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Abstract

We present a probabilistic model for Sketch-Based Im-

age Retrieval (SBIR) where, at retrieval time, we are given

sketches from novel classes, that were not present at train-

ing time. Existing SBIR methods, most of which rely on

learning class-wise correspondences between sketches and

images, typically work well only for previously seen sketch

classes, and result in poor retrieval performance on novel

classes. To address this, we propose a generative model that

learns to generate images, conditioned on a given novel

class sketch. This enables us to reduce the SBIR problem to

a standard image-to-image search problem. Our model is

based on an inverse auto-regressive flow based variational

autoencoder, with a feedback mechanism to ensure robust

image generation. We evaluate our model on two very chal-

lenging datasets, Sketchy, and TU Berlin, with novel train-

test split. The proposed approach significantly outperforms

various baselines on both the datasets.

1. Introduction

The commonly used approaches to search for an image

from a database of images are: (1) Text-based image re-

trieval, in which we search for an image using a text-based

query and (2) Content-based image retrieval (CBIR), in

which a related image is used as a query image. Image as the

query has a much richer content as compared to text-based

query. CBIR gives excellent search results but requires giv-

ing a real image as the query, which may not always be

possible. Often it is more convenient to draw an outline

sketch of the image and use that as a query to search for

the desired image(s). The retrieval of images by giving the

sketch as a query is termed as sketch-based image retrieval

(SBIR) [3, 4, 51, 34]. The topic has drawn considerable at-

tention recently. However, existing SBIR systems assume

that the class represented by the input sketch at query time

was also present in the image-sketch pairs used to train the

SBIR model, and consequently, these systems suffer when

the input sketch is from a previously unseen/novel class.

In this work, we present a method to handle the SBIR

task for the unseen/novel class at test time. These novel

Figure 1. Illustration of Zero-Shot Sketch-Based Image Retrieval

(ZS-SBIR)

classes are either absent at the training time or not used

in training. This type of setup, to handle the previously

unseen classes at test time is called Zero-Shot Learning

(ZSL), and has been extensively investigated recently for

problems, such as image classification [20, 31, 42, 1], ac-

tion classification [22, 30], image tagging [54], and visual

question answering [35] etc. To the best of our knowledge,

the only works that have investigated SBIR in the zero-shot

setting include [40, 50]. Among these, [40] used a hashing

approach for the ZS-SBIR. This approach is motivated by

other ZSL approaches where some side information about

unseen classes is present, e.g., their textual description,

word2vec or attribute based vectors are used for the knowl-

edge transfer. Recently [50] proposed a vanilla conditional

variational autoencoder (CVAE) architecture and adversar-

ial autoencoder for the ZS-SBIR task.

In this paper, we address the drawbacks of existing ap-

proaches for SBIR to handle the retrieval of novel/unseen

class examples. We propose a conditional generative model

that can generate image features conditioned on the at-

tributes (raw sketch or word2vec[28]) of a given class. Like

[50] we also have a generative model, but our approach is

significantly different from their model which uses a stan-

dard conditional VAE. In contrast, our proposed approach is

built upon the Inverse autoregressive flow (IAF) based vari-

ational autoencoder [18], with a feedback based mechanism

[17]. The IAF helps to learn the complex latent-space distri-
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bution of the images while the feedback mechanism further

helps in making the generated image distribution follow the

original distribution more closely. The other recently pro-

posed ZS-SBIR approach [40] requires side information in

the form of description of the sketch, which may not always

be available. In contrast, our proposed approach requires no

side information and still performs significantly better than

[40]. We also use a residual decoder that helps to learn a

complex model with a deeper network. Notably, since we

are able to generate images from any specified class, we are

able to transform the zero-shot problem into a typical super-

vise learning problem. The main contributions of this paper

can be summarized as follows:

• We propose a sketch-conditioned image generation

scheme to solve the ZS-SBIR problem, using a gen-

erative model consisting of an inverse autoregressive

flow based encoder.

• We leverage a feedback mechanism [17, 20] to encour-

age the synthesized distribution to be not too far from

the original distribution of the observed unlabeled im-

ages.

• Unlike the other recently proposed approaches for ZS-

SBIR [40], even without any side information (e.g.,

word2vec based attributes of the classes), our method

yields significantly better results as compared to [40].

2. ZS-SBIR Setting

In the zero-shot setting, we partition image dataset into

two parts based on sketch classes. One part is the training

set which has paired seen-class (S) sketches and image. The

second part is test set which has unseen-class (U) sketches

only (and no images). Note that the training set is essentially

labelled. The training and testing set are mutually exclusive

in terms of the sketch classes. In zero-shot setting, we train

our model in such a way that it can generalize to unseen

class sketches. The mathematical formulation of the zero-

shot problem for SBIR is given below:

Let A = {(xi
skt,xi

img, yi)|yi ∈ Y} be the triplet

consisting of sketch, image and the class label, where Y
is the set of all class labels. We partition the class labels

into two disjoint set Ytr and Yte for train and test set re-

spectively. Let Atr = {xi
skt,xi

img, yi|yi ∈ Ytr} and

Ate = {xi
skt,xi

img, yi|yi ∈ Yte} be the partition of A

into train and test set, respectively. Another assumption for

the ZS-SBIR is that Atr ∩Ate = ∅ i.e. train and test classes

are disjoint. For simplicity, we will represent xskt as ”a”

and x
img as ”x” throughout this exposition.

3. Background

As discussed earlier, our approach is based on turning

the sketch-to-image search problem into an image-to-image

search problem. To this end, we need a model that can gen-

erate high-quality images, given a sketch of the class repre-

senting that image. This, essentially is a conditional image

generation problem. To model the complex distribution of

real-world images, we leverage the inverse auto-regressive

flow (IAF) based variational autoencoder [18], and adapt it

using a feedback mechanism to integrate the information

provided by the sketch attribute. Before describing our ar-

chitecture, we first provide a background of the components

we build upon.

3.1. Variational Inference and Learning

Suppose x = {x1, ··,xN} be a set of N i.i.d. obser-

vations (e.g., N images). Let us denote each sample by x

and assume z be the latent variable associated with x. For a

given dataset X, the marginal likelihood of observations is

denoted as log p(x) =
∑N

i=1 log p(x
i). The posterior over

the latent variable is denoted by q(z|x). We can define a

variational lower bound on the marginal log-likelihood

log p(x) ≥ Eq(z|x)[log p(x, z)− log q(z|x)] = L(x; θ) (1)

where p and q are distributions whose parameters are col-

lectively denoted by θ, and L is the Evidence Lower Bound

(ELBO), defined as

L(x; θ) = log p(x)−Dkl(q(z|x)||p(z|x)) (2)

Maximizing the lower bound L(x; θ) w.r.t. θ also maxi-

mizes log p(x) and minimizes Dkl(q(z|x)||p(z|x), where

p(z|x) is the true posterior over the latent variables and

q(z|x) is the approximate posterior (often also called the

inference network). In order to infer complex true posterior

p(z|x), we need to have a sufficiently expressive approxi-

mation q(z|x). Normalizing Flows [10] is an idea that helps

accomplish this be defining a series of transformations for

a latent variable that enable learning sufficiently rich distri-

bution for that variable.

3.2. Normalizing Flow

For the inference network q(z|x), we need a highly flex-

ible method that captures the complex nature of the true

posterior distribution. Normalizing flow is a popular ap-

proach used for the variational inference of posterior over

latent space. Normalizing flow [10] depends on sequence

of invertible mappings for transforming the initial proba-

bility density. Suppose z0 be the initial random variable

with a simple probability density function q(z0|x) and zt

be the final output of a sequence of invertible transforma-

tions ft on z0. zt can be computed as: zt = ft(zt−1,x)
∀t = 1, · · · , T . If Jacobian determinant of each ft can be

computed, then the final probability density function can be

computed as:

log q(zT |x) = log(z0|x)−
T
∑

t=1

log det
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Figure 2. An illustration of our proposed model, based on the IAF architecture and feedback mechanism.

3.3. Inverse Autoregressive Transformations (IAF)

Let v be a variable which is modeled by the Gaussian

version of the autoregressive model. Suppose [µ(v), σ(v)]
be the representation of function that maps v to the mean

µ and variance σ. Due to the autoregressive structure, the

Jacobian is lower triangular matrix with zeros on the diag-

onal. Mean and standard deviation of ith element of v are

computed from v1:i−1 i.e., previous elements of v. To sam-

ple from such a model, we use a sequence of transforma-

tions from a noise vector ǫ ∼ N(0, I) to the correspond-

ing vector v as: v0 = µ0 + σ0 ⊙ ǫ0 and for i > 0 vi =
µi(v1:i−1)+σi(v1:i−1)ǫi. Variational inference makes sam-

pling from posterior, such models are not interesting to be

directly used for the normalizing flow. Although, the inverse

transformation is interesting for normalizing flows, as long

as we have σi > 0 the transformation is one-to-one and it

can be inverted as : ǫi =
vi−µi(v1:i−1)

σi(yi:i−1)
. Two key observation

for IAF as follows:

• As computation of every element ǫi does not depend

on one another, inverse transformation can be par-

allelized ǫ = v−µ(v)
σy

(subtraction and division are

element-wise).

• Inverse autoregressive operation has a simple Ja-

cobian determinant. It is lower triangular matrix.

As an outcome, the log-determinant of Jacobian of

transformation is simple to compute: log det | ∂ǫ
∂v

| =
∑D

i=1 − log σi(v)

3.4. IAF step

As shown in Fig. 2, the output of initial encoder net-

work is µ0, σ0 and one extra output h which is consider

as one extra input to each subsequent step in the flow. In

other word, the parameters of encoder are refined itera-

tively based on output of previous step µ0, σ0 and h. The

sampled vector from latent space of initial encoder is de-

fined as : z0 = µ0 + σ0 ⊙ ǫ. Where ǫ ∼ N(0, I). After t

steps the refinement of sample z0 is recursively defined as :

zt = µt + σt ⊙ zt−1. In this sequential step the predicted

posterior fits more closely to the true posterior.

Finding an appropriate latent space for sampling is a cru-

cial part of generative models as in variational autoencoder

(VAE). VAE based generative models compute latent space

in one step which may not be sufficient to capture a complex

distribution. So the distribution of the predicted posterior

and true posterior could be different with adequate margin.

Whereas in IAF based variational autoencoder, predicted

posterior are transformed to the true posterior using some

simple sequential transformation. This sequence of simple

transformation can be reduced to any complex distribution.

Therefore using an auto-regressive method we can reduce

the difference between the distribution of the estimated pos-

terior and true posterior as compare to standard VAE.

4. Zero-Shot Sketch-Based Image Retrieval

In this section, we describe the various components of

our proposed model. Again, note that the goal is to learn to

generate high-quality images, given the sketch and option-

ally other side information (e.g., word2vec description of

the class).

4.1. Inverse Autoregressive Flow­Based Encoder

Learning the complex distribution of z in the high di-

mensional latent space is not feasible by a single step trans-

formation. Therefore, in the plain VAE, the approximate

posterior can be far away from the true posterior of z. IAF

provides a way to learn the complex distribution by using

the chain of simple transformation. The final latent variable

z can be given as:

zT = fT (...f2(f1(f0(z0)))...) (3)
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Here each fi is simple transformation function and are in-

vertible in nature. Figure 2 shows the pipeline of IAF archi-

tecture.

4.2. VAE with feedback mechanism

In our model, the encoder consists of standard encoder

coupled with an IAF module. The output of IAF based en-

coder is refinement of the latent code which is initialized by

standard encoder, denoted as pE(zt|x) with parameters θE .

The regressor output distribution is denoted as pR(a|x), and

the VAE loss function is given by (assuming the regressor

to be fixed):

LV AE(θE , θG) = −EpE(zt|x),p(a|x)[log pG(x|zt,a)]

+ KL(pE(zt|x)||p(zt))
(4)

where the first term on the R.H.S. is generator’s reconstruc-

tion error and the second term promotes the estimated pos-

terior to be close to the prior.

4.2.1 Regressor/Cyclic-consistency Loss

In our proposed model, the regressor, defined by a prob-

abilistic model pR(a|x) with parameters θR, is a feed-

forward neural network that learns to project the example

x ∈ R
D to its corresponding class-attribute vector a ∈ R

L.

The objective of the regressor is to minimize the cyclic-

consistency loss. The regressor is learned using two sources

of data:

• Labeled examples {xn,an}
NS

n=1 from the seen classes,

on which we can define a supervised loss, given by

LSup(θR) = −Exn
[pR(an|xn)] (5)

• Synthesized examples x̂ from the generator, for which

we can define an unsupervised loss, given by

LUnsup(θR) = −EpθG
(x̂|zt)p(zt)p(a)[pR(a|x̂)] (6)

The weighted combination of supervised and unsuper-

vised loss is defined as the overall objective to mini-

mize the cyclic-consistency/regressor loss:

min
θR

LR = LSup + λR · LUnsup (7)

4.2.2 Regressor-Driven Learning

Regressor-Driven learning helps to minimize the cyclic-

consistency loss and guide the generator to generate

high-quality samples. The cyclic loss encourages the de-

coder/generator to generates example x̂ coherent with its

sketch feature vector a. This is done using a loss function

described below.

In the first case, suppose the generator generates low-

quality samples. Then the regressor will incur a high cyclic

loss for these samples. In this case, the regressor assumes

that it has optimal parameters and will not regress to the

correct value. This loss occurs because of the bad quality

samples generated by the generator. Minimizing this loss

w.r.t θG helps generator to improve the samples quality. The

objective function is given by

Lc(θG) = −EpG(x̂|zt,a)p(zt)p(a)[log pR(a|x̂)] (8)

The other loss which acts as a regularizer that encourages

the generator to generate a good class-specific sample even

from a random zt drawn from the prior distribution p(zt)
and combined with the sketch from p(a) is

LReg(θG) = −Ep(zt)p(a)[log pG(x̂|zt,a)] (9)

The above two loss functions help us increase the coherence

of x̂ ∼ pG(x̂|z,a) with class-attribute a. A third loss func-

tion is used to ensure that the sampling distribution p(zt)
and the distribution obtained from the generated examples

pE(zt|x̂) follow the same distribution.

LE(θG) = −Ex̂∼pG(x̂|zt,a)KL[(pE(zt|x̂)||q(zt))] (10)

Hence the complete learning objective for the generator and

encoder is given by,

min
θG,θE

LV AE + λc · Lc + λreg · LReg + λE · LE (11)

4.3. Residual Decoder

The proposed decoder is a combination of the deep and

shallow network. The deep network is responsible for the

better reconstruction of visual space while shallow net-

work reduces over-fitting. This architecture is motivated by

ResNet [13] where the network has skip connections. These

skip connections provide more paths to the network for in-

formation propagation. While some paths are deeper, others

are shallow [14]. If in the deeper path the gradient vanishing

or explosion problem occurs, the shallow paths still work,

and proper gradient flows in the backward direction. In the

residual network, the output of a neural network layer is

given by fo(x) = fin(x) + x, (here fin(x), is the direct

output), i.e., the output does not only depend on the current

layer neural network, but it depends on input as well.

5. Related Work

Images have rich and vibrant content, while a sketch only

provides rough information like shape and size. It is easy for

a human to match the sketch from the image, but for ma-

chines, this is a very complex task. Since for an algorithm,

it is very difficult to learn the features that are invariant to

color, shape, size, pose, etc. The common pipeline for SBIR

is to project the images and sketches in common subspace

such that the same class images and sketches are close to

each other on some metric space. Then any similarity metric
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can be used for the retrieval task. Most of the traditional ap-

proaches for SBIR have used hand-crafted features such as

gradient field HOG descriptor [6], SIFT [25] and SURF [2]

etc. [32] proposed a dynamic programming based method

for SBIR which is effective in translation, rotation, and scale

(similarity). Recent advancement of deep learning provides

an automatic feature extraction technique which learns the

pose and color invariant feature. Recently [52, 38, 40, 50]

have used deep feature for SBIR task. Instead of finding

the common subspace other approach projects the sketch

space to image space or vice versa such that the information

gap between the sketches and the real images are minimum

[16, 32].

Recently zero-shot learning drew more attention due to

its capability of classifying a novel class object during the

test phase. In the ZSL each class is associated with side in-

formation like description of the class, attribute or unsuper-

vised word embedding (Word2vec [28], Glove [33], etc.).

This side information of the class is called the semantic fea-

tures/attributes. In ZSL, the core concept is to learn projec-

tion between class feature and side information, using la-

beled seen class data only. We can categories all proposed

models for ZSL in three types based on projection.The most

popular work learns the projection between visual space

to semantic space and vice-versa [49, 1, 31, 45, 42, 29].

Another popular approach projects the visual and semantic

features in a shared subspace such that same class visual

features and semantic attributes map closer, whereas differ-

ent class visual features and semantic attributes are well-

separated [44].

Recently generative models are emerging as the most

popular approach for zero-shot image classification. This

type of approach gaining popularity because of its ability to

synthesize the unseen class sample and can reduce the ZSL

problem to a supervised learning problem. These approach

learns the data distribution based on the given conditions

[11, 42, 20, 46]. Most of the previous methods for zero-

shot learning are focused on image classification. However,

a few models are used for zero-shot action classification,

zero-shot image tagging and zero-shot multi-label learning

as well [21, 48, 30, 49, 54, 9].

Recently [40, 50] have proposed a model for the ZS-

SBIR. [40] proposed a hashing based approach for the ZS-

SBIR. The hashing architecture is based on the multi-model

deep network. [50] proposed a generative model for the ZS-

SBIR based on the CVAE architecture. The proposed ap-

proach is also a generative in nature based on IAF to get

the improved variational inference [18]. Here our encoder

is based on the IAF architecture that learns the complex la-

tent encoding of the input into the latent space. It can learn

the complex distribution with the simple sequential trans-

formation. Also, we are using the β-VAE [15] architecture

for the disentangled representation. The residual decoder is

used that gives the better generation of the sample because

it can flow the gradient with the deeper layers. In the pro-

posed approach the external feedback mechanism provides

the feedback to the encoder about the generation quality.

Hence the generator has better guidance for generating the

robust sample.

6. Experiments and Results

To show the effectiveness of our proposed model we ause

two challenging datasets: Sketchy [38] and TU-Berlin [7].

Originally, Sketchy dataset [38] contains 75471 hand-drawn

sketches and 12500 corresponding images from 125 classes.

[23] have provided 60502 more real images from all 125

classes, which extends the original dataset. TU-Berlin ex-

tended [7] is a large scale dataset having 20000 sketches

and 204489 images from 250 different categories provided

by [23, 53].

The visual features for images and sketches are ex-

tracted using ResNet-152 [13], pretrained on ImageNet [37]

dataset. The sketches and image features are extracted from

the last fully connected layer. It gives 2048-dimensional

feature vectors. We believe that further finetuning on this

dataset on ResNet-152 architecture will give better perfor-

mance. The visual features of the sketches are used as a

class attributes in our proposed generative model.

6.1. Sketchy Dataset (Extended)

For fair comparison with the recent work [40, 50], we

have two splits of the dataset. [40] randomly selected 25

classes of sketches as the test set (Ate) and the remaining

labeled 100 classes are used as the training set (Atr). Here

Atr ∩Ate = φ, i.e. train and test class are disjoint. We have

another split of the dataset similar to [50], this contains 104

classes in training, and used 21 classes images and sketches

as a test set.

Random split proposed by [40] is not the realistic Zero-

Shot setting [47]. Since in random split test set may have

some classes that are present in the ImageNet class. Since

we are using the ImageNet pre-trained model for the feature

extraction and this training is done in a supervised manner.

This violates the assumption that Ate are the unseen classes.

Therefore it is not the exact Zero-Shot setting. The split pro-

posed by [50] is the realistic setup for ZS-SBIR, where the

split is done in such a way that any of the Ate classes are

not present in the ImageNet dataset. In our setup for train-

ing, we need a paired image and sketch set. To make the

paired set, we selected a random image and sketch from the

same training class and paired them. This process repeated

1000 time, i.e., each class in the training set has 1000 pair

of data point. We are comparing our model with the previ-

ous approach in their original setup; therefore, we are using

both the split.
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6.2. TU Berlin Dataset (Extended)

Similar to [40] for the fair comparison randomly 30

classes are selected for the Ate and remaining 220 classes

are used for the Atr. This dataset is highly biased; few

classes have large examples while few have only limited

samples. In the Zero-shot setup, learning with biased data is

a very hard problem. Therefore form training we removed

the biases. For doing so, we are sampling the equal number

of image and sketch sample pairs from each class. In the

testing, we selected the class that has more than 400 sam-

ples. For making image and sketch pair, we follow the same

pattern mentioned in the previous section. Here again, each

class has a 1500 pair of image and sketch.

6.3. Implementation details

In our model, we have three components, Encoder (E),

Generator (G) and Regressor (R). The encoder is based on

the IAF architecture, refer to figure-2. The encoder contains

the two fully connected layers of size 4096 followed by one

layer that gives the µ and σ this passed to 3 layers IAF ar-

chitecture. The generator has five layers of the fully con-

nected neural network (NN) with the residual connection.

It is a combination of the deep and shallow network. Here

sigmoid activation is used. All layers are of the same size

of 6144. Regressor takes the reconstructed samples x̂ and

regresses the sketch. It uses the two-layer fully connected

NN of size 4096. The learning rate (η) is set as a stepwise

decreasing rate. Initially for the 5 epoch η = 0.001 then

after each 10 epoch it changed to [0.0005,0.0001,0.00001].

Here instead of N (0, I) prior, we found from the valida-

tion data p ∼ N (0, 0.005) gives the better performance.

Also, for the ablation, we experiment with the plain au-

toencoder. The autoencoder used contains the same archi-

tecture as the IAF encoder with feedback connection; only

the difference is that the dimension of z is zero. Therefore

the generated sample is deterministic and depends only on

the given sketch feature a.

6.4. Training and Testing

There are two modules in the model, IAF-VAE and re-

gressor. We are alternately optimizing the IAF-VAE and re-

gressor. These two module helps each other to learn the ro-

bust generator. In the VAE training, we are minimizing the

loss w.r.t. E and G’s parameters, and for regressor training,

we are minimizing the regressor’s loss w.r.t R’s parameter

only. The alternate optimization is done Until convergence.

The complete setup is for the zero-shot learning; therefore

the testing is performed from the unseen class sketch to un-

seen class image. In the testing phase each xskt is concate-

nated with the z ∼ N (0, 0.005) and generate the c samples

using generator G. Now from these c, samples find the im-

age that gives maximum cosine similarity. The similarity of

Figure 3. Top-6 retrieved images for randomly chosen five

sketches for ZS-SBIR.

the sample xi from the query sketch xskt can be given as:

s(xskt
,xi) = max

t=1:c
cosine

(

G(θ(xskt
t )), θ(xi)

)

(12)

Here, xi is the image in the query database. Equation-12

is repeated for each image and find the K samples with

maximum similarity scores for the top@K retrieval. θ is

the ResNet-152 model and gives the feature vector for each

image, and G is the generator.

Result Analysis with existing methods

Since best of our knowledge, only two very recent works

ZSIH [40] and CVAE [50] have been proposed for ZS-

SBIR. Therefore for supporting the performance of the pro-

posed model, we compare the performance of our model

with several other state-of-the-art. We have analyzed two

types of baselines methods, 1- Sketch-Based Image Re-

trieval (SBIR) Baselines and 2- Zero-Shot Learning (ZSL)

baselines.

Sketch base image retrieval baselines (SBIR)

Several approaches have been proposed for SBIR. We

compare our model with Siamese-1 [12], Siamese-2 [34],

Coarse-grained triplet [39], Fine-grained triplet [38], DSH

[24], SaN [52], GN Triplet [38], 3D Shape [43], Siamese

CNN [?]. Since these baselines are not originally proposed

for zero-shot setting, [40] provides these baseline for the

zero-shot setting. We have taken these baseline result di-

rectly from the paper [40].

Zero-Shot baselines (ZSL)

The most of the existing approaches for zero-shot learning

are proposed for the zero-shot image classification. We se-

lect a set of zero-shot learning approaches as baseline to
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Type
Method

Sketchy Dataset TU Berlin Dataset

Precision@100 mAP@all Precision@100 mAP@all

Softmax Baseline 0.176 0.099 0.139 0.083

Siamese CNN [34] 0.183 0.143 0.153 0.122

SaN [52] 0.129 0.104 0.112 0.096

SBIR GN Triplet [38] 0.310 0.211 0.241 0.189

3D Shape [43] 0.070 0.062 0.063 0.057

DSH (64 bits) [24] 0.227 0.164 0.198 0.122

CMT [41] 0.096 0.084 0.082 0.065

DeViSE [8] 0.078 0.071 0.075 0.067

SSE [55] 0.154 0.108 0.133 0.096

Zero-Shot JLSE [56] 0.178 0.126 0.165 0.107

SAE [55] 0.302 0.210 0.210 0.161

DSH [24] 0.217 0.165 0.174 0.139

ZSIH [40] 0.340 0.254 0.291 0.220

Feedback-Auto GZS-SBIR(Our) 0.305 0.253 0.281 0.187

Feedback-VAE GZS-SBIR(Our) 0.358 0.289 0.334 0.238

Table 1. Precision@100 and mAP@all results on the traditional SBIR and ZSL method on the ZS-SBIR setup. Feedback-Auto is the IAF

autoencoder with the feedback mechanism and Feedback-VAE is the IAF-VAE with the feedback mechanism.

compare with our proposed model. These ZSL baseline ap-

proaches are CMT [41], DeViSE [8], SAE [19], SSE [55],

ESZSL [36], CAAE [27], JLSE [56], DAP [21]. The base-

line results are borrowed from the [50, 40]. We again repro-

duce the the baseline results reported in the table-2.

The recent work on the ZS-SBIR is ZSIH [40] and CVAE

[50]. ZSIH [40] shows the experiment on the TU-Berlin and

Sketchy dataset. They reported the result of precision@100

and mAP@all for all datasets. [40] using the word2vec[28]

as side information in their model. As mentioned earlier

we are not using any side information but have signifi-

cantly better result compare to ZSIH. The comparison re-

sult with the baseline and ZSIH are shown in the table-1.

We can see without any side information our approach per-

forms significantly better than all the previous approach that

used the side information. Also, we experimented the pro-

posed approach with autoencoder only and found that the

proposed VAE model significantly outperforms the autoen-

coder model. Please refer to table-1 for the more details.

Another approach CVAE [50] has proposed a generative

model for ZS-SBIR; they showed the result on the Sketchy

dataset. CVAE suggested the realistic train-test split simi-

lar to [47] for the ZS-SBIR. [50] evaluated the performance

of the model over precision@200 and mAP@200 metric.

We are following the same setup to compare our result with

CVAE. Our result on the Sketchy-dataset shows that the

proposed approach is significantly better compare to CVAE.

CVAE not using any side information and without using any

side information (e.g., word2vec), our method shows the

3.0% and 5.8% relative improvement over precision@200

and mAP@200 metric.

In the Figure-3 we have illustrated the top-6 retrieved

result using the unseen class sketches from the image

database. Retrieved images are closely matched to the out-

Sketchy Dataset

Type Method Precision@200 mAP@200

Baseline 0.106 0.054

Siamese-1 [5] 0.243 0.134

Siamese-2 [34] 0.251 0.149

SBIR Coarse-grained triplet [39] 0.169 0.083

Fine-grained triplet [38] 0.155 0.081

DSH1 [24] 0.153 0.059

DAP [21] 0.066 0.022

ESZSL [36] 0.187 0.117

ZS-SBIR SAE [19] 0.238 0.136

CAAE CAAE [27] 0.260 0.156

CVAE [50] 0.333 0.225

Feedback-Auto GZS-SBIR(our) 0.288 0.191

Feedback-VAE GZS-SBIR(our) 0.343 0.238

Table 2. Precision@200 and mAP@200 results on the traditional

SBIR and ZSL method on the ZS-SBIR setup. This table follow

the realistic train-test split.

line of the sketches. Since our model learns the mapping

between sketches and images based on components. So it

may retrieve some other class images which are signifi-

cantly similarity with the sketch. In Figure-3 we can see that

for helicopter sketch our model retrieve the fish because the

outline of sketches of the helicopter and fish are very simi-

lar. Also, we have shown the t-SNE [26] plot of the original

data and the reconstructed data for the Sketchy [38] dataset.

In the t-SNE plot, we can observe that the generated sam-

ples for the novel classes are not as good as the original

one. But the generated sample nearly follow the same dis-

tribution as the original one. The few class samples are as

good as the original samples. Please refer to figure-4 for the

t-SNE plot.

Ablation Study

We now show the significance of the different compo-

nents of the model as compared to the basic VAE model.
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Figure 4. t-SNE plot for the original and the reconstructed sample

for the sketchy dataset without using any side information.

We have found that the proposed approach outperforms by a

significant margin across all the dataset. Even though with-

out using any side information we are performing better

than the previous approach [40] that used the side informa-

tion. In the section-[6.5] we are showing the ablation with

and without VAE. Also in section-[6.6] we are showing the

significance of the IAF component.

6.5. With/Without VAE

We also perform the ablation analysis over the differ-

ent component of the proposed approach. In the first ex-

periment, we compare the performance of autoencoder with

the proposed VAE architecture. We found that the proposed

model with the VAE component always outperforms com-

pare to autoencoder architecture. Using the feedback-VAE

architecture on the Sketchy-dataset the model shows the

20% and 16% relative improvement on the precision@100

and mAP@all metric compare to plain autoencoder ar-

chitecture. The similar pattern we observe for the Tu-

Berlin dataset also. The feedback-VAE shows the 17.8%
and 26.3% relative improvement over the plain autoencoder

architecture on the precision@100 and mAP@all metric.

Figure 5. Ablation of our proposed VAE with the plain au-

toencoder without any side information. AutoW/O-w2v: Autoen-

coder without word2vec, W/O-w2v: Proposed approach without

word2vec.

Please refer to figure-5 for comparison details.

6.6. With/Without IAF

We present the ablation study with IAF and without IAF

component, without using any side information. We have

found that if we remove the IAF component, the perfor-

mance drop is significant as compared to with-IAF. For

the Sketchy dataset, we reported in Table-3 that with-IAF

component, the precision@100 and mAP@all are 0.358

and 0.289, respectively. If we remove the IAF component,

the performance drop is significant, and precision@100

and mAP@all are 0.313 and 0.261, respectively. There-

fore we have 12.6% and 9.7% relative drop in the per-

formance without-IAF. We also observed a similar pattern

on the TU-Berlin dataset. Here in Table-3 with-IAF we

have 0.334 and 0.238, precision@100 and mAP@all, re-

spectively. But if we drop the IAF component, our preci-

sion@100 and mAP@all are 0.294 and 0.198, respectively.

Therefore we have 12.0% and 16.8% performance drop, re-

spectively. Please refer to Table-3 for the more details.

Type Sketchy Dataset TU Berlin Dataset

Precision@100 mAP@all Precision@100 mAP@all

W/O-w2v 0.313 0.261 0.294 0.198

W/O-w2v+IAF 0.358 0.289 0.334 0.238

Improvement (%) 12.6% 9.7% 12.0% 16.8%

Table 3. Ablation study: Precision@100 and mAP@all results on

the Sketchy and TU-Berlin dataset without-IAF and with-IAF.

7. Conclusion

In this paper, we addressed the Zero-Shot Sketch-Based

Image Retrieval problem, which is a challenging and more

realistic setting as compared to the conventional SBIR. The

proposed generative approach can solve the SBIR problem

when the classes are growing with time, and does not re-

quire all classes to be present at the training time. We have

found that the proposed approach, based on the IAF ar-

chitecture with the feedback mechanism, generates high-

quality samples of the novel classes. Moreover, without us-

ing any side information, our proposed generative model

can retrieve novel class examples and gives state-of-art re-

sults on benchmark datasets. In this work, we assume that

the test query comes from the unseen classes only. In future,

it will be interesting to explore the Generalized ZS-SBIR

problem where test query can come from the seen as well

as unseen classes. Also, the domain shift is a critical prob-

lem in the ZSL. It will be an interesting direction of future

work to handle the domain shift for zero-shot SBIR. The

recent model shows a significant improvement inj ZS-SBIR

using the side information. In future, it will also be exciting

to explore the model with the help of side information.
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