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Abstract

In unsupervised deep domain adaptation (DA), the use

of adversarial domain classifiers is popular in learning a

shared feature space which reduces the distributions gap for

a pair of source (with training data) and target (with only

test data) domains. In the new space, a classifier trained on

source training data is expected to generalize well for the

target domain samples.

We hypothesize that such a feature space obtained by

aligning the domains globally ignores the category level

feature distributions. This, in turn, leads to erroneous map-

ping for fine-grained classes. Besides, the discriminative-

ness of the shared space is not explicitly addressed. In or-

der to resolve both the issues, we propose a novel adver-

sarial approach which judiciously refines the space learned

by the domain classifier by incorporating class level infor-

mation. We follow an ensemble classifiers based approach

to model the source domain and introduce a novel consis-

tency constrain on the classifier’s outcomes when evalu-

ated on a held-out set of target domain samples. We fur-

ther leverage the ensemble learning strategy during the in-

ference, as opposed to the existing single classifier based

methods. We find that our deep DA model is capable of pro-

ducing a compact and better domain aligned feature space.

Experimental results obtained on the Office-Home, Office-

CalTech, MNIST-USPS, and a remote sensing dataset con-

firm the superiority of the proposed approach.

1. Introduction

Traditional classifier models inherently assume that the

probability distributions governing the training and test

samples are consistent in nature, following the probably

approximately correct (PAC) assumptions of the statistical

learning theory [38]. However, such a restriction is difficult

to satisfy in practise considering the inherent ambiguities

in capturing, in our case visual data, from diverse sources.

Besides, it is non-trivial to annotate training samples man-

ually for all the sources separately since the capability of

manual labeling is unlikely to match the rapid data gener-

ation rate. This prompts for the exploration of the notion

of transferring supervised inference models trained on one

source to others with lack of annotations. To this end, the

paradigm of unsupervised DA [41, 34, 8, 35] is highly ex-

plored which is defined as follows: Given a source domain

S equipped with ample amount of labeled training data, the

task is to learn a classifier which will also perform well for

test samples obtained from a related but different target do-

main T .

Amongst different approaches towards solving DA, sub-

space learning techniques [24] are of particular interest

since they directly learn a shared feature space for both

the domains where the marginal distributions of the cross-

domain data can be related to. In this regard, several ad-hoc

feature transformation based strategies are present in the

literature which have shown impressive performance with

hand-crafted features [26]. Subsequently, there have been

numerous endeavors with the deep learning models which

perform the task of domain invariant feature learning di-

rectly from the data within an end-to-end framework [32].

While some of the approaches in this regard propose to re-

duce the domain difference in terms of the minimization of

some higher-order statistics between S and T , the notion of

domain classification [8] is also a popular paradigm. It aims

at learning a common subspace where the classifier confu-

sion is constrained to be maximized through an adversarial

training process. More evidently, assuming that the labels

of the samples from S and T be denoted by 0 and 1, re-

spectively, the domain classifier is trained to maximize a

typical cross-entropy type loss in a multi-layer neural net-

work setup. This, in essence, enforces the learned features

through a generator/feature extractor sub-network to be in-

dependent of the domains. Focusing on the ultimate goal of

domain independent data classification, several techniques

concurrently model a source specific classifier in this sub-

space. Since the domain classifier aligns the domains, it is

assumed that the trained source classifier is capable of clas-

sifying the target samples highly accurately [18, 35].

However, this idea has two potential drawbacks: i) it

does not explicitly guarantee discriminativeness in the ob-

tained features: although a source specific classifier is



trained to look after the between class separation, the no-

tion of intra-class compactness is largely overlooked, and

ii) the correlation between the domains at a finer level is not

carefully explored: the domain classifier does not explicitly

incorporate the class level information while globally align-

ing S and T . As a consequence, such an approach largely

fails to propagate the complicated dependencies among the

classes from the original to the learned feature space.

Inspired by the aforementioned discussions, we propose

the following extensions to the said adversarial deep domain

classification based unsupervised DA model: i) instead of

modeling one source classifier with all the training sam-

ples, we consider to deploy a bagging based ensemble clas-

sifiers trained on mutually-exclusive training subsets. This

committee of classifiers is undoubtedly a better choice to

model the visual classes considering their complex distri-

butions and a decision fusion in this regard is expected to

assure better generalization. Note that our inference in T is

also guided by the ensemble voting strategy. ii) At the same

time, we deploy a subset of target domain samples for the

class level domain alignment purpose. Particularly, we con-

sider the responses of all the source classifiers on these tar-

get data and specifically demand these response vectors to

be highly similar during the course of training. We term the

respective loss as the logit homogeneity loss for target sam-

ples. This desiderata has two-fold advantages: i) in order to

ensure consistency in the classifier committee’s outputs on

the held-out target set, the feature extractor sub-network im-

plicitly enforces the samples to be class-wise concentrated,

and ii) while the domain classifier aligns S and T globally,

the proposed simultaneous class scale alignment of the tar-

get samples entails the notion of semantic consistency be-

tween the domains. As a whole, we follow an alternate opti-

mization strategy to ensure that the feature space learned by

our improved domain classifier to be more robust and com-

pact where the global domain alignment is subsequently

fine-tuned locally using class distributions. We summarize

the noteworthy contributions of the work in the following:

i) We propose a novel adversarial loss driven unsuper-

vised deep DA framework which efficiently exploits the

class level information along with the domain classification

loss to better associate both the domains. In this respect, we

wisely deploy the notion of ensemble learning within the

DA framework. ii) We theoretically validate our model with

respect to established generalization bounds. iii) Experi-

mentally, we find that our model performs better or com-

mensurately with recent DA approaches on the challenging

Office-Home, Office-CalTech, MNIST-USPS, and a remote

sensing dataset.

2. Related works

Broadly, the existing techniques for DA rely on re-

weighting the source training samples to distinctively re-

flect their counterparts in the target distributions [27] or ob-

taining a transformation in a much lower-dimensional man-

ifold that makes the target features indistinguishable from

the source. Notice that the instance re-weighting based ap-

proaches are considered to be a rather restricted form of

domain-shift or sample selection bias and cannot be gener-

alized to critical scenarios. On the other hand, the Geodesic

distance based methods [10, 11] consider the domains to

be points on a typical Grassmannian manifold and bridge

the domain gap by projecting S and T on the points along

the geodesic path or find a closed form linear map which

projects samples from S onto the distributions of T . Like-

wise, CORAL [31] minimizes the domain-shift in terms of

the Euclidean distance between the second-order statistics

governing S and T whereas Log-CORAL [42] considers

their Log-Euclidean distance on a Riemannian manifold. A

detailed survey of DA for visual recognition can be obtained

in [41, 26].

The deep neural network based approaches, on the other

hand, learn domain invariant features using supervised

models, deep auto-encoders [5], and recently generative ad-

versarial networks (GAN) [18, 35]. As aforementioned,

these methods are designed to minimize a classification loss

while optimizing a measure for ensuring domain consis-

tency. An extension of CORAL is deep CORAL [33] which

integrates a convolutional network (CNN) based feature ex-

tractor in the CORAL framework for end-to-end learning.

As opposed to this type of loss, several methods have de-

ployed the maximum mean discrepancy (MMD) for com-

paring distributions in Hilbert space: DDC [36], DAN [20].

Other competing methods are in favor of adversarial loss

functions to reduce the domain difference: learning a rep-

resentation space that is simultaneously discriminative for

source labels while being insensitive to individual domain

properties. The gradient reversal algorithm (RevGrad) [8]

is of particular interest in this regard: it treats the paradigm

of domain invariant feature learning as a binary classifica-

tion problem and directly maximizes the classification loss

by reversing the gradient. ADDA [35] learns discrimina-

tive representations by exploring the labels of the source

domain and training an inverted label-GAN for domain con-

fusion. Besides, some of the recent techniques rigorously

incorporate the generative models (mostly GANs) in the

feature learning process: coupled-GAN [19], duplex-GAN

[15], adversarial feature augmentation [40]. Cycle-GAN

[43] endorses a cycle consistency loss to model the map-

ping S → T → S using identical functions. Theoretically

speaking, given the three factors provided by [1] for bound-

ing the adaptation loss in a typical DA framework, all these

adversarial adaptation methods focus on reducing the do-

main divergence as reducing the joint generalization error

for both S and T is intrinsically hard.

Instead of dealing with the binary domain classifier, a



few very recent techniques [29, 23] deploy the idea of

maximizing the disagreement between a pair of source do-

main classifiers on target samples to guide the feature ex-

tractor in reducing the domain gap. Ideally, the classifier

pair’s disagreement highlights potentially confusing target

domain samples and the feature extractor learns better rep-

resentations for them. However, such techniques may fail

for partially overlapping target classes as both the source

classifier’s outputs are likely to signify mis-classifications

and the models fail to identify and correct the same. As

a consequence, the feature space may not turn out to be

highly overlapping between the domains as desired. As op-

posed to them, we aim at alternately maximizing the domain

classifier’s error (for obtaining the domain invariant space

by global domain alignment) and minimizing the average

pairwise difference between the classifier committee’s re-

sponses on held-out target set (for domain realignment ac-

cording to the class distributions in the domain invariant

space) in an end-to-end model. Hence, we ensure a domain

independent feature space first and subsequently revamp the

space to be semantically coherent. Besides, we distill the

advantages of ensemble learning effectively in our model.

3. Method

3.1. Preliminaries

Let XS = {xS
i , y

S
i }

NS

i=1 on XS ⊗ Y S denote the train-

ing samples from S where xS
i ∈ XS can be images or de-

scriptors extracted from the images each denoting one of the

ySi ∈ Y S = {1, 2, . . . ,M} visual categories. In contrast,

X
T = {xT

j }
NT

j=1 on XT represents the set of unlabeled test

samples from T . We assume that both S and T can be mod-

eled in terms of unknown underlying distributions S and T ,

respectively, with S(XS) 6= T (XT ).
Under this setup, the subspace learning based unsuper-

vised DA paradigm seeks to model a mapping fC : XS →
Y S in a new feature space such that fC performs well in

predicting labels for samples from T . In order to realize

fC , we propose a model with three components: i) a feature

extractor fG with parameters θG: X̃S/T = fG(X
S/T ; θG),

ii) a committee of N source domain classifiers {fS
Cn

}Nn=1

with parameters θCn
: Y S = fS

Cn
(X̃S ; θCn

), iii) a binary

domain classifier fD with parameter set θD. In this re-

spect, let yD ∈ Y D = {0, 1} denote the domain labels

for samples coming from S and T , respectively. Given that,

XD = [XS
HO, X

T
HO] represents a mixture of samples from

the domains with XS
HO ⊆ XS and XT

HO ⊆ XT . The

underlying mapping function can be interpreted as Y D =
fD(X̃D; θD).

On the other hand, we assume that fS
Cn

s are trained on

N non-overlapping subsets {XS
n}

N
n=1 of X

S . Finally for

a given xT
k ∈ XT

HO, we denote the M - dimensional logit

vector corresponding to fS
Cn

by lkn. In the following, we

discuss the training and inference stages of the proposed

model in detail. A depiction of the proposed framework

can be found in Fig.1.

3.2. Training & inference

As already mentioned briefly, we optimize a novel multi-

task loss function for obtaining [θG, {θCn
}Nn=1, θD]. In par-

ticular, we are interested in i) a cross-entropy type domain

classification loss for fD which is to be maximized given

X̃D, ii) N separate cross-entropy losses for fS
Cn

s which are

deemed to be minimized given the learned representations

of XS
ns, iii) mean pairwise difference between the logits ob-

tained from fS
Cn

s for X̃T
HO which is also to be minimized.

iv) An additional norm induced constraint on X̃D which is

simultaneously minimized in order to control any unwanted

feature space diversion.

Domain classifier loss: The prime motivation behind

maximizing the cross-entropy loss for fD is to obtain the

coarse level domain invariant feature space through the

modeling of fG which, to a certain extent, satisfies the re-

quirement of S ≈ T . In order to obtain that, the corre-

sponding loss measure, given (XD, Y D), can be mentioned

as:

LD(θD, θG) = −Ex̃m∈X̃S

HO

log(fD(x̃m))

− Ex̃m∈X̃T

HO

log(1− fD(x̃m))

(1)

At the same time, we penalize any undesirable variation

of the projected feature embeddings by explicitly control-

ling the feature norm. This can act as a regularizer on the

obtained features:

LR(θG) = ||X̃D||2F (2)

Source classifier loss: fS
Cn

s are essentially multi-class

classifiers which produce the M -dimensional class proba-

bility distributions given X̃S
n s. Optimizing these classifiers

on S ensures better between-class separation in the learned

feature space. For the nth classifier, we denote the respec-

tive softmax cross-entropy loss measure by:

LS
n(θG, θCn

) = −E(x̃m,ym)∈XS
n

∑

ym∈ym,pm∈pm

ym log(pm)

(3)

where pm denotes the softmax class distributions vector

for a given x̃m and ym represents its label in the one-hot

format. As mentioned, this is a bagging based ensemble

model where the N classifiers specialize on ideally non-

overlapping areas of the feature space. Additionally, the

classifiers play a major role in better aligning S and T (see

below).

Logit homogeneity loss for the held-out target set: Let

us recapitulate that the domain classifier focuses on orient-

ing the entire data distributions of S and T which does not



Figure 1: The proposed unsupervised DA framework without back-propagation directions. The variables are mentioned in

Section 3.1.

comply to the individual class properties. This is impor-

tant given the unconstrained multi-modal nature of the vi-

sual categories where several classes may overlap in the fea-

ture space. To this end, the proposed logit homogeneity loss

helps in obtaining a compact domain invariant feature space

considering these aspects judiciously.

Given unlabeled XT
HO from T , we propagate the re-

spective learned embeddings X̃T
HO through all the source-

centric classifiers fS
Cn

s simultaneously and record their logit

outcomes. Remember that the logits represent real-valued

unnormalized class scores for the samples. We consider

logits over the softmax class assignment probabilities here

in order to prevent any trivial solution that may occur with

typically very small softmax values. With this background

discussion, we first define the logit homogeneity loss and

further explain how it resolves the aforesaid bottlenecks of

the standard approach. Given the logit representations lkn1
and lkn2 for a given x̃T

k obtained from two different clas-

sifiers of the ensemble where n1, n2 ∈ {1, 2, . . . , N} and

n1 6= n2, the concerned loss measure is:

LT (θG, {θCn
}Nn=1) = Ex̃T

k
∈X̃T

HO

1

N

∑

n1,n2

||lkn1 − lkn2||
2
F

(4)

Now focusing on the main implications of reducing LT

on the domain invariant space, it can be observed that:

• Ideally, we enforce the class score distributions of

fS
Cn

s on T to be similar along with reducing their clas-

sification errors on S (LS
ns) in parallel. It signifies

the fact that fG, in turn, is directed to produce highly

concentrated class-wise embeddings for both the do-

mains in the learned feature space to assure the classi-

fier committee’s consistency.

• Specifically from the point of view of T , for samples

belonging to a given class with high confidence, it is

expected that the outcomes of the trained fS
Cn

s in terms

of the class assignment scores should largely coincide.

In contrast, this may not be the case for potentially

confusing samples. Optimizing LT in the learned fea-

ture space in this regard basically finds a better map-

ping for such data items.

Optimization: We follow the standard alternate gradi-

ent descent (GD) based optimization strategy to obtain the

network parameters. The following two sub-problems are

optimized simultaneously until convergence where the λs

denote the term weights. Specifically notice that we per-

form the class-wise domain alignment in the globally do-

main confused space. Additionally, we enforce to learn the

θCn
s on S and T together for better semantic association

between domains. We obtain θD in Eq.5 practically by ap-

plying the RevGrad algorithm [8] which inserts a gradient

reversal layer between the shared feature space and domain

classifier. Standard version of GD is used in the other cases.

min
θG

max
θD

λ1LR − λ2LD (5)

min
θG,{θCn

}N

n=1

N∑

n=1

LS
n + λ3LT (6)

Inference: During testing, we follow the traditional de-

cision fusion approach over the outputs of the source clas-

sifiers. Specifically, the target samples from X
T are prop-

agated through the feature extractor as well as the classi-

fiers and the logit scores for the classes are recorded sep-

arately for the classifiers. A max-pooling is subsequently

performed to fuse the outcomes of the classifiers on which

the softmax operation is carried out. Finally, the class with

the highest softmax probability is assigned to a given target

sample.

3.3. Theoretical insights

In this section, we draw a connection between the pro-

posed method and the DA theory introduced in [1] which

relates the error bounds on S (RS(h)) and T (RT (h)), re-

spectively, for a given hypothesis h ∈ H. Precisely, there

exist two different distance measures to quantify the gap be-

tween S and T : i) DH∆H(S, T ) [1], which can be inferred



as the discrepancy between the quality of a classifier on the

two domains, and ii) DH(S, T ) for measuring the domain

divergence [2]. Both these distance measures can be com-

pared as follows:

RT (h) ≤ RS(h)+DH∆H(S, T ) + α

≤ RS(h) +DH(S, T ) + α
(7)

where α defines the shared error of the optimum joint

hypothesis. Since DH upper bounds the H∆H distance,

we find it intuitive to analyze the stability of our method

in terms of the H distance. The actual functional form for

DH(S, T ) can be put forward as:

DH(S, T ) = 2 sup
h∈H

|[ E
xS∈S

I(h(xS) 6= 1)−

E
xT∈T

I(h(xT) 6= 1)]|
(8)

In reality, DH highlights empirically the error of the do-

main classifier, which needs to be maximized in order to ob-

tain the domain invariant feature space. In our case, the pro-

posed framework ensures better domain alignment in terms

of a joint coarse to fine level correspondence focusing on

both the global and class level agreements. Precisely, DH

turns out to be:

DH = min
θG

max
θD

λ3LT − λ2LD (9)

Nonetheless, it is ensured that a good representation

space obtains low values for both the domain specific clas-

sifier as well as DH simultaneously. Notice that our model

uses a committee of classifiers in the source domain and the

classifier combination strategy is adopted during inference

as well. Since the generalization bound of an ensemble clas-

sifiers is always upper bounded by the standalone hypoth-

esis, it means the domain specific error terms are logically

minimized in our case thus providing a tighter and better

interpretation of RT .

4. Experiments

We detail the quantitative and qualitative evaluations to

validate the proposed method in numerous ways in this sec-

tion.

4.1. Dataset

We carry out experiments in three different scenarios:

1) Object recognition: We consider the Office-Home [39]

and the Office-CalTech [10] dataset for this purpose. The

Office-Home dataset consists of four visual domains, each

consisting of images from 65 object categories which re-

sults in a total of 15, 500 images. In particular, the domains

include, Art: (A), Clipart: (C), Product: (P), and Real

world: (Rw), respectively. We consider all possible com-

binations: A ↔ C, A ↔ P, A ↔ Rw, C ↔ P, C ↔ Rw,

Figure 2: A false color composite (FCC) of the study area,

ground-truth sites for S and T from spatially disjoint areas,

and the land-cover classes for Botswana dataset.

and P ↔ Rw. On the other hand, Office-CalTech is created

by selecting 10 shared categories between Office-31 [28]

(Amazon: (A), Webcam: (W), and DSLR: (D)) and CalTech-

256 (C). It allows 12 possible transfer tasks given the four

domains: A ↔ W,A ↔ D,D ↔ W,C ↔ W,C ↔
D,C ↔ A. 2) Digit recognition: We deal with the MNIST

and USPS dataset which contain white digits on a solid

black background. We consider two different testing pro-

tocols: the first one (P1) consists of sampling 2000 MNIST

and 1800 USPS images while the second one (P2) uses the

full MNIST and USPS training-test sets as followed by [3],

respectively [20, 17]. We test on MNIST ↔ USPS for P1

and MNIST → USPS for P2. The USPS images are re-

sized to 28 × 28 (shape of MNIST images) beforehand to

maintain consistency. 3) Remote sensing image classifica-

tion: Finally, we consider the important problem of hyper-

spectral remote sensing (RS) image pixel classification for

a pair of spatially disjoint geographical areas. In particular,

we deal with the benchmark Botswana dataset [12] (Fig.2)

acquired by the Hyperion sensor of the EO-1 satellite over a

1476× 256 pixel study area located at the Okavango Delta,

Botswana on May, 2001. Source (2538 pixels) and target

(1252 pixels) domain samples are collected from two spa-

tially disjoint sub-areas within the study area from 14 dif-

ferent land-cover classes. 10 out of original 220 bands se-

lected by an ad-hoc feature selection strategy [4] are finally

considered to represent the pixels.

4.2. Design protocols

Office-Home and Office-CalTech: We rely on the

source domain fine-tuned Imagenet pre-trained Resnet-50

[13] features extracted from the last feature layer (pool5).

All the necessary pre-processing stages are carried out

on the images beforehand. Subsequently, fG consists of

two fully-connected (fc) layers coupled with relu(·) non-



linearity and dropout units and having dimensions 1000
and 128, respectively. Batch-normalization is used after

each fc layer.

MNIST and USPS: A common CNN based feature ex-

tractor is used for both these dataset. The CNN struc-

ture followed is: (conv1 → max-pool1) → (conv2 →
max-pool2) → fc1 → fc2 and the final feature dimen-

sions are 128. Batch-normalization and relu non-linearity

are used after the blocks. The fc layers are also followed by

dropout units.

RS dataset: The spectral bands are used as the input

features. Subsequently, two over-complete fully-connected

layers endowed with batch-normalization and relu non-

linearity are used for constructing fG with the final feature

space having 20 dimensions.

In all cases, the considered classifiers are represented by

fc layers with the required number of output units. All the

classifiers are trained with the standard cross-entropy loss.

Training protocols: Training is carried out using the

Adam optimizer [16] with a learning rate of 0.001 and a

batch size of 20. We report the average overall accuracy

as the performance measure on the target domain. In or-

der to select the λs, we find that too large or too small λ2,

λ3 (corresponding to the domain classifier and the target

logit-homogeneity loss) lead to poor classification perfor-

mance and henceforth we set λ2 = λ3 = 1. Likewise,

we consider different values of λ1 in the range [1, 0.0001]
for all the dataset and report the best performance. XS

HO

and XT
HO are constructed using the entire X

S and X
T . Fi-

nally, we report the results considering two source classi-

fiers for the ensemble, but have done some sensitivity anal-

ysis, apart from other factors, on the number of classifiers

for MNIST → USPS (P1) (Section 4.4).

4.3. Comparative analysis 1

Office-Home: Table 1 details the comparative perfor-

mance analysis of the proposed approach with respect to

a number of recent DA techniques. All the methods are

evaluated on the same initial Resnet-50 features and iden-

tical evaluation protocol is followed. In the trivial case, it

is found that when the source classifier is directly applied

to the target domain, a mean classification performance of

46.1% can be obtained. Subsequently, the standard adver-

sarial learning based methods are tested which produce the

mean average accuracy in the range between: DAN- 56.3%
and JAN [22]-58.3%. The CDAN method [21], on the other

hand, incorporates discriminative class information in the

adversarial training process and outputs a mean classifica-

tion performance of 63.8%. Our method, which is also

based on incorporating the idea of discriminative class in-

formation within the adversarial training process using en-

1Results are taken from the respective papers

semble learning, reports a performance of 64.3%, outper-

forming the rests.

Office-CalTech: Similar to Office-Home, we compare

the performance of our technique on Office-CalTech with

four techniques where Resnet-50 features are used (Table

2). In the base scenario, a multi-class support vector ma-

chine (SVM) trained on the source domain is applied to the

target data without adaptation which produces an accuracy

of 91.3%. Subsequently, two ad-hoc techniques are also

deployed: subspace alignment (SA) [31] where a mapping

function is modeled to project the source domain samples to

the target domain and CORAL [7], respectively and we find

CORAL outperforms SA slightly by 0.9%. The very recent

RWA [37] employs the idea of finding stable labels in the

target and pose it as a optimum random walk problem and

it produces a mean accuracy of 96.3%. We are better than

RWA in eight out of twelve cases and overall we further

enhance the average classification performance by 0.5% as

compared to RWA, thus obtaining the new state-of-art.

MNIST-USPS: As already mentioned, we consider two

experimental scenarios P1 and P2 for MNIST and USPS.

Apart from DANN, ADDA and DSN, here we consider six

new techniques for comparison purpose all of which are

based on adversarial training. It is found that the use of dis-

criminative class information indeed helps the training pro-

cess for all the experimental cases (Table 3). Moreover, the

performance of these methods are found to be highly similar

to each other. In contrast, we observe that our approach out-

performs the others by at least 0.8% for MNIST → USPS

(P1) and by at least 0.2% for MNIST → USPS (P2) while

providing comparable performance for USPS → MNIST

with ADDA, Generate to adapt and at the same time beat-

ing the others.

RS dataset: Table 4 summarizes the performance com-

parison of our technique with respect to four representative

techniques from the literature. Owing to high overlap be-

tween a number of land-cover classes in the spectral do-

main, none of the techniques are able to produce very high

accuracy in this regard. Precisely, TCA [25], GFK [10], and

SA [31] can produce a maximum of 70% classification rate.

We are able to further extend the same by 7.5% to obtain

an overall classification performance of 77.5%. Finally, we

see that our model outperforms the DANN [9] method by

4.5% in this case.

4.4. Critical discussions

Here we consider the MNIST → USPS (P1) case to

qualitatively assess our model.

Visualization: Fig.3 depict the t-SNE plots for MNIST

and USPS before and after feature adaptation. In this re-

spect, we also highlight the effect of LT . It can be observed

that our model obtains better class overlapping (Fig.3(e))

than the standard scenario (domain confusion + source do-



Method A → C A → P A → Rw C → A C → P C → Rw P → A P → C P → Rw Rw → A Rw → C Rw → P Average

Resnet (source only) [13] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [25] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN [9] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN [22] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN-RM [21] 49.2 64.8 72.9 53.8 62.4 62.9 49.8 48.8 71.5 65.8 56.4 79.2 61.5

CDAN-M [21] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

CDAN [21] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

Ours 53.2 73.1 77.2 55.2 66.2 68.8 52.3 48.5 76.8 67.2 54.4 79.8 64.3

Table 1: A comparative study on Office-Home dataset using Resnet-50 features (in %).

Method A → C A → D A → W C → A C → D C → W D → A D → C D → W W → A W → C W → D Average

Source-SVM 89.4 92.3 89.7 93.6 91.0 87.6 91.2 86.7 97.9 90.5 86 99.9 91.3

SA [31] 88.9 91.8 89.8 93.4 90.3 90.2 91.4 85.8 97.8 90.7 85.4 99.8 91.3

CORAL [7] 89.2 92.2 91.9 94.1 92.0 92.1 94.3 87.7 98.0 92.8 86.7 100.0 92.6

RWA [37] 93.8 98.9 97.8 95.3 99.4 95.9 95.8 93.1 98.4 95.3 92.4 99.9 96.3

Ours 92.8 98.9 97.0 96.0 99.0 97.0 96.5 97.0 99.5 95.5 91.5 100.0 96.8

Table 2: A comparative study on Office-CalTech dataset using Resnet-50 features (in %).

Method MNIST-USPS USPS-MNIST MNIST-USPS (full)

MMD†[20] - - 81.1

DANN†[9] 77.1 73.0 85.1

DSN†[3] 91.3 - -

ADDA [35] 89.4 90.1 -

CoGAN [18] 91.2 89.1 95.7

DIFA [40] 92.3 89.7 96.2

[29] for (n=2) 92.1 90.0 93.1

DupGAN [15] - - 96.0

CY-CADA [14] - - 95.6

Generate to adapt [30] 92.8 90.8 95.3

Ours 93.4 90.3 96.4

Table 3: Performance analysis on the MNIST and USPS

pairs. † indicates that those methods employ a few labeled

target domain samples in their training, as opposed to ours

which only uses source training data (in %).

Method Accuracy

Source only SVM 50.0

TCA [25] 61.0

ITML [6] 70.0

SA [31] 65.0

GFK [10] 70.0

DANN [9] 73.0

Ours 77.5

Table 4: A comparative study on the RS dataset (in %).

main classification) (Fig.3(d)), thanks to the class-wise re-

alignment. Further, observe that the training loss gets satu-

rated within 1000 epochs and by then, our improved domain

classifier accuracy is fixed around 50%, thus indicating high

domain confusion in the learned feature space (Fig.3(a-b)).

Ablation study on the loss: In this regard, we assess

the impact of individual loss term (Fig.4). We call the

model with all the loss as the full model and the model only

with source ensemble classifiers (no adaptation) as the base

model, respectively. The base model provides 76% target

accuracy, which is increased by 10% when LD is included

in base loss. Further, the consideration of LT in (base +

LD) extends this performance significantly by ≥ 5% to pro-

duce an overall performance of 92.7%. Finally, the use of

the feature regularizer loss LR in the full model provides

the best target accuracy of 93.4%. This clearly indicates

the importance LT in better aligning the domains with class

level information. This trend can be observed for all the

dataset. Further note that the LR loss induces an enhance-

ment of 1 − 1.5% for all the cases of Office-Home and

Office-CalTech dataset.

Effect of the number of classifiers in the ensemble:

We analyze the effect of the size of the ensemble by con-

sidering 2 to 4 member classifiers in the committee in our

full model (Fig.4). Note that, while two classifiers are con-

sidered, we observe the performance of the ensemble being

93.4%, which is almost 1% more than the performance of

the individual classifiers. We find that the performance in-

creases upto 94.4% when the number of classifiers are in-

creased to three and four, respectively. Similar trends can be

observed mainly for the large-scale dataset (Office-Home

and MNIST-USPS) where 1− 2% increase in accuracy can

be found with more number of classifiers in the ensemble,

while the classification performance does not change much

for the rather small-scale data (Office-CalTech and the RS

data).

Size of XS and XT
HO: In this regard, we gradually re-

duce the size of source training data and carry out the exper-

iments (Fig.4). Note that the α term Eq.7 inversely depends

on the number of i.i.d samples used during training. As



(a) (b) (c) (d) (e)

Figure 3: (a) Training loss, (b) Accuracy of improved domain classifier, (c) t-SNE of original MNIST, USPS, (d) t-SNE for

the domains trained without LT , (e) t-SNE for full model. 0-1 signifies MNIST and USPS, respectively. The domains are

denoted by green and red in (c)-(e).

Figure 4: Analysis on MNIST → USPS (P1): From left to right: ablation on loss, ensemble size, size of source training set,

size of held-out target subset. Bar colors denote different test scenarios.

expected, the accuracy keeps on decreasing with reduced

training set. For instance, we find the accuracy to be 78%
when only 250 out of the original 2000 samples are used

in X
S while an accuracy of 87% is obtained when 1000

source domain training samples are deployed. Nonetheless,

we consider the entire source domain labeled data as small

sized source samples reduces the generalization capability

of the method considering the overlapping nature of many

of the categories. Similarly, the size of XT
HO matters in ef-

fectively training our model. We consider 10%, 50%, and

100% target domain samples separately in this regard. The

observation is that the final classification performance in-

creases with more target samples in the held-out set, but not

significantly: an increment of 2− 3% between the 10% and

100% case (Figure 4).

Sensitivity to λ1: Given that we find λ1 influences most

the final classification performance among all the individ-

ual loss terms (Equation 5 and 6), we report the classifi-

cation performance for different values of λ1 in the range

[1, 0.0001]. We find that the optimal value of λ1 differs for

different dataset. For MNIST → USPS (P1), we obtain

the best classification performance for λ1 = 0.005. Table 5

depicts the study.

Compactness of the target domain samples: Since the

source domain classifiers focus on producing similar class

distributions scores for the target samples, this, in turn,

makes the target domain samples highly compact. In order

to validate this claim, we find the average class compact-

λ1 1 0.5 0.05 0.005 0.0001

Accuracy (in %) 90.5 90.4 91.2 93.4 92.4

Table 5: Sensitivity analysis of λ1 for MNIST → USPS.

ness over all the categories in terms of the average pairwise

distances among all the samples in each class before and af-

ter the adaptation. Particularly for MNIST → USPS (P1),

we find that the compactness score reduces from 115 to 12,

which confirms that high classwise density of the shared

space. Similar trend can also be observed for all the dataset.

5. Conclusions

We propose a novel adversarial loss measure for unsu-

pervised deep DA. In short, our framework addresses two

shortcomings of the traditional domain classifier based DA:

sub-optimal domain alignment and discrminativeness. In

this regard, we find that the enforcement of an additional

semantic consistency constraint on the target samples by a

classifiers ensemble on source improves the performance of

the domain classifier. Besides, we deploy the notion of en-

semble learning in our framework and extensive experimen-

tal validation confirms the robustness of the approach.
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