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Abstract 

 

With the rapid development of neural networks, many 

deep learning-based image processing tasks have shown 

outstanding performance. In this paper, we describe a 

unified deep learning-based approach for image image 

denoising. The proposed method is composed of deep 

convolutional neural and conditional generative 

adversarial networks. For the discriminator network, we 

present a new network architecture with bi-skip 

connections to address hard training and details losing 

issues. In the generative network, a objective optimization 

is derived to solve the problem of common conditions being 

non-identical. Through extensive experiments on image 

denoising task on both qualitative and quantitative criteria, 

we demonstrate that our proposed method performs 

favorably against current state-of-the-art approaches. 

 

1. Introduction 

Image processing is mainly concerned with extracting 

descriptions (that are usually represented as images 

themselves) from images. The analysis usually does not 

know anything about what objects are actually in the scene, 

nor where the scene is relative to the observer. There may 

be multiple, largely independent descriptions, such as edge 

fragments, spots, reflectances, line fragments, etc. As these 

descriptions are still linked to an image, these descriptions 

would apply everywhere in the image, not just to the mug. 

As a fundamental task for medium-level or high-level 

processing, many Bayesian or regularization based 

conventional methods are utilized to fix many exiting 

processing issues. Most of problems can be solved 

satisfactorily. However, for the issue of images with a large 

amount of intricate noise still needs to be addressed. 

Recently, the superior performance based upon deep 

learning attracted attention from all fields. The outstanding 

performance has been demonstrated in many deep learning-

based image processing applications. However, there still 

remains two areas that need to be explored: the lack of a 

robust and fast network architecture for more effective 

image processing, and a shortage of a unified network 

architecture for most of image denoising applications. 

Therefore, it is vital to seek a unified and effective 

machinery for image denoising. 

To address the above difficulties, we propose a novel 

network architecture for image denoising using a deep 

conditional generative adversarial network (CGAN) with 

bi-skip connections and objective optimization. We 

observed the recent superior performance of deep learning-

based image processing tasks, but we noticed that the hard 

training and details loss are in need of more attention. 

Therefore, taking into account the above problems, we 

propose a new symmetric bi-skip connections method to 

link convolutional and de-convolutional layers for the 

discriminator network, with which the training converges 

much faster and attains a higher-quality local optimum and 

image details can be recovered in deconvolution layers. 

Considering that the generative network has an excellent 

generating ability to recover image details of image 

denoising task and deriving that the existing of the non-

identical optimization problem in CGAN.  

In summary, our major contributions are briefly outlined 

as follows:  

1) We propose a novel network architecture, which 

consists of a bi-skip connection based discriminator 

network and a objective optimization based discriminator 

network for image denoising is  proposed in this paper.  

2) We solve the problems of the hard training and details 

loss by proposing a new symmetric bi-skip connection, 

which helps to back-propagate the gradients to bottom 

layers and pass image details to the top layers, making  

training of the end-to-end mapping more easier and 

effective, and thus achieve performance improvement 

while the network going deeper. 

3) We prove the existence of the non-identical 

optimization problem in CGAN, and we propose a multi-

objective optimization to address the above issue. Relying 

on the new multi-objective optimization capacity and the 

generating ability of CGAN, most low-level image 

processing tasks have shown outstanding performance. 

4) Experimental results demonstrate the advantages of 

the proposed network over other recent state-of-the-art 

methods on most of image denoising task, setting new 

records on these topics. 
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2. Related Work 

2.1 Related Networks 

The simple Encoder-Decoder model is mainly used to 

solve the problem of sequence to sequence conversion.  

Image denoising is a challenging task that faces many 

problems in this area due to the lack of effective training 

data. The researchers proposed a "two-step" framework to 

train the noise distribution of the input image through 

GANs and generate rich training data using the generated 

noise samples. Based on which the denoising deep neural 

network was trained. The advantage of an auto encoder is 

that high-dimensional data can be converted to low-

dimensional codes by training a multilayer network to 

reconstruct high-dimensional input vectors. That is, the 

features learned from networks are enough to describe the 

inputs. Based on this idea, some , such as Denoising Auto-

encoder (DAE) [1] and Variational Auto-encoder (VAE) 

[2] have been used in image restoration. While it is head-

scratching to extract proper features from blurred images.  

 Figure 1. The framework of the proposed image processing adversarial 

networks, which gives an implementation of image denoising. 

 

Image Priori-Based Method (BM3D) realizes the 

removal of unknown noise without training data by directly 

modeling noise images for image priori. At first, U-Net was 

proposed for image segmentation. It consists of a 

contracting path and an expansive path. The contracting 

path follows down sample steps and the expansive path 

follows up sample steps. Due to the symmetry of U-Net, it 

can localize the pixel, which makes features concatenating 

easy. Sip-Net proposed by Mao [3] mainly focuses on 

image denoising and super-resolution. Deriving from U-

Net, Skip-Net links convolutional and deconvolutional 

layers with skip-layer connections. Furthermore, Ulyano 

[4] points out that untrained deep convolutional generators 

can be used to replace surrogate natural prior (TV norm) 

with dramatically improved results. All of the above shows 

that encoder-decoder has the ability to recover inputs with 

learned features, which is useful for low-level image 

processing tasks. 

 

2.2 Conditional Adversarial Networks 

Conditional Adversarial Networks are networks in which 

both the generator and discriminator are conditioned on 

some extra information. Isola[5], whose architecture is also 

known as pix2pix, proposed using cGAN in image-to-

image translation. Unlike the vanilla version of GAN, 

cGAN learns a mapping from an observed image ݔ  and 

random noise ݖ to the ground truth y with G : ,ݔ	ݕ → ݖ. In 

the cGAN architecture, the discriminator ’ s job remains 

unchanged, but the generator not only fools the 

discriminator but also minimizes the divergence between 

the generated sample and the ground truth. As described 

above, the valuable insight of cGAN makes image-to-

image translation more diverse and stable. Thus, some low-

level image processing tasks, such as Kupyn [6] and Nah 

[7] use cGAN to deblur images in their models and output 

the very competitive results. Nah [7] proposes a multi-scale 

convolutional generator and presents the relative content 

loss to regularize the critic of cGAN. Kupyn et al. [6] 
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introduce perceptual loss which is obtained by some feature 

extractor in the improved WGAN. All of the above low-

level image processing networks show that the cGAN that 

containing the specified generator has a unique strength to 

performing image denoising. 

3. Proposed Approach 

In this section, we propose a new deep CGAN 

architecture for the image denoising. The framework of 

the proposed method is illustrated in Figure 1. 

3.1 Generator Network 

The generator network is composed of multiple layers of 

convolution and de-convolution operators, and learns end-

to-end mappings from images to tasks of the low-level 

image processing. The convolutional layers capture the 

abstraction of image contents. Deconvolutional layers have 

the capability to up-sample the feature maps and recover the 

image details. To deal with the problem of deeper networks 

tending to be more difficult to train,we propose 

symmetrically linking convolutional and deconvolutional 

layers with bi-skip-layer connections, with which the 

training converges much faster and attains better results, as 

shown in Figure 1. The linking of bi-skip connections from 

convolutional layers with their mirrored corresponding 

deconvolutional layers exhibit two main advantages. First, 

they allow the signal to be back-propagated to the bottom 

layers directly, and thus tackles the problem of gradient 

vanishing, making training deep networks easier and 

achieving processing performance gains a saconsequence. 

Second, these bi-skip connections pass image details from 

convolutional layers to deconvolutional layers, which is 

beneficial in recovering the image contents.  

 

 
Figure 2. The illustration of the bi-skip-layer connections. 

 

To better illustrate the bi-skip structure, we extract one 

scale (Figure 2) of the proposed generator network to 

illustrate the net. As shown in Figure 2, the contracting path 

consists of two subpaths in which one follows an average 

pooling and another follows 3×3 conv. The stride of the 

above two is 2 and follows an instance normalization layer 

and ReLU. Then the 3 × 3 conv path generates a residual 

and adds to the pooling path for downsampling followed by 

three ResBlocks. Each ResBlock consists of two repeated 3 

× 3 conv, instance normalization layer and ReLU. The 

skipping path is composed of 1 × 1 conv which skipping to 

the same scale up-layer and 3×3 conv which skipping to the 

next scale up-layer. In the expansive path, the transposed 

layer is used to replace upsampling. An effective generator 

should digest the features as much as possible without 

increasing the depth of the network. The superiority of Bi-

Skip-Net is that both shallow and deep priors can be 

concatenated for each scale. In our network, we explore 5 

scales in Bi-Skip-Net and each scale is 2 times larger than 

the next. Besides, considering that residual is a very useful  

information both on the net optimization and the image 

details enhancement, we turn to use our Bi-Skip-Net to 

generate a residual adding to the inputs to output the image 

processing results and the framework is shown in Figure 1. 

The discriminator is designed by following the standard 

discriminator architecture. And the whole model is trained 

by CGAN with a specific content loss. 

3.2 Discriminator Network 

For the discriminator network, we use the content loss as 

the condition of the discriminator network. Given a target 

image ݔ, our goal is to obtain a task-specific estimate of x 

based on the observed image y. We formulate the total loss 

as follows: ܮ௧=ܮ௔ௗ௩ + ௖௢௡௧ܮݑ  
 

Where ܮ௖௢௡௧  is the content loss function which measures 

the divergence between ݔ  and our estimateݔ௘ . A natural 

choice of the content loss function ܮ௖௢௡௧  is ܮଶ loss ||ݔ௘ ଶଶ||ݔ−  which Nah [7] adopts it. However, ܮଶ  loss will be 

much larger for outliers and will reduce the performance of 

the model. Another typical approach is to apply ܮଵ  loss ||ݔ௘ − ||ݔ ,which is less sensitive to outliers and more 

robust when compared with ܮଶ  loss. Unfortunately, these 

two-pixel losses will amplify noise in most cases. Kupyn 

[6] use perceptual loss ||݂(ݔ௘) −  ଶଶ to represent the||(ݔ)݂

content loss, which also has its pros and cons: it’s capable 

of image processing well, but it cannot guarantee the 

structural consistency. What’s more, ݔ௘ obtained from the 

perceptual loss may not be the ideal estimate of ݔ even if ݔ௘  fulfills the condition ||݂(ݔ௘) − ଶଶ||(ݔ)݂ = 0 perfectly. 

That is, although ݔ௘  satisfies ݂(ݔ௘) = (ݔ)݂ , it’s not the 

case thatݔ௘ = ݔ as the feature extractor 	݂ is not a bijection.  

 

 
Figure 3. Problem caused by bi-level optimization. At epoch t, solution 

xt−1 tends to get close to x and we get xt by the gradient of L1 loss function. 

Then at epoch t + 1, solution xt tends to get close to xf rather than x and we 

get xt+1 by the gradient of perceptual loss function. This fluctuation will 
plague neural network optimization and the solution may get stuck in the 

local minimum xf or become divergent. 
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First, we apply a bi-level optimization to solve the above 

mentioned problem. It is known that the pixel loss can 

amply the image noise and that the perceptual loss cannot 

guarantee the structure consistency. It means that both of 

the two losses are non-identical with each other under the 

condition that the image must be identical with the image 

processing result. Thus, we propose a bi-level optimization 

to constrain the loss to satisfy the condition. Specifically, 

we make the two-level losses to interact with each other. 

The pixel loss can promote the perceptual loss tend to the 

condition and avoid the structure inconsistency. And the 

perceptual loss in turn to restrict the applied image noise. 

To balance the effects of the two losses, we normalize them 

to the same magnitude. The optimization consists of two 

steps that are base model training with MSE loss and the bi-

level loss interaction. In the beginning, only the MSE is 

used as the content loss for the divergence between the 

input and the output is big in initial iterations. After some 

iterations, we turn to apply the bi-level loss interaction. ܮଵ 

loss is identical with MSE loss in value space and it has the 

ability to contract the noise space. Thus, we use ܮଵ loss and 

the perceptual loss to interact with each other. However, it 

may cause a serious problem for gradient-based 

optimization. As shown in Figure3(a) and (b)(here we 

illustrate with a one-dimensional signal), the interaction of ܮଵ  loss and perceptual loss actually plagues the 

optimization and the solution may get stuck in the local 

minimum ݔ௙ or become divergent. Although ݔ௙ ’ 

sperceptual loss is zero, it has high cost in fact considering 

the pixel level divergence between ݔ௙  and ݔ, which poses a 

serious problem for gradient-based optimization 

algorithms. 

 Having considered the above issues, we innovatively 

propose another multi-objective optimization framework 

and formulate our content loss by combining ܮଵ  loss and 

perceptual loss together: 

௖௢௡௧ܮ  = α||ݔ௘ − (௘ݔ)݂||β+||ݔ −  ଶଶ||(ݔ)݂

 

where α and β are coefficients used to unify the 

magnitudes. To remain the similarity of content, pixel level 

loss and feature level loss both matters and sometimes they 

will conflict with each other: pixel level loss always 

amplifies image noise and damages the features of the 

image, while feature level loss could not guarantee the 

structure consistency in pixel level. Based on this 

motivation, our multi objective optimization is capable to 

obtain a trade-off between pixel level and feature level. 

What’s more, as shown inFigure3(c),the local minimum ݔ௙  

is eliminated and there exist only one global optimum ݔ by 

combining ܮଵ loss and perceptual loss together.  

For the sake of the significant part that the content loss 

plays in the training process where its gradient induces the 

direction of optimization, we have separated it from the 

total loss to discuss so far. The above-mentioned 

inducement to remain the similarity of the images’ content 

is consistent with the direction of the adversarial loss which 

encourages the network to prefer solutions that reside on the 

manifold of images by trying to fool the discriminator 

network. In other words, the adversarial loss and the content 

loss supplement each other. 

4. Experiments 

For the experiments, we implement tasks for image 

denoising. The experiments have been performed on a 

desktop with i7-6700K CPU and NVIDIA GTX-1080 

GPU. The experimental results are illustrated as follows. 
 

4.1 Image Denosing 

We evaluate the performance of our proposed network 

against several state-of-the-art mixed noise removal 

methods. We use BSD400 [8] for training and apply BSD68 

and 12 commonly used images for testing. To generate 

mixed noise, two main types of mixed noise were 

considered: 1) AWGN + SPN and 2) AWGN + RVIN. We 

choose four state-of-the-art methods for comparison: 

MBM3D (BM3D coupled with median filter) [9], the ݈ଵ −݈଴ 

[10], and the WJSR [11] for comparison. The source codes 

of all compared methods are downloaded from the authors’ 

websites. To evaluate the visual quality of the reconstructed 

images, Peak Signal to Noise Ratio (PSNR) and visual 

information fidelity (VIF)[12] are calculated to evaluate the 

visual quality. We apply ݈ଶ commonly used images in our 

experiments. For AWGN + SPN, the AWGN with noise 

levels σ = 10,30 mixed with SPN with noise densities ρ = 

20%,40% were considered. For AWGN + RVIN, the 

AWGN with noise levels σ = 15,25 mixed with RVIN with 

noise densities ρ = 25%,45% were considered. Tables 1 and 

2 present the PSNR values of all these methods for all the 

tested images. These images are corrupted by the AWGN + 

SPN or AWGN + RVIN respectively. The best metrics 

calculated are marked in bold. As shown in tables 3 and 4, 

our proposed method achieves much higher PSNR values 

than other methods in most cases. The average values of 

PSNR of our method is also the highest.  

Visual comparisons of denoising results are shown in 

Figure 4 and Figure 5. The proposed method can produce 

more clearly results. 
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Table 1. Comparison pf restoration results in PSNR for images 

corrupted byAWGN+SPN 

Table 2. Comparison pf restoration results in PSNR for images 
corrupted byAWGN+SPN  
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Figure 4. Restoration results of Barbara image (GN + SPN, α = 20; ρ = 

0.2). From left to right and top to bottom: original image, noise image, the 

reconstructed images by M −BM3D (PSNR = 23.64dB), l1−l0 (PSNR = 
29.41dB), WJSR (PSNR = 30.01dB), and our proposed method (PSNR = 

31.20dB). 

 
Figure 5. Restoraion results of Lena image (GN + SPN, α = 20; ρ = 

0.2). From left toright and top to bottom: original image, noise image, the 

reconstructed images by M −BM3D (PSNR = 27.61dB), l1−l0 (PSNR = 
31.31dB), WJSR (PSNR = 31.69dB), and our proposed method (PSNR = 

32.61dB). 

5 Conclusion 

In this paper, we unify image denoising task with a novel 

deep conditional generative adversarial network(CGAN) 

model using bi-skip connections and multi objective 

optimization. We demonstrate that with symmetric bi-skip 

as connections to integrate both deep and shadow features 

in our generator network, we achieved more accurate image 

processing results. Furthermore, we design two new 

optimizations, which are proved that multi-objective 

optimization is better than bi-level optimization, to solve 

the problem of common conditions being non-identical in 

our discriminator network, which constrain the loss to obey 

the condition and achieve a better performance. Extensive 

experimental analysis on image denoising task, , and 

comparisons to state-of-the-art method show that our 

proposed network outperforms existing approaches with a 

wide margin.  
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