial 

resolution from 208 208×  to 13 13× . Inspired by global 

convolutional network [21], we proposed a GCM to enable 

densely connections between convolution blocks and 

features, which makes the obtained features have more 

abundant neural information and robust to locally 

disturbances. We also utilized a BRM to connect each 

convolution block to preserve the boundary information. 

To calculate the global feature map (denoted as GF ), 

convolution features are gathered to capture the global 

context information before assigning the saliency 

knowledge to small region. Three convolutional layers of 

128 features channels are added after Conv-5 block to 

change 
5

F  into 1 1×  resolution to compute the global 

feature. The kernel sizes of the three layers are 7 7× , 5 5× , 

and 3 3× , respectively. 

To calculate the local feature maps (denoted as LF ), five 

convolutional blocks (Conv-6 to Conv-10), of which the 

kernel sizes are 3 3×  and 128 channels, are connected to 

the processing blocks (Conv-1 to Conv-5), respectively. 

The multi-scale local feature maps 
6 7 8 9 10

{ , , , , }F F F F F  are 

obtained by these convolutional layers. Since saliency value 

is the difference between foreground object and its 

surrounding background. The contrast feature (denoted as 
c

i
F , 6, ,10i = ⋅⋅ ⋅ ) of each feature map is computed by 

measuring the dissimilarity between 
i

F  and its local 

average [5]. 

,c

i i i
F F F ′= −                                    (1) 

where 
i

F ′  is the output of 
i

F  by local average pooling 

operation with kernel size 3 3× . The deconvolution block 

is connected to each feature map to increase its spatial scale 

by upsampling of stride 2 and kernel size 5 5× . The 

resulting unpooled feature map (denoted as u

i
F ) is 

produced by concatenating its local feature 
i

F , the local 

contrast feature c

i
F , and the unpooled feature map 

1

u

i
F + . 



 

 

1
Upsamp(CAT( , , )).u c u

i i i i
F F F F +=                (2) 

The final local feature map LF  is generated by using a 

convolution layer of kernel size 1 1× , which combines the 

information of local feature 
6

F , local contrast feature 
6

cF , 

and unpooled feature map 
7

uF  via concatenation. 

6 6 7
Conv(CAT( , , )).L c uF F F F=                   (3) 

3.2. Global Convolutional Module 

By considering densely connections between classifiers 

and feature maps, GCM improves the classification ability 

of the proposed saliency model, which allows the network 

to handle various types of transformations. Meanwhile, the 

large kernel of GCM is helpful for the feature map to encode 

more spatial information, which enhances the localization 

precision of the salient objects. 

As illustrated in Fig. 3(a), the proposed GCM has two 

branches, the left convolution operation consists of a 7 1×  

convolutional block followed by a 1 7×  convolutional 

block, the right one employs the 1 7×  and 7 1×  

convolutions. These two branches are combined to enable 

the densely connections have a large 7 7×  region in the 

feature map, which increases the validity of receptive field. 

Besides, the calculation cost of GCM structure is relatively 

low, which is more practical. 

3.3. Boundary Refinement Module 

To further improve the spatial location accuracy of the 

salient objects, BRM is designed to optimize the 

localization performance near the boundaries of salient 

objects, which can greatly preserve the boundary 

information in training stage. 

As shown in Fig. 3(b), BRM is modeled as a residual 

structure [22], it has one branch to connect the input and 

output layers directly without any operation. The other 

branch is the residual net, which contains two convolution 

blocks of a 3 3×  kernel size. These two branches are 

combined by a shortcut connection, which is beneficial to 

learn the boundary information, thus the score of boundary 

pixel can be refined. The dimension of the corresponding 

output is the same as the input. 

3.4. Salient Object Detection 

The final saliency map is computed by combining the 

global feature map GF  and local feature map LF . Let MS  

denotes the saliency map and TG denotes the ground truth, 

the probability P  of a pixel p  in the feature map 

belonging to the salient object or not can be predicted by the 

softmax function. 
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′∈

= = =
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      (4) 

where ( , )L Lw v  and ( , )G Gw v  are the linear operators. The 

loss function of our network is the sum of cross entropy loss 

(denoted as CELoss ) and boundary loss (denoted as BLoss ) 

via: 

( ) (1 ),

r

CE B

r r

r rp

Loss Loss Lossα β
∈Ω

= + −          (5) 

where 
r

α  and 
r

β  are the positive weighting constants to 

tune the CELoss  and BLoss . 

The cross entropy loss CELoss  between ground truth TG  

and obtained saliency map MS  of pixels p  inside region 

r
Ω  is defined as: 

1 {0,1}

1
( ( ) )(log( ( ) )).

N
CE T M

j

j l

Loss G p l S p l
N = ∈

= − = =     (6) 

The boundary loss BLoss  between pixels p  on the true 

boundary map TB and estimated boundary map MB  is 

computed as: 

2 | |
1 .

| | | |

T M

B r r

T M

r r

B B
Loss

B B

∩
= −

+
                         (7) 

The supervision of the proposed model combines the 

effect of CELoss and BLoss . Since two loss functions 

jointly train our model, the parameters for pinpointing the 

salient objects and refining the boundary can be optimized. 

4. Experimental Results 

Extensive experiments are conducted on six salient 

object detection datasets to evaluate the performance of our 

model against nine state-of-the-art saliency models. 

4.1. Experimental Setup 

Evaluation datasets. We test the proposed model on five 

public benchmarks datasets and a low contrast image 

dataset. 1) MSRA-B dataset [23], which contains 5000 

images, and most of the images only have one salient object. 

2) DUT-OMRON dataset [24], which includes 5168 images 

of complex background. 3) PASCAL-S dataset [25], which 

has 850 challenging natural images. 4) HKU-IS dataset [14], 

which provides 4447 images of multiple salient objects with 

overlapping boundaries and of low contrast. 5) DUTS 

dataset [26], which has a training set of 10553 images and a 

test set of 5019 images. Both these images are of complex 

scenarios. 6) Nighttime Image (NI) dataset, which is 

proposed by us and contains 1000 images captured in the 



 

 

dark evening with a stand camera. The resolution of these 

image is 500 667× . 

Evaluation models. The proposed salient object 

detection framework is compared with five traditional 

hand-crafted saliency models and four deep learning based 

saliency models, including: context-aware (CA) model [27], 

saliency optimization (SO) model [28], bootstrap learning 

(BL) model [29], structured matrix decomposition (SMD) 

model [30], multiple instance learning (MIL) model [31], 

non-local deep features (NLDF) model [5], learning to 

promote saliency (LPS) model [32], contour to saliency 

(C2S) model [33], and reverse attention saliency (RAS) 

model [6]. 

Evaluation criteria. To estimate the performance of the 

proposed model with other models, nine evaluation metrics 

are utilized, including:  

1) The true positive rates and false positive rates 

(TPRs-FPRs) curve. / ( )TPR TP TP FN= +  corresponds to 

the ratio of salient pixels which are correctly detected to all 

salient pixels, and / ( )FPR FP FP TN= +  is computed as 

ratio of falsely detected salient pixels to all true non-salient 

pixels, where TP (true positive) and FN (false negative) are 

the sets of correctly detected salient pixels and falsely 

detected non-salient pixels, respectively. FP (false positive) 

and TN (true negative) are the falsely detected salient object 

pixels and correctly detected non-salient pixels, 

respectively. 

2) The precision-recall (PR) curve. / ( )TP TP P FP= +  

is defined as the ratio of correctly detected salient pixels to 

all detected salient pixels, / ( )TP TR P FN= +  is the same 

as TPR, which measures the comprehensiveness of the 

detected salient pixels. 

3) F-measure curve. 
2 2

(1 ) / ( )F P R P Rβ β β= + ⋅ ⋅ +  is 

computed as a weighted harmonic mean of P  and R , 

where 2β  is set to 0.3 to emphasize the effect of P . The 

F-measure curve is created by comparing the ground truth 

with the binary saliency maps which are obtained by varying 

the threshold to determine whether a pixel belongs to salient 

object. 

4) The area under the curve (AUC) score, which is 

defined as the percentage of areas under the TPRs-FPRs 

curve, it gives an intuitive indication of how well a saliency 

map predicts the true salient objects. 

5) The mean absolute error (MAE) score, which is 

computed as the average absolute difference between the 

resulting saliency map MS  and the ground truth TG  as: 

MAE mean(| |)M TS G= − . The smaller MAE value 

indicates higher similarity between MS  and TG . 

6) The weighted F-measure (WF) score [34], which is 

calculated by introducing a weighted P  to measure the 

exactness and a weighted R  to measure the completeness. 

7) The overlapping ratio (OR) score,  which is defined as 

the ratio of overlapping salient pixels between the binary 

saliency map BMS  and ground truth TG via: 

OR | | / | |BM T BM TS G S G= ∩ ∪ . The OR score considers 

the completeness of salient pixels and the correctness of 

non-salient pixels. 

TPRs-FPRs curves 

 

     

PR curves 

      

F-measure curves 

      

(a) MSRA (b) DUT-OMRON (c) PASCAL-S (d) HKU-IS (e) DUTS (f) NI 

Figure 4. Performance comparisons of the proposed model (the red solid line) with other state-of-the-art saliency models on six datasets.



 

 

8) The structure-measure (S-M) score, which measures 

the region-aware and object-aware structural similarity 

between the saliency map MS  and ground truth TG  [35]. 

9) The average execution time per image (in second). The 

experiments of the first five traditional models are executed 

using MATLAB software on an Intel Core i5-5250 CPU 

(1.6GHz) PC with 8 GB RAM. The last four deep learning 

models and the proposed model are tested on a NVIDIA 

TITAN Xp GPU and Intel Xeon E5-2620 CPU (2.4GHz) 

processor with 64 GB RAM. 

Baseline methods. To demonstrate the advantages of our 

configuration and evaluate the contribution of different 

terms, three baselines are designed to train the saliency 

model respectively. 1) Baseline 1, which only use the full 

convolutional encoder-decoder network for salient object 

detection by incorporating the local and global cues. We 

remove the GCM and BRM from our model and simply 

train a VGG16-based network to generate saliency maps. 

This baseline test will reflect the saliency performance 

without GCM and BRM. 2) Baseline 2, which embeds 

GCM into the base network and does not take the boundary 

refinement into account. This baseline can represent the 

importance of GCM to locate the true salient object. 3) 

Baseline 3, which embeds BRM into the base network and 

does not include the global convolutional module. This 

baseline is used to show the benefit of BRM to the saliency 

detection result. 

The performance of three baselines is compared with the 

proposed model. We train the three baselines and our model 

on MSRA-B dataset. The training set contains 2500 images 

Table 1. Quantitative results of various saliency models on six datasets. The best three scores are shown in red, blue and green colors, 

respectively. The up-arrow ↑ indicates the lager value achieved, the better performance is. The down-arrow ↓ has the opposite meaning. 
 

Dataset Criteria 
Traditional hand-crafted saliency models Deep learning saliency models The proposed saliency model 

CA SO BL SMD MIL NLDF LPS C2S RAS Baseline1 Baseline2 Baseline3 OURS

(a
) 

M
S

R
A

-B
 

AUC↑ 0.7635 0.7687 0.7861 0.8017 0.7943 0.8486 0.8638 0.8584 0.8737 0.8655 0.8671 0.8565 0.8746

MAE↓ 0.2546 0.1780 0.2391 0.1686 0.1842 0.0675 0.0422 0.0662 0.0311 0.0544 0.0610 0.0644 0.0373

WF↑ 0.3492 0.4678 0.4319 0.5435 0.4770 0.8246 0.8786 0.8309 0.9149 0.8482 0.8335 0.8262 0.8904

OR↑ 0.3740 0.4765 0.5333 0.5825 0.6080 0.7610 0.8428 0.7966 0.8883 0.8195 0.7921 0.7969 0.8599

S-M↑ 0.5967 0.6644 0.6822 0.7496 0.6952 0.8687 0.9081 0.8744 0.9359 0.8953 0.8905 0.8704 0.9196

TIME↓ 66.6317 0.5899 34.4369 6.9224 110.019 0.0444 0.0413 0.0327 0.0390 0.0602 0.0689 0.1421 0.1523

(b
) 

D
U

T
-O

M
R

O
N

 AUC↑ 0.6510 0.7147 0.7175 0.6794 0.6790 0.7480 0.8513 0.7985 0.7762 0.8138 0.7924 0.7850 0.8427

MAE↓ 0.3253 0.2118 0.2639 0.2544 0.2544 0.1459 0.0364 0.1168 0.0962 0.1216 0.1078 0.1143 0.0573

WF↑ 0.3025 0.4793 0.4534 0.4401 0.4429 0.6590 0.9107 0.7661 0.7639 0.7100 0.7374 0.7241 0.8701

OR↑ 0.2401 0.4679 0.4275 0.4038 0.4213 0.5917 0.8842 0.7151 0.6997 0.6625 0.6946 0.6872 0.8411

S-M↑ 0.5032 0.6487 0.6556 0.6238 0.6214 0.7475 0.9300 0.8250 0.8116 0.8032 0.8130 0.8040 0.9082

TIME↓ 61.0279 0.5512 25.6283 5.9705 110.360 0.0454 0.0420 0.0352 0.0354 0.0600 0.0694 0.1432 0.1507

(c
) 

P
A

S
C

A
L

-S
 AUC↑ 0.7251 0.7371 0.7486 0.7421 0.7368 0.8239 0.8500 0.8435 0.8010 0.8353 0.8487 0.8421 0.8517

MAE↓ 0.2726 0.1866 0.2272 0.1852 0.2045 0.0640 0.0413 0.0704 0.0984 0.0701 0.0506 0.0562 0.0356

WF↑ 0.3522 0.5464 0.4840 0.5368 0.5102 0.8375 0.8989 0.8441 0.7865 0.8264 0.8747 0.8545 0.9090

OR↑ 0.2912 0.5300 0.5305 0.5411 0.5103 0.7750 0.8757 0.8168 0.6956 0.7867 0.8415 0.8275 0.8886

S-M↑ 0.5882 0.6924 0.7011 0.6955 0.6724 0.8683 0.9146 0.8799 0.8160 0.8709 0.9077 0.8937 0.9322

TIME↓ 73.7946 1.0266 35.7323 8.7189 169.560 0.0449 0.0431 0.0343 0.0477 0.0603 0.0692 0.1433 0.1509

(d
) 

H
K

U
-I

S
 

AUC↑ 0.7608 0.8126 0.8177 0.8036 0.8199 0.7589 0.8505 0.8099 0.8013 0.7917 0.8081 0.7922 0.8509

MAE↓ 0.2900 0.1615 0.2245 0.1687 0.1665 0.1025 0.0281 0.0794 0.0615 0.0875 0.0717 0.0892 0.0432

WF↑ 0.3767 0.5677 0.4850 0.5758 0.5655 0.7030 0.9231 0.7878 0.8086 0.7693 0.7881 0.7705 0.8988

OR↑ 0.2853 0.5324 0.4787 0.5652 0.5765 0.6216 0.7955 0.7054 0.7534 0.7158 0.7388 0.7017 0.8399

S-M↑ 0.5859 0.7448 0.7232 0.7522 0.7734 0.7759 0.9365 0.8378 0.8585 0.8274 0.8547 0.8194 0.9250

TIME↓ 60.0477 0.5421 22.9599 7.2008 103.780 0.0441 0.0417 0.0340 0.0375 0.0601 0.0683 0.1428 0.1496

(e
) 

D
U

T
S

 

AUC↑ 0.7201 0.7123 0.7747 0.7489 0.7403 0.7913 0.8128 0.8117 0.7754 0.8101 0.8015 0.8070 0.8130

MAE↓ 0.3307 0.2438 0.2636 0.2386 0.2465 0.1096 0.0263 0.0817 0.1211 0.0905 0.1037 0.0828 0.0595

WF↑ 0.3208 0.4322 0.4660 0.4778 0.4433 0.7412 0.9203 0.8386 0.7390 0.7852 0.7740 0.7922 0.8521

OR↑ 0.2559 0.3709 0.3966 0.3647 0.3713 0.5518 0.5911 0.5918 0.5747 0.5361 0.5097 0.5425 0.5974

S-M↑ 0.5202 0.5821 0.6514 0.6490 0.6127 0.7899 0.9082 0.8472 0.7917 0.8364 0.8170 0.8477 0.8761

TIME↓ 85.6488 0.5493 31.8590 5.4786 131.010 0.0444 0.0418 0.0344 0.0362 0.0604 0.0693 0.1435 0.1516

(f
) 

N
I 

AUC↑ 0.7470 0.7730 0.8224 0.7784 0.7856 0.7677 0.8744 0.8435 0.7422 0.8336 0.8407 0.8251 0.8711

MAE↓ 0.2002 0.0851 0.1569 0.0923 0.1075 0.1030 0.0372 0.0237 0.1057 0.0791 0.0739 0.0703 0.0297

WF↑ 0.3461 0.7059 0.5513 0.7240 0.7126 0.6659 0.8916 0.9005 0.6916 0.7668 0.7772 0.7678 0.9219

OR↑ 0.4860 0.6905 0.6741 0.6659 0.7352 0.6241 0.8807 0.8778 0.5976 0.7637 0.7896 0.7661 0.9168

S-M↑ 0.5624 0.7804 0.7681 0.7873 0.7876 0.7584 0.9257 0.9285 0.7330 0.8553 0.8638 0.8394 0.9519

TIME↓ 95.8000 2.4464 29.7269 11.8980 437.993 0.0439 0.0528 0.0342 0.0704 0.0608 0.0687 0.1408 0.1510



 

 

and the validation set contains 500 images, which are 

combined to train our four models. For the proposed model, 

it takes about eight hours to finish the whole training 

procedure for 10 epochs. The trained model was used to 

obtain saliency maps of all the six datasets. In comparison, 

the training sets of NLDF and RAS models are same as us, 

the training sets of LPS and C2S models contain 10K and 

30K images, respectively. 

4.2. Experimental Analysis 

The proposed saliency model is compared with the 

mentioned nine state-of-the-art models on the six datasets in 

terms of nine metrics. The quantitative comparison results 

are demonstrated in Fig. 4 and Table 1, which show that the 

proposed model achieves the best or second best 

performance in most cases, since our saliency maps are 

much closer to the ground truth. Because of our local-global 

strategy, the salient objects have high contrast between the 

background. The GCM and BRM also refine the structure 

and boundary information effects of the salient regions. 

Thus, our model is efficient to the salient object detection 

task in low contrast images. 

On MSRA-B dataset (Fig. 4(a) and Table 1(a)), most 

images have single object and simple background, the 

proposed model obtains the best performance on 

TPRs-FPRs curve and AUC score, while RAS model 

performs the best in term of other metrics (except Time). 

Our Baseline 2 is superior, which achieves the second best 

AUC score. 

On DUT-OMRON dataset (Fig. 4(b) and Table 1(b)), the 

images have large complexity and diversity, which leads to 

poor performance of all the models in comparison with 

MSRA-B. The proposed model performs the second best in 

terms of all the metrics, with a small gap to best results of 

LPS model. This is because LPS takes a large number of 

images (three times over ours) as training to improve its 

robustness. Our Baseline 1 can achieve comparable 

performance on AUC score. 

On PASCAL-S dataset (Fig. 4(c) and Table 1(c)), the 

proposed model has competitive performance compared 

with other models, which performs the best in terms of all 

the metrics (except Time). Beyond that, our Baseline 2 

ranks the third on these criteria. 

On HKU-IS and DUTS datasets ((d) and (e) of Fig. 4 and 

Table 1), most of the images have relative complex 

background, the proposed model achieves the best 

performance on TPRs-FPRs, AUC, and OR metrics. 

Besides, the PR curve, F-measure curve, MAE score, WF 

score and S-M score of our model rank the second, which 

are slighter than the best results obtained by LPS model. 

Our Baseline 3 ranks the third in terms of S-M score on 

DUTS dataset. 

On NI dataset (Fig. 4(f) and Table 1(f)), the proposed 

model obtains the best results on PR curve, F-measure curve, 

WF score, OR score and S-M score. In terms of AUC and 

MAE scores, our model achieves the second best, which 

only have small differences (0.0033 and 0.006) to the best 

results of LPS and C2S models. Specifically, the C2S model 

takes about 0.03 second to generate a saliency map, which is 

the most efficient one on the six datasets. 

These objective performance comparisons indicate that 

the method has strong potential in detecting the most salient 

object of complex environments. Visual comparisons of 

saliency maps using different baselines on NI dataset are 

provided in Fig. 5. It can be seen that the salient objects of 

Baseline 2 have accurate shape than Baseline 1, meanwhile 

the Baseline 3 preserves the smooth boundaries of the 

salient objects. Comparing with the three Baselines, the 

proposed model accurately detects the complete salient 

objects and produces coherent boundaries, it can be learnt 

that the local-global measure, GCM and BRM bring lots of 

advantages to the saliency results. 
 

  

  

  

  

(a) Images (b) GT (c) L-G (d)+GCM (e)+BRM (f) Output

Figure 5. Saliency results of NI dataset. (a) input images, (b) 

ground truth, (c) Baseline 1, which only computes the local- 

global saliency, (d) Baseline 2, which embeds GCM into the 

network, (e) Baseline 3, which embeds BRM into the network, (f) 

the saliency maps of the proposed model. 
 

The qualitative comparisons between the proposed 

model and other saliency models on six datasets are shown 

in Fig. 6. It can be seen that the deep learning based models 

consistently outperform the traditional models, the saliency 

maps of deep models are closer to the ground truth. For the 

images of simple scenarios, most approaches can achieve 

desirable results, while the proposed model has the best 

result which suppresses most of the background. For the 

complex images, some competing deep learning methods 



 

 

fail to identify the entire salient object. By contrast, our 

model can pop out the whole salient object accurately. For 

the low contrast images, most models can hardly locate the 

right salient objects, while the proposed model captures the 

true salient regions successfully. These results illustrate the 

effectiveness and robustness of the proposed salient object 

detection network in different challenging scenes. 

5. Conclusions 

In this paper, a deep fully convolutional network is 

proposed to integrate local and global features for salient 

object detection in low contrast images. A global 

convolutional module and a boundary refinement module 

are developed and embedded into our base network to 

gradually generate finer details and completeness boundary 

information. As a result, more discriminative features can 

be obtained for more accurate salient object detection. 

Experimental results on six datasets show that the proposed 

model outperforms the state-of-the-art approaches and has 

great potential for other computer vision tasks in low 

contrast images. 
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Figure 6. Visual comparisons of saliency maps produced by various models on six datasets. 
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