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Abstract

Detecting spoofing attacks plays a vital role for deploy-

ing automatic face recognition for biometric authentication

in applications such as access control, face payment, device

unlock, etc. In this paper we propose a new anti-spoofing

network architecture that takes advantage of multi-modal

image data and aggregates intra-channel features at mul-

tiple network layers. We also transfer strong facial fea-

tures learned for face recognition and show their benefits

for detecting spoofing attacks. Finally, to increase the gen-

eralization ability of our method to unseen attacks, we use

an ensemble of models trained separately for distinct types

of spoofing attacks. The proposed method achieves state-

of-the-art result on the largest multi-modal anti-spoofing

dataset CASIA-SURF [26].

1. Introduction

With the rapid growth of face recognition technology, it

becomes crucial to protect automatic authentication systems

from spoofing attacks and to deny unauthorized access. The

deployed systems should be able to determine the liveness

of the person in front of the camera, for example, by rec-

ognizing and denying any types of face presentation attacks

such as printed photographs, video replays, 3D masks and

others.

Face recognition has achieved tremendous progress with

state-of-the-art methods readily by-passing human-level

performance [22]. A significant part of this success can

be attributed to the availability of large annotated face

datasets [9, 19] typically collected from the Internet. On

the contrary, datasets for face anti-spoofing attacks require

a tedious process of manual data collection, and are there-

fore limited in the number of unique people and samples.

Anti-spoofing algorithms, however, can benefit from differ-

ent image modalities such as Infrared and Depth channels,

captured by dedicated cameras. These modalities provide

complementary information, hence, their combination is ex-

Figure 1. Examples of real and fake images from CASIA-SURF

dataset.

pected to improve liveness detection. Indeed, IR cameras

are insensitive to electronic displays and can prevent attacks

from phones and tablets, while depth channel makes it eas-

ier to distinguish flat printed surfaces from face shapes.

The majority of current face anti-spoofing datasets con-

tain RGB images only [2, 5]. Previous multi-modal

datasets are limited in the number of subjects [4, 7], hence,

the existing methods risk to overfit to the training data.

The recently released face anti-spoofing dataset CASIA-

SURF [26] pushes the limits of the liveness detection task

both in terms of the dataset size and the number of presented

modalities (RGB, IR, Depth). CASIA-SURF allows to de-

velop new neural network models that benefit from multiple

modalities and can be trained from a large corpus of data.

In this paper we introduce a new method for solving

face anti-spoofing problem. We modify the architecture pre-

sented in [26], processing each modality separately and ag-

gregating layer features at different levels, which increases

the cooperation between RGB, IR and Depth branches of

the neural network.



Despite being significantly larger than previous anti-

spoofing datasets, CASIA-SURF is still orders of magni-

tude smaller compared to standard datasets for face recog-

nition. To deploy powerful Convolutional Neural Network

(CNN) models, we benefit from CNNs pretrained on four

face attribute/identity recognition datasets and then fine-

tune our final model on CASIA-SURF. We argue that such

pre-training on different source domains provides rich face-

specific features and can improve models for face anti-

spoofing.

To increase the robustness to unknown attacks, we train

multiple models on different subsets of the training data,

leaving one attack type out, and then ensemble these mod-

els. As a result, our method achieves 99.8739 TPR at

FPR=10−4 on the CASIA-SURF test set, ranking 1st in the

Chalearn LAP multi-modal face anti-spoofing attack detec-

tion challenge [14].

2. Related work

There are two types of approaches to liveness detection

for biometric security systems. The first family of meth-

ods [18, 23, 1] requires interaction with the user in the

form of certain actions, such as eye blinking, head move-

ments or changing facial expressions. While such methods

may perform well to prevent spoofing attacks with printed

images and rigid 3D masks, they can be compromised by

video attacks demonstrating required actions. Moreover,

such methods can be inappropriate or undesired in certain

application scenarios.

The second family of methods [8, 21, 13, 15] is aimed

at detecting liveness from just a single image of a person.

Such algorithms are convenient and fast for end-users while

the liveness verification could be run in the background.

There is a number of datasets with fake and real im-

ages that could be used for developing non-cooperative

liveness detection. Replay-Attack [3], CASIA-FASD [27]

and SiW [15] datasets contain still RGB images. MSU-

MFSD [24], Replay-Mobile [5] and OULU-NPU [2] pro-

vide video recordings of attacks from mobile devices. How-

ever, these datasets contain only the RGB modality, hence,

limiting the power and generalization of associated meth-

ods. As new types of spoofing attacks emerge (3D realistic

silicon masks) and the quality of video devices is constantly

improving, RGB channel is not efficient enough to provide a

high level of security. Additional image channels, provided

by special cameras, such as infrared or depth, could enrich

the number of useful features (light distribution, eye reflec-

tion, face surface) therefore making anti-spoofing models

more reliable.

Surface Eyes Nose Mouth Split

1 Flat X val/test

2 Curved X val/test

3 Flat X X val/test

4 Curved X X train

5 Flat X X X train

6 Curved X X X train

Table 1. Different types of spoofing attacks from CASIA-SURF.

All attacks contain printed images of the target, the paper prints

could be bent or left flat while some regions could be cut out.

Checkmarks indicate which regions were cut in each attack.

3. CASIA-SURF dataset

CASIA-SURF dataset [26] includes 21000 videos of

1000 subjects with one real and six fake videos per subject

where each fake videos belongs to a different type of attack.

The videos are recorded by the Intel RealSense SR300 cam-

era and contain three modalities (RGB, IR and Depth). The

dataset is divided into training, development and test sub-

sets each containing 300, 100 and 600 unique subjects. Ev-

ery 10th frame from each video is selected and distributed

over the three subsets with 148K, 48K and 295K frames re-

spectively.

To focus on the generalization to unknown attacks,

Chalearn LAP challenge provides only a part of the CASIA-

SURF dataset for training, i.e. for each subject only a subset

of fake frames is available. Hence, challenge participants

were given with about 30K frames for training and 9.6K

frames for validation.

Examples of fake and real images from the CASIA-

SURF dataset are illustrated in Fig. 1. Printed attacks dif-

fer by the shape (flat or curved) and regions showing parts

of the real face. More information on the type of attacks

is given in Table 1. Note, that attacks in the test set dif-

fer from attacks in the training set, therefore the successful

model should avoid intra-class overfitting which was a com-

mon issue in previous anti-spoofing datasets.

3.1. Baseline method

With the release of the CASIA-SURF dataset, Zhang

et al. [26] also introduced a method for the multi-modal

face anti-spoofing task. The proposed pipeline is processing

each of the three modalities separately using resnet-18 [10]

as a backbone, and then performs the re-weighting of fea-

tures from the last layer of each branch to select the more

informative channel features while suppressing the less use-

ful ones. Then the re-weighted features are concatenated

and processed by two more residual blocks. Finally, the

global average pooling (GAP) and two consecutive fully-

connected layers complete the network structure. Authors

provide extensive experiments to show the advantages of



Figure 2. The proposed architecture. RGB, IR and Depth streams are processed separately using res1, res2, res3 blocks from resnet-34 as a

backbone. The res3 output features are re-weighted and fused via the squeeze and excitation (SE) block and then fed into res4. In addition,

branch features from res1, res2, res3 are concatenated and processed by corresponding aggregation blocks, each aggregation block also

uses information from the previous one. The resulting features from agg3 are fed into res4 and summed up with the features from the

modality branch. On the diagram: GAP - global average pooling;
⊕

- concatenation; + - elementwise addition.

this architecture and in our work we refer to it as a baseline

method.

3.2. Evaluation metrics

The evaluation of face anti-spoofing methods can be

done in different ways. Prior work [2, 5, 16, 11] uses Av-

erage Classification Error Rate (ACER) since liveness pre-

diction can be seen as a binary classification task. However,

similar to face recognition, one should pay attention to the

True Positive Rate at some fixed False Positive Rate. This

approach enables to measure how many real samples will

pass the anti-spoofing test while accepting no more than

some percentage of spoofing attacks.

Here we follow the evaluation metric of the Chalearn

LAP Challenge, and report TPR at 10−4 FPR, which can be

obtained from the receiver operating characteristic (ROC)

on the target set.

4. Proposed method

In this section we describe our method and its training

details.

4.1. Attack specific folds

To increase robustness to new attacks, where attack types

at test time can differ from attacks presented in the training

set, we split training data into three folds. Each fold con-

tains two different attacks, while images of the third attack

type are used for validation. Once trained, we treat three

different networks as a single model by simply averaging

their prediction scores.

Backbone Dataset Task

1 resnet-34 Casia-Web face [25] Face rec.

2 resnet-34 AFAD-lite [17] Gender class.

3 resnet-50 MSCeleb-1M [9] Face rec.

4 resnet-50 Asian dataset [28] Face rec.

Table 2. Face datasets and CNN architectures used to pre-train our

networks.

4.2. Transfer learning

Many image recognition tasks with limited training

data benefit from CNN pre-training on large-scale image

datasets, such as ImageNet [6]. Finetuning network pa-

rameters that have been pre-trained on various source tasks

leads to different results on the target task. In our exper-

iments we use four datasets designed for face recognition

and gender classification (see Table 2), to create good ini-

tialization for our face anti-spoofing networks. We also use

multiple backbone ResNet architectures and losses for ini-

tial tasks to increase the variability. Similar to networks

trained for attack-specific folds in Sec. 4.1, we average pre-

dictions of models trained with different initialization.



Method Initialization Fold TPR at FPR=10−4

Zhang, Wang et al.[26] 56.80*

resnet-18 subject 5-fold 60.54

resnet-34 subject 5-fold 74.55

resnet-34 attack 3-fold 78.89

resnet-34 ImageNet [6] attack 3-fold 92.12

resnet-34 CASIA-Web face [25] attack 3-fold 99.80

A. resnet-34 with MLFA CASIA-Web face [25] attack 3-fold 99.87

B. resnet-50 with MLFA MSCeleb-1M [9] attack 3-fold 99.63

C. resnet-50 with MLFA Asian dataset [28] attack 3-fold 99.33

D. resnet-34 with MLFA AFAD-lite [17] attack 3-fold 98.70

A,B,C,D ensemble attack 3-fold 100.00

Table 3. Results on CASIA-SURF validation subset.

4.3. Model architecture

Our final network architecture is based on the ResNet-

34 and ResNet-50 [10] backbone with SE modules as illus-

trated in Fig. 2. Following the method described in [26],

each modality is processed by the first three residual con-

volutional blocks, then the output features are fused us-

ing squeeze and excitation fusion module and processed by

the remaining residual block. Differently from the base-

line method we enrich the model with additional aggrega-

tion blocks at each feature level. Each aggregation block

takes features from the corresponding residual blocks and

from previous aggregation block, making model capable of

finding inter-modal correlations not only at a fine level but

also at a coarse one.

Additionally, we train each model using two initial ran-

dom seeds. Given separate networks for attack-specific

folds and different pre-trained models, our final liveness

score is obtained by averaging outputs of 24 neural network.

5. Experiments

This section describes the implementation, hardware

and software details and shows the importance of each

additional improvement in terms of evaluation metric

on the validation set, provided by Chalearn LAP chal-

lenge. We release the code and our trained mod-

els at https://github.com/AlexanderParkin/

ChaLearn_liveness_challenge.

5.1. Implementation details

All the code was implemented in PyTorch [20] and mod-

els were trained on 4 NVIDIA 1080Ti. Single model trains

about 3 hours and the inference takes 8 seconds per 1000

images.

All neural nets were trained using ADAM [12] with co-

sine learning rate strategy and optimized for standard cross

entropy loss for two classes. We trained each model for 30

epochs with initial learning rate at 0.1 with batch size of

128. The same learning strategy was applied to pre-train

models on the gender recognition task.

5.2. Preprocessing

CASIA-SURF already provides face crops so no detec-

tion algorithms were used to align images. Face crops were

resized to 125× 125 pixels and then center crop 112× 112

was taken. At the training stage horizontal flip was applied

with 0.5 probability. We also tested different crop and rota-

tion strategies as well as test-time augmentation, however,

this did not result in significant improvements and no addi-

tional augmentation was used in the final model except the

above.

5.3. Baseline

Unless mentioned explicitly, we report results on

Chalearn LAP challange validation set obtained from the

Codalab evaluation platform. First of all, we reproduced

baseline method [26] with Resnet-18 backbone and trained

it using 5 fold cross-validation strategy. All folds are split

based on the subject identity so images from the same per-

son belong only to one fold. Then the score is averaged for

the five trained nets and TPR@FPR = 10−4 is reported

in Table 3. The resulting performance is close to perfect and

similar to the previously reported results in [26], which was

calculated on the test set. The test set differs from the vali-

dation, but belongs to the same spoofing attack distribution.

Next, we expand the backbone architecture to ResNet-

34 which improves the score by a large margin. Due to the

GPU limitations we further focuse only on ResNet-34 and

add Resnet-50 only at the final stage.

5.4. Attack­specific folds

Here we compare the 5-fold split strategy based on sub-

ject ids with the strategy based on spoof attack types. Real



Figure 3. Examples of fake and real samples with highest standard

deviation among predicted liveness scores from models A,B,C,D.

examples by subject identity were assigned randomly to the

one of the three folds.

Despite the fact that the new model computes an average

of three network outputs while each of these networks was

trained on less data compared to the subject 5-fold learning

strategy, our model achieves better performance compared

to baselines (see Table 3). We explain this by the improved

generalization to new attacks due to the training for different

types of attacks.

5.5. Initialization matters

In the next experiment we initialize each of the three

modality branches of our network with the res1, res2, res3

blocks from the ImageNet pre-trained network [6]. The Fu-

sion SE parts are left unchanged and the final res4 block is

also initialized by the ImageNet pre-trained weights. Fine-

tuning of this model on the CASIA-SURF dataset gives sig-

nificant improvement over networks with random initializa-

tion (see Table 3). Moreover, switching pre-training to the

face recognition task on the CASIA-Web face dataset [25]

improves results by even a larger margin and reaches almost

perfect TPR of 99.80%.

5.6. Multi­level feature aggregation

Here we examine the effect of multi-level feature aggre-

gation (MLFA) described in the model architecture section.

We initialize aggregation modules with random weights and

train the new architecture following our best learning proto-

col. Our ResNet-34 network with MLFA blocks has demon-

strated error reduction by the factor 1.5x compared to the

network without MFLA blocks.

5.7. Ensembling

To improve the stability of our solution we use four

face related datasets as an inialization for the final model.

We used publicly available networks with weights trained

for face recognition tasks on the CASIA-WebFace [25],

MSCeleb-1M [9] and private asian faces [28]. We also

trained a network for gender classification on the AFAD-

lite [17] dataset. Different tasks, losses and datasets im-

ply different convolutional features and the average predic-

tion of models finetuned with such initializations leads to

100.00% TPR@FPR=10−4.

Such a high score meets the requirements of real world

security applications, however, it was achieved using a large

number of ensembling networks. In future work we plan

to focus on reducing the size of the model and making it

applicable for the real-time execution.

5.8. Solution stability

The consistency and stability of model performance on

unseen data is important especially when it comes to real

world security applications. During the validation phase of

the challenge seven teams achieved perfect or near perfect

accuracy, however only three solutions managed to hold

close level of performance on the test set (see Table 4),

where ours showed the smallest drop in performance com-

pared to the validation results.

Valid Test

Ours 100.0000 99.8739

Team 2 100.0000 99.8282

Team 3 100.0000 99.8052

Team 4 100.0000 98.1441

Team 5 99.9665 93.1550

Team 6 100.0000 87.2094

Team 7 100.0000 25.0601

Table 4. Shrinkage of TPR at FPR=10−4 score on validation and

test sets of Chalearn LAP face anti-spoofing challenge.

We believe that the stability of our solution was caused

by the diversity of networks in our final ensemble in terms

of network architectures, pre-training tasks and random

seeds.

5.9. Qualitative results

In this section we analyze difficult examples for our

model. We run four networks (namely A,B,C,D in Table 3)

on the Chalearn LAP challenge validation set and select ex-

amples with highest standard deviation on the liveness score

among all samples. High STD implies conflicting predic-

tions by different models. Fig. 3 shows examples for which

the networks disagree at most. As can be seen, the model



Figure 4. Examples of fake and real samples from validation sub-

set where predicted liveness score is close to the threshold at

FPR=10−4.

D (which achieves the lowest TPR among all four mod-

els) tends to understate the liveness score, assigning reals

to fakes. But it is helpful in the case of hard fake examples,

when two out of three other networks are wrong. Therefore,

Using only three models in the final ensemble would have

led to lower score on the validation set.

Fig. 4 demonstrates fakes and real samples which were

close to the threshold at FPR=10−4. While they are dis-

tinguishable by human eye, one of the three modalities for

every example looks similar to the normal one from the op-

posed class, so models based only on one modality may

produce wrong predictions. Processing RGB, Depth and IR

channels together allows to overcome this issue.

5.10. Multi­modality

Finally, we examine the advantage of multi-modal net-

works over networks trained for each of the three modalities

separately. We take our architecture with three branches and

aggregation blocks, but instead of passing (RGB, IR, Depth)

channels, we trained three models with (RGB, RGB, RGB),

(IR, IR, IR) and (Depth, Depth, Depth) inputs. This allows

a fair comparison with multi-modal network since all these

architectures were identical and had the same number of pa-

rameters.

As can be seen from Table 5, using only RGB images

results in low performance. The corresponding model over-

fitted to the training set and achieved only 7.85% TPR

at FPR=10−4. The IR based model showed remarkably

better results, reaching 57.41% TPR at FPR=10−4 since

IR images contained less identity details and the dataset

size in this case was not so crucial as it was for the RGB

Modality
TPR at FPR

= 10−2 = 10−3 = 10−4

RGB 71.74 22.34 7.85

IR 91.82 72.25 57.41

Depth 100.00 99.77 98.40

RGB+IR+Depth 100.00 100.00 99.87

Table 5. The effect of modalities measured on the validation set.

All models were pre-trained on the CASIA-Web face recognition

task and finetuned with the same learning protocol.

model. The highest score of 98.40% TPR at FPR=10−4 was

achieved by the Depth modality, suggesting the importance

of the facial shape information for the anti-spoofing task.

However, the multi-modal network performed much bet-

ter than the Depth network alone, reducing false rejection

error from 1.6% to 0.13%, and showing the evidence of the

synergetic effect of modality fusion.

6. Conclusion

In this paper we have presented a new method for face

anti-spoofing detection which has achieved top-1 rank at

the Chalearn LAP face anti-spoofing challenge. We dis-

cussed in details three different directions: data, architec-

ture and initialization, that summed up to a consistent so-

lution, demonstrating significant improvements on a test

set. First, we have demonstrated that careful selection of

a training subset by the types of spoofing samples better

generalizes to unseen attacks. Second, we have proposed a

multi-level feature aggregation module which fully utilizes

the feature fusion from different modalities both at coarse

and fine levels. Finally, we have examined the influence of

feature transfer from different pre-trained models on the tar-

get task and showed that using the ensemble of various face

related tasks as source domains increases the stability and

the performance of the system.

The code and pre-trained models for our approach

are publicly available from the github repository at

https://github.com/AlexanderParkin/

ChaLearn_liveness_challenge.
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