
Adaptive Labeling for Deep Learning to Hash

Huei-Fang Yang1 Cheng-Hao Tu2 Chu-Song Chen2,3,4

1Dept. CSIE, National University of Kaohsiung, Taiwan
2Institute of Information Science, Academia Sinica, Taiwan

3Research Center for Information Technology Innovation, Academia Sinica, Taiwan
4MOST Joint Research Center for AI Technology and All Vista Healthcare

hfyang@nuk.edu.tw r04922023@ntu.edu.tw song@iis.sinica.edu.tw

Abstract

Hash function learning has been widely used for large-

scale image retrieval because of the efficiency of compu-

tation and storage. We introduce AdaLabelHash, a binary

hash function learning approach via deep neural networks

in this paper. In AdaLabelHash, class label representa-

tions are variables that are adapted during the backward

network training procedure. We express the labels as hy-

percube vertices in a K-dimensional space, and the class

label representations together with the network weights are

updated in the learning process. As the label representa-

tions (or referred to as codewords in this work), are learned

from data, semantically similar classes will be assigned

with the codewords that are close to each other in terms

of Hamming distance in the label space. The codewords

then serve as the desired output of the hash function learn-

ing, and yield compact and discriminating binary hash rep-

resentations. AdaLabelHash is easy to implement, which

can jointly learn label representations and infer compact

binary codes from data. It is applicable to both supervised

and semi-supervised hash. Experimental results on stan-

dard benchmarks demonstrate the satisfactory performance

of AdaLabelHash.

1. Introduction

Hashing techniques construct a mapping from high-

dimensional data to low-dimensional binary codes from

training samples, with an aim to preserve semantic similar-

ity of samples in the Hamming space. The learned binary

codes are fast in feature comparison, storage efficient, and

well suitable for large-scale vision problems such as image

or video retrieval. Over the past decade, great amounts of

methods have been proposed to learn compact hash codes.

These traditional approaches seek hash functions based on

the handcrafted features [10, 12, 19, 22, 29]. In recent years,

deep learning-based hashing approaches have become pop-

ular and attracted much attention [4, 8, 13, 14, 17, 31, 37].

Deep networks enable end-to-end learning, in which the

image representations and hash codes are jointly evolved.

Consequently, deep hashing approaches have achieved su-

perior retrieval performance.

In deep supervised hashing in which the semantic labels

provide supervision, one can train a classifier via neural net-

works to find hash functions during the classifier learning

process. This could result in a single model that produces

both the classification results and the binary hash codes.

One representative approach is SSDH [31]. It seeks the

hash mapping on a classification model by adding a latent

layer right before the classification layer. Outputs of the

latent layer are enforced to be close to binary, and the clas-

sification is assumed to rely on the latent concepts. The

quantized binary features of the latent layer then serve as

the hash codes. SSDH unifies classification and retrieval in

a single learning model and enables end-to-end training of

hash codes in a pointwise fashion. However, SSDH needs

pre-defined class-label representations to guide the training.

This paper introduces AdaLabelHash for hash mapping

learning, which leverages deep networks to seek appropri-

ate label representations for classification. In AdaLabel-

Hash, the semantic labels are trainable variables. Instead

of encoding the labels beforehand as done in standard su-

pervised learning, we encode the labels as vertices of a K-

dimensional unit-hypercube that are variables during train-

ing. As the label representations are free variables, no bi-

ases or constraints are imposed. After learning, similar

classes can be expressed with the labels found in the unit-

hypercube vertices.

Specifically, we assume that each label has its own rep-

resentation codeword that is the driving force behind hash

coding. The codewords are attractors that draw relevant

samples close in the label space and also are repulsors that

keep irrelevant samples apart. As shown in Figure 1, the

label representations {v} are expressed as a soft sign map-

1



tanh

v1

v2

vC

vj

ui

inner products 
& loss

hash layer
(tanh)image xi conv+pooling+FC

zj

zC

z2

z1

input
variables

representation
codewords

{W}

Figure 1. AdaLabelHash assumes that C unknown codewords {vj}, each of which expresses a class label, are variables to be recovered,

and hash coding is guided by these codewords. Each codeword attracts (repulses) data of similar (dissimilar) semantic meanings to the

concept it represents. In the left part, conv+pooling+FC denotes a neural network consisting of convolution layers, max-pooling and fully

connected layers, and their weights {W} are unknowns to be learned too. The representation codewords {vj} are generated by applying a

soft sign function (tanh) to dummy variables {zj}, the input to the right-hand-side network. As the value of each entry in {vj} is within

[−1, 1], it serves as an approximation of unit-hypercube vertex. Both the dummy free variable {zj} in the right part and the network

weights {W} in the left part are variables to be found during the learning process via the back-propagation algorithm.

ping (tanh) of the variable inputs {z} of a neural network.

Given the input image, the network weights W and variable

inputs z are jointly learned via the back-propagation train-

ing procedure, which generate the hash codes u and label

representations v.

Employing unknown inputs as variables has been uti-

lized for visualizations (e.g., [23] and DeepDream), image

style transfer [9] and optimizing generative models [1]. We

exploit this idea for learning hash codes and afford a length-

K binary representation per class. Besides, with the label

representations, we can generalize AdaLabelHash to handle

semi-supervised hashing via self-training [25].

The main characteristics of this paper are as follows:

• A new approach is introduced that explores the label

representations (or codewords) of semantic categories

as the unknown inputs for classification via deep mod-

els. These label representations guide the hash coding.

• Our approach can learn similarity-preserving hash

codes and discover the label representations simulta-

neously during the learning process, with no needs of

prior assumptions for the free input variables.

• Our approach is flexibly applicable to both single-

label and multi-label data, and extendable for semi-

supervised hashing.

2. Related Work

Learning-based hashing approaches can be classified

into three categories: unsupervised, supervised, and semi-

supervised hashing. Unsupervised hashing constructs hash

functions that preserve the similarity between data points in

the original input space based solely on samples without la-

bels, including SH [29], ITQ [10], and deep learning-based

approaches such as DH [18] and DeepBit [15, 16]. Among

the aforementioned approaches, in addition to similarity-

preserving, DeepBit further learns binary descriptors that

are rotationally invariant.

Supervised hashing learns binary codes by fully exploit-

ing annotated information provided in the data. The super-

vision can be pairwise similarity relations (e.g., BRE [12]

and MLH [19]) or class labels (e.g., ITQ-CCA [10] and

RSH [32]). Traditional methods learn hash functions to

encode hand-crafted visual descriptors into binary codes.

Recent deep hashing approaches have shown superior per-

formance. This is because deep networks can learn image

representations and hash functions simultaneously, and the

learned binary codes exhibit better discriminability. One

of the early deep hashing approaches is CNNH [30]. It is

a two-stage approach, where the first stage learns approxi-

mate hash codes and the second uses a deep network to learn

a mapping from the training data to hash codes. However, it

has a limitation that hash code learning and data represen-

tation learning cannot benefit each other. DNNH [13] over-

comes this limitation by jointly optimizing hash coding and

feature representation learning within one network. Later,

much of the work has been proposed. DSRH [36] proposes

to utilize the multilevel similarity information to guide the

learning of hash functions. DHN [37] and DPSH [14] lever-

age pairwise label similarity to optimize cross-entropy loss.

To learn concentrated hash codes, DCH [3] designs a mod-

ified pairwise cross-entropy loss based on Cauchy distribu-

tion. DVSQ [4] learns a visual-semantic embedding by a

two-stream network, one taking as input the labels and the

other the data, where the labels are generated by a skip-

gram model, e.g., word2vec. The recent HashGAN [2] uti-

lizes a generative model to synthesize images conditioned

on the pairwise similarity information for performance im-

provement. On the other hand, assuming that classification

depends on a set of on and off attributes, [17] learns bi-

nary codes that preserve label semantics. SSDH [31] treats



binary codes as hidden concepts that govern classification

and learns discriminative codes complying with semantic

labels as well as hash code properties. Besides, some re-

cent studies [6, 8, 24] have been focused on handling the

discrete constraint imposed on the networks. HashNet [6]

solves this problem by gradually changing a smoothed ob-

jective function to more non-smooth one during the course

of training. DMDH [8] minimizes the discrepancy between

the continuous hash codes and the desired discrete binary

codes. The above approaches still adopt a continuous relax-

ation to the discrete constraint. One can directly train on the

binary codes via policy gradient, as done in PGDH [33].

Due to the high cost to obtain extensive annotations and

the availability of abundant data without complete annota-

tions, semi-supervised hashing algorithms, e.g., SSH [27],

SSTH [28] and MLAGH [11] have been proposed, which

leverage the unlabeled samples in addition to the labeled

ones to perform hash code learning. The learned bi-

nary codes preserve the semantic similarity of the la-

beled data and the underlying data structures. Deep semi-

supervised hashing has received attention more recently.

Semi-SDH [34] utilizes a graph embedding to discover

the similarity between labeled and unlabeled data. DSH-

GANs [20] employs generative adversarial models to gen-

erate synthetic images for enriching the diversity of training

samples. The hash functions are learned from both the real

and the synthetic data.

Previous deep hashing approaches do not provide repre-

sentation codewords learned for semantic categories. Our

AdaLabelHash not only affords explicit representations for

semantic labels but can also capture the correlation between

labels as shown in Discussion.

3. Adaptive Labeling for Deep Hashing

Let X = {xi}
N
i=1

denote a set of N training images la-

beled with C classes. Each image belongs to one class (sin-

gle label case) or several classes (multi-labels case). Denote

S = {sij} to be the association matrix, with sij = 1 if

xi belongs to class j and sij = 0 otherwise, j = 1 · · ·C.

Our goal is to learn a mapping Ω : X → {−1, 1}K×N that

projects a sample xi into a K-bit hash code ui = Ω(xi).
We use a deep network to learn the mapping,

F(xi,W) ∈ R
K , where W denotes the weights of the net-

work F and the output is a K-dimensional vector. The hash

codes are then obtained by taking the sign of the network

outputs, ui = sgn(F(xi,W)), and sgn(·) ∈ {±1}K is the

sign function.

In common supervised learning, a C-dimensional vector

is used to represent the C classes. For example, to learn

a classifier in the single-label case, the j-th class is often

represented as a length-C one-hot vector, with the j-th ele-

ment being 1 and the others being 0. In our work, to learn

a hash function mapping, the classes are not expressed as a

constant C-dimensional vector, but variable vectors in K-

dimensional space, where K is the length of the hash-code.

More specifically, we assume that each class has its

own codeword in the K-dimensional space. The set of

codewords is denoted by V = {vj}
C
j=1

∈ {−1, 1}K×C ,

where vj is a K-bit binary codeword, or a vertex in the K-

dimensional hypercube. When the codewords are known

beforehand, one can directly employ them as the learning

goal and optimize a loss derived based on the fixed, given

codewords. However, without any prior knowledge about

the underlying data distribution, it is unlikely to obtain rep-

resentation codewords that well partition the feature space.

To avoid the need to hand-craft the representation code-

words, we instead treat the codewords as part of the net-

work parameters to be learned. We assume that the code-

words V are directly derived from a set of dummy variables

Z = {zj}
C
j=1

∈ R
K×C , where vj = sgn(zj). The code-

words act as attractors and repulsors during learning. The

learning objective is to make the binary code ui of sample

xi and a codeword vj close if sij = 1, and simultaneously

keep ui and vj as apart as possible if sij = 0.

The closeness between a pair of binary codes hi and vj
is determined by their Hamming distance: distH(ui, vj) =
1

2
(K−〈ui, vj〉), where 〈·, ·〉 is the inner product. Hence, the

inner product reflects the closeness between binary codes.

We define the objective function of AdaLabelHash for N

training samples as:

minW,ZL(W, Z) =

N∑

i=1

∑

sij=1

max(0,m− uT
i vj

+max(uT
i vt[sit 6= 1])), (1)

where m is the margin, which defines the inner product of

a similar sample-codeword pair should be at least m larger

than the least dissimilar sample-codeword pair, and Iverson

bracket indicator function when [sij 6= 1] evaluates to 1

sij 6= 1 and 0 otherwise, with {sij} the associatoin matrix

between data and label. In our experiments, m is set to 1.

A problem occurs in the above formulation is that we

cannot back-propagate the gradients to the unknowns W
and Z due to the vj = sgn(zj) and ui = sgn(F(xi,W))
functions. In AdaLabelHash, we use a soft sign function

tanh(·) to approximate the sign(·) instead, as shown in

Fig. 1. That is, vj = tanh(zj) and ui = tanh(F(xi,W)).
The similarity is measured by the real-valued hash codes

ui and codewords vj and is given as uT
i vj . AdaLabel-

Hash learns the hash coding F(xi,W) and the codewords

V simultaneously. That is, both the network weights and

class label representations are adjusted via back propaga-

tion. Because the label representations (codewords) are

learned from data, they are expected to better capture the

underlying data structure than the hand-crafted labeling,

where semantically similar classes can be represented by



closer codewords in the K-dimensional space, where K is

the hash-code length set for hash-function learning.

Once trained, the binary hash code of an input sam-

ple x can be efficiently obtained by converting the sam-

ple through the network and quantizing the activations of

the hash layer, h = sgn(u) = sgn(F(xi,W)). One may

introduce a quantization error in the learning objective as

in [6, 31], so that the learned codewords are more binarized.

Currently, we have not use the quantization loss term in the

formulation yet, but AdaLabelHash can incorporate it easily

if needed.

4. Semi-supervised Hashing via Self-training

Leveraging the representation codewords, AdaLabel-

Hash can be extended to semi-supervised learning, where

the input data are provided with or without label annota-

tions. Our method follows the self-training principle [25].

We first train AdaLabelHash on the labeled samples to make

the codewords possess some discrimination power. Then,

we treat the probabilities obtained by a softmax over the

inner products between the hash layer and the codewords

as confidence values and assign pseudo labels to the unla-

beled samples. We include only the unlabeled data with

pseudo labels of high confidences (i.e., confidence values

greater than a threshold) in the labeled data. The newly

formed training set (i.e., labeled data and unlabeled data

with assigned labels) is used to train the neural network.

This process is repeated several times to complete the semi-

supervised learning.

Each single-label image is associated with only one la-

bel, so one can assume that an unlabeled input sample is as-

sociated with the label of the highest probability. However,

the number of labels associated with a multi-label sample

is unknown. To deal with this issue, we take a conservative

approach to avoid performance degradation caused by mis-

assignment of the labels to the samples, where only the most

confident labels are used as the pseudo labels for an input

sample. We sort the labels according to their probabilities

in a descending order to obtain a ranked list. The ranked

list is divided into three disjoint sets, most-probable (top-k),

least-probable (bottom-k), and uncertain (remaining). We

assume that the input sample contains the most probable la-

bels and do not contain the least probable labels, and treat

the uncertain labels as missing. The losses and gradients of

missing labels are set to zeros, so that they do not contribute

to the neural network learning of semi-supervised hashing.

5. Experiments

In the section, we evaluate the proposed AdaLabelHash

on the CIFAR-10 and NUS-WIDE under the supervised

and semi-supervised settings. We also visualize the learned

binary representations to see if the label representations

capture the semantic similarity among categories.

Datasets. CIFAR-101, one of the most popular bench-

marks for evaluating retrieval algorithms, consists of 60,000

32 × 32 color images in 10 classes. It is a single-label

dataset, and each class contains 6,000 images. NUS-

WIDE2 contains about 270,000 flickr images, but we were

able to collect only about 230,000 images following the

given URLs. It is a multi-label dataset, in which each image

is associated with one or multiple labels in 81 concepts. Fol-

lowing the settings in [13, 30], we use a subset of 162,289

images in the 21 most frequent concepts. We split the data

for the supervised and semi-supervised settings as follows.

Supervised setting: This setting follows that in [31]. In

CIFAR-10, we use 10,000 images (1,000 images per class)

as the query set and use the remaining images to train the

network and to form the retrieval database. In NUS-WIDE,

2,100 images (100 images per concept) are randomly se-

lected to construct the query set, and the rest are used as

training images as well as the retrieval database.

Semi-supervised setting: Following the settings in [34],

in CIFAR-10, we randomly select 1,000 images (100 im-

ages per class) as the query set and use the remaining 59,000

images as the retrieval database. 5,000 images (500 images

per class) are selected from the retrieval database as the la-

beled training set and the remaining 54,000 images are used

as unlabeled training set. In NUS-WIDE, 2,100 images

(100 images per concept) are randomly selected as the query

set, and the rest are used as the retrieval database. The la-

beled training set contains 10,500 images selected from the

retrieval database, and the unlabeled training set contains

the rest images.

Table 1 shows the details of the two settings.

Evaluation Metrics. We evaluate the retrieval perfor-

mance using mean average precision (mAP). It is defined

as the mean of the average precision (AP) of all the queries,

that is, mAP = 1

N

∑N

i APi, with N the number of query

images. The APi of a query image i is given as

APi =
1

M

R∑

r=1

prec(r)⊙ rel(r), (2)

where M is the number of relevant images in the returned

list, prec(r) denotes the precision at the top r returned im-

ages, and rel(r) indicates whether the rth retrieved image is

relevant to the query or not. rel(r) = 1 means the returned

1https://www.cs.toronto.edu/˜kriz/cifar.html
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.

htm



Table 1. The statistics of datasets used in the experiments.

Supervised Semi-supervised

Dataset # classes training database query labeled training unlabeled training database query

CIFAR-10 10 50,000 50,000 10,000 5,000 54,000 59,000 1,000

NUS-WIDE 21 160,189 160,189 2,100 10,500 146,989 160,189 2,100

Table 2. The network architecture adopted in our experiments for

hash coding. LRN denotes the local response normalization that

implements the lateral inhibition. The ReLU is the activation func-

tion for all the layers, except for the hash layer that uses the tanh.

Layer Configuration

conv1 filter 64x11x11, stride 4, pad 0, LRN, maxpool 2

conv2 filter 256x5x5, stride 1, pad 2, LRN, maxpool 2

conv3 filter 256x3x3, stride 1, pad 1

conv4 filter 256x3x3, stride 1, pad 1

conv5 filter 256x3x3, stride 1, pad 1, maxpool 2

fc6 4096 nodes

fc7 4096 nodes

hash K nodes with tanh activations

image is a relevance of the query and 0 otherwise. We use

image labels to determine whether or not two images are

relevant. When two images share at least one common la-

bel, they are considered relevant.

Implementation details. Our implementation uses Keras

with a Tensorflow backend. We choose the CNN-F [7] as

the network model, which consists of 5 convolutional lay-

ers, 2 fully-connected layers (fc6 and fc7) and one classi-

fication output layer. We remove the output layer and add

in a hash layer of K nodes with tanh activations. Table 2

shows the detailed architecture. The weights of the first 7

layers are initialized with the weights pre-trained on Ima-

geNet [21] and the weights of the hash layer are initialized

by a Xavier uniform.

Besides image inputs, the other inputs to AdaLabelHash

are input variables (Z = {zj}
C
j=1

) for learning label rep-

resentations of semantic categories. Codeword learning is

similar to word embeddings in natural language processing

where words are mapped to real-valued vectors, which can

be easily implemented by the Embedding layer provided in

Keras. The entire AdaLabelHash network is optimized via

back-propagation using stochastic gradient descent (SGD)

with Nesterov momentum.

5.1. Results on CIFAR-10

Supervised experiments. We compare AdaLabelHash

with 11 deep hashing approaches, including SSDH [31],

DPSH [14], DMDH [8], DRSCH [35], DSCH [35],

DSRH [36], DQN [5], CNNH [30], DNNH [13], DHN [37],

Table 3. The mAPs of supervised methods on CIFAR-10.

Method 24 bits 32 bits 48 bits

AdaLabelHash 0.930 0.946 0.934

SSDH [31] 0.919 0.914 0.914

DPSH [14] 0.781 0.795 0.807

DVSQ [4] — 0.730 0.733

DMDH [8] — 0.719 0.732

DRSCH [35] 0.622 0.629 0.631

DSCH [35] 0.613 0.617 0.620

DSRH [36] 0.611 0.617 0.618

DQN [5] 0.558 0.564 0.580

DHN [37] 0.594 0.603 0.621

DNNH [13] 0.566 0.558 0.581

CNNH [30] 0.511 0.509 0.522

Figure 2. Visualization of the learned binary codes of AdaLabel-

Hash by t-SNE on CIFAR-10 when the code length is 48.

and DVSQ [4]. As shown in Table 3, AdaLabelHash pro-

vides better retrieval results than the approaches compared.

This suggests that joint learning of label representations and

hash codes are potentially useful and the learned hash codes

exhibit good discriminability.

Visualization of learned binary codes. Figure 2 shows

the t-SNE [26] visualization of the binary codes learned by

AdaLabelHash on CIFAR-10. As can be seen, AdaLabel-

Hash can learn a representation space where images of the

same semantic content form a group and the boundaries be-

tween different semantic groups are prominent. Besides, we

observe that semantic groups (e.g., bird, cat, dog) that share

common higher-level abstraction (e.g., animals) tend to re-

side closer in the feature space; therefore different higher-



Table 4. The mAPs of semi-supervised methods on CIFAR-10.

Method 24 bits 32 bits 48 bits

AdaLabelHash 0.806 0.816 0.845

Semi-SDH [34] 0.813 0.812 0.814

DSH-GANs [20] 0.781 0.787 0.802

MLAGH [11] 0.556 0.542 0.528

level abstractions reside in the different parts of the feature

space. For instance, the left side of the figure is animals

whereas the right side is with transportation concept. The

representation structures are captured by AdaLabelHash as

there are no additional high-level semantic priors, such as

relationships among labels, imposed during learning.

Semi-supervised experiments. In Table 4, we com-

pare AdaLabelHash to semi-supervised hashing ap-

proaches including Semi-SDH [34], DSH-GANs [20], and

MLAGH [11]. The results show that AdaLabelHash out-

performs almost all approaches at different code-length set-

tings, except for Semi-SDH at a shorter code length (24

bits). The reason could be that Semi-SDH exploits an on-

line graph approach, which can better capture the neighbor-

ing information between the unlabeled images and the label

images. In contrast, AdaLabelHash uses a simpler approach

but yields better results in overall.

5.2. Results on NUS-WIDE

Supervised experiments. Like the evaluation done on

CIFAR-10, AdaLabelHash is also compared to several

deep supervised hashing approaches on NUS-WIDE. As

reported in Table 5, AdaLabelHash performs more favor-

ably against almost all the approaches compared, except the

SSDH on the fewer-bits case at code length 24. We think

the reason is that a longer code would make the represen-

tation learning easier. Nevertheless, the results generally

show that AdaLabelHash is effective on obtaining compet-

itive results for hasing on mult-label cases. Note that the

HashNet [6] and HashGAN [3] are not included in com-

parison because they adopt a different setting of using all

the 81 concepts (labels). Although the results cannot be

compared directly due to different settings, we still show

their performance as a reference in the following. HashNet

yields mAPs of 69.9% and 71.1% when the code lengths are

32 and 48, respectively. HashGAN attains 74.4% at code

length 32 and 74.8% at the code length 48. Since more la-

bels are used, their performance is lower than ours.

Semi-supervised experiments. Table 6 shows the com-

parison of AdaLabelHash with the semi-supervised hash-

ing approaches, Semi-SDH [34] and MLAGH [11]. The

MLAGH utilizes the CNN features, which are 300-d PCA-

Table 5. The mAPs of supervised methods on NUS-WIDE. The

mAP is calculated based on top 50,000 returned images.

Method 24 bits 32 bits 48 bits

AdaLabelHash 0.758 0.769 0.800

SSDH [31] 0.787 0.750 0.782

DPSH [14] 0.722 0.736 0.741

DRSCH [35] 0.622 0.623 0.628

DSCH [35] 0.597 0.611 0.609

DSRH [36] 0.618 0.621 0.631

Table 6. The mAPs of semi-supervised methods on NUS-WIDE.

Method 24 bits 32 bits 48 bits

AdaLabelHash 0.759 0.791 0.806

Semi-SDH [34] 0.725 0.731 0.735

MLAGH [11] 0.701 0.712 0.717

Figure 3. Relations among the learned representation codewords of

NUS-WIDE. Thicker lines between codewords indicate smaller

distances (i.e., higher correlations) and different colors represent

different concept groups.

compressed features of the 4096-d features of fc6 (see Ta-

ble 2) extracted from the pre-trained CNN-F. It can be ob-

served that AdaLabelHash demonstrates superiority over

other approaches across all bits. These results suggest

again that AdaLabelHash can be readily applied to semi-

supervised hashing and yield satisfactory performance.

Label relations discovered from data. Thus far, we have

shown that AdaLabelHash can learn similarity-preserving

hash codes and handle supervised and semi-supervised

learning of hash functions. This is due largely to the label

representations discovered from visual data. Also thanks



to the explicit representations obtained, AdaLabelHash can

find the correlation between labels. The labels may exhibit

certain redundancy. We show that AdaLabelHash can re-

move redundancy among labels such that the labels of simi-

lar concepts are expected to have smaller distances between

their codewords in the representation space.

Figure 3 shows the relations between the codewords

learned from supervised AdaLabelHash for NUS-WIDE

based on modularity optimization; thicker lines between

codewords indicate smaller distances (i.e., higher corre-

lations) and different colors represent different concept

groups found in the representation space. As can be seen,

the label “clouds” has a higher correlation to a similar

concept of “sky” than a different concept of “buildings”.

The labels “vehicle” and “road” are highly correlated while

“sunset” and “person” are not. Additionally, the codewords

of similar semantic labels form a cluster, e.g., window and

buildings belong to the same cluster; lake, beach, and ocean

belong to another. Hence, the learned codewords exhibit the

relations among semantic labels.

6. Conclusions

We have presented AdaLabelHash, a deep learning ap-

proach to hash function learning. AdaLabelHash can learn

both label representations and neural-network weights si-

multaneously. The learned network can then be used to infer

binary hash codes that exhibit good discriminating capabil-

ity for image retrieval. Experimental results have demon-

strated that AdaLabelHash achieves competitive retrieval

performance for both supervised and semi-supervised hash-

ing. The representation codewords learned from data via

network training can reflect relations among the labels.

Acknowledgment

This work is supported in part by the Ministry of Science

and Technology of Taiwan under grants MOST 108-2634-

F-001-004 and MOST 107-2218-E-390-006-MY2.

References

[1] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam. Op-

timizing the latent space of generative networks. CoRR,

abs/1707.05776, 2017. 2

[2] Y. Cao, B. Liu, M. Long, and J. Wang. HashGAN: Deep

learning to hash with pair conditional wasserstein GAN. In

Proc. CVPR, pages 1287–1296, 2018. 2

[3] Y. Cao, M. Long, B. Liu, and J. Wang. Deep cauchy hashing

for hamming space retrieval. In Proc. CVPR, 2018. 2, 6

[4] Y. Cao, M. Long, J. Wang, and S. Liu. Deep visual-semantic

quantization for efficient image retrieval. In CVPR, 2017. 1,

2, 5

[5] Y. Cao, M. Long, J. Wang, H. Zhu, and Q. Wen. Deep quan-

tization network for efficient image retrieval. In AAAI, pages

3457–3463, 2016. 5

[6] Z. Cao, M. Long, J. Wang, and P. S. Yu. HashNet: Deep

learning to hash by continuation. In ICCV, 2017. 3, 4, 6

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014. 5

[8] Z. Chen, X. Yuan, J. Lu, Q. Tian, and J. Zhou. Deep hashing

via discrepancy minimization. In Proc. CVPR, pages 6838–

6847, 2018. 1, 3, 5

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In CVPR, pages 2414–

2423, 2016. 2

[10] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A procrustean approach to learning binary

codes for large-scale image retrieval. IEEE Trans. Pattern

Anal. Mach. Intell., 35(12):2916–2929, 2013. 1, 2

[11] H. Hu, K. Wang, C. Lv, J. Wu, and Z. Yang. Semi-supervised

metric learning-based anchor graph hashing for large-scale

image retrieval. IEEE Trans. Image Processing, 28(2):739–

754, 2019. 3, 6

[12] B. Kulis and T. Darrell. Learning to hash with binary recon-

structive embeddings. In NIPS, pages 1042–1050, 2009. 1,

2

[13] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature

learning and hash coding with deep neural networks. In

CVPR, pages 3270–3278, 2015. 1, 2, 4, 5

[14] W. Li, S. Wang, and W. Kang. Feature learning based deep

supervised hashing with pairwise labels. In IJCAI, pages

1711–1717, 2016. 1, 2, 5, 6

[15] K. Lin, J. Lu, C.-S. Chen, and J. Zhou. Learning compact

binary descriptors with unsupervised deep neural networks.

In Proc. CVPR, pages 1183–1192, 2016. 2

[16] K. Lin, J. Lu, C.-S. Chen, J. Zhou, and M.-T. Sun. Unsu-

pervised deep learning of compact binary descriptors. IEEE

Trans. Pattern Anal. Mach. Intell., 2018. 2

[17] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen. Deep learn-

ing of binary hash codes for fast image retrieval. In CVPRW

on DeepVision: Deep Learning in Computer Vision, pages

27–35, 2015. 1, 2

[18] J. Lu, V. E. Liong, and J. Zhou. Deep hashing for scalable

image search. IEEE Trans. Image Processing, 26(5):2352–

2367, 2017. 2

[19] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-

pact binary codes. In ICML, pages 353–360, 2011. 1, 2

[20] Z. Qiu, Y. Pan, T. Yao, and T. Mei. Deep semantic hashing

with generative adversarial networks. In ACM SIGIR, pages

225–234, 2017. 3, 6

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. Int’l J. Computer Visionl, pages

211–252, 2015. 5

[22] F. Shen, C. Shen, W. Liu, and H. T. Shen. Supervised discrete

hashing. In CVPR, pages 37–45, 2015. 1

[23] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-

side convolutional networks: Visualising image classifica-

tion models and saliency maps. CoRR, abs/1312.6034, 2013.

2



[24] S. Su, C. Zhang, K. Han, and Y. Tian. Greedy Hash: To-

wards fast optimization for accurate hash coding in CNN. In

NeurIPS, pages 806–815, 2018. 3

[25] I. Triguero, S. Garcı́a, and F. Herrera. Self-labeled tech-

niques for semi-supervised learning: taxonomy, software

and empirical study. Knowledge and Information Systems,

42(2):245–284, 2015. 2, 4

[26] L. van der Maaten and G. Hinton. Visualizing high-

dimensional data using t-SNE. Journal of Machine Learning

Research, 9: 25792605, 2008. 5

[27] J. Wang, S. Kumar, and S. Chang. Semi-supervised hash-

ing for large-scale search. IEEE Trans. Pattern Anal. Mach.

Intell., 34(12):2393–2406, 2012. 3

[28] Q. Wang, L. Si, and D. Zhang. Learning to hash with partial

tags: Exploring correlation between tags and hashing bits for

large scale image retrieval. In ECCV, pages 378–392, 2014.

3

[29] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

NIPS, pages 1753–1760, 2008. 1, 2

[30] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-

ing for image retreieval via image representation learning. In

AAAI, pages 2156–2162, 2014. 2, 4, 5

[31] H.-F. Yang, K. Lin, and C.-S. Chen. Supervised learning of

semantics-preserving hash via deep convolutional neural net-

works. IEEE Trans. Pattern Anal. Mach. Intell., 40(2):437–

451, 2018. 1, 2, 4, 5, 6

[32] X. Yuan, Z. Chen, J. Lu, J. Feng, and J. Zhou.

Reconstruction-based supervised hashing. Pattern Recogni-

tion, 79:147–161, 2018. 2

[33] X. Yuan, L. Ren, J. Lu, and J. Zhou. Relaxation-free deep

hashing via policy gradient. In Proc. ECCV, 2018. 3

[34] J. Zhang, Y. Peng, and J. Zhang. SSDH: Semi-supervised

deep hashing for large scale image retrieval. IEEE Trans.

Circuits and Systems for Video Technology, 29(1):212–225,

2019. 3, 4, 6

[35] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-

scalable deep hashing with regularized similarity learning for

image retrieval and person re-identification. IEEE Trans. Im-

age Processing, 24(12):4766–4779, 2015. 5, 6

[36] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic

ranking based hashing for multi-label image retreieval. In

CVPR, pages 1556–1564, 2015. 2, 5, 6

[37] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing net-

work for efficient similarity retrieval. In AAAI, pages 2415–

2421, 2016. 1, 2, 5


