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Abstract

Detecting spoofing attacks plays a vital role for deploy-
ing automatic face recognition for biometric authentication
in applications such as access control, face payment, device
unlock, etc. In this paper we propose a new anti-spoofing
network architecture that takes advantage of multi-modal
image data and aggregates intra-channel features at mul-
tiple network layers. We also transfer strong facial fea-
tures learned for face recognition and show their benefits
for detecting spoofing attacks. Finally, to increase the gen-
eralization ability of our method to unseen attacks, we use
an ensemble of models trained separately for distinct types
of spoofing attacks. The proposed method achieves state-
of-the-art result on the largest multi-modal anti-spoofing
dataset CASIA-SURF [26].

1. Introduction

With the rapid growth of face recognition technology, it
becomes crucial to protect automatic authentication systems
from spoofing attacks and to deny unauthorized access. The
deployed systems should be able to determine the liveness
of the person in front of the camera, for example, by rec-
ognizing and denying any types of face presentation attacks
such as printed photographs, video replays, 3D masks and
others.

Face recognition has achieved tremendous progress with
state-of-the-art methods readily by-passing human-level
performance [22]. A significant part of this success can
be attributed to the availability of large annotated face
datasets [9, 19] typically collected from the Internet. On
the contrary, datasets for face anti-spoofing attacks require
a tedious process of manual data collection, and are there-
fore limited in the number of unique people and samples.
Anti-spoofing algorithms, however, can benefit from differ-
ent image modalities such as Infrared and Depth channels,
captured by dedicated cameras. These modalities provide
complementary information, hence, their combination is ex-
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Figure 1. Examples of real and fake images from CASIA-SURF
dataset.

pected to improve liveness detection. Indeed, IR cameras
are insensitive to electronic displays and can prevent attacks
from phones and tablets, while depth channel makes it eas-
ier to distinguish flat printed surfaces from face shapes.

The majority of current face anti-spoofing datasets con-
tain RGB images only [2, 5]. Previous multi-modal
datasets are limited in the number of subjects [4, 7], hence,
the existing methods risk to overfit to the training data.
The recently released face anti-spoofing dataset CASIA-
SURF [26] pushes the limits of the liveness detection task
both in terms of the dataset size and the number of presented
modalities (RGB, IR, Depth). CASIA-SURF allows to de-
velop new neural network models that benefit from multiple
modalities and can be trained from a large corpus of data.

In this paper we introduce a new method for solving
face anti-spoofing problem. We modify the architecture pre-
sented in [26], processing each modality separately and ag-
gregating layer features at different levels, which increases
the cooperation between RGB, IR and Depth branches of
the neural network.



Despite being significantly larger than previous anti-
spoofing datasets, CASIA-SUREF is still orders of magni-
tude smaller compared to standard datasets for face recog-
nition. To deploy powerful Convolutional Neural Network
(CNN) models, we benefit from CNNs pretrained on four
face attribute/identity recognition datasets and then fine-
tune our final model on CASTIA-SURF. We argue that such
pre-training on different source domains provides rich face-
specific features and can improve models for face anti-
spoofing.

To increase the robustness to unknown attacks, we train
multiple models on different subsets of the training data,
leaving one attack type out, and then ensemble these mod-
els. As a result, our method achieves 99.8739 TPR at
FPR=10"* on the CASIA-SUREF test set, ranking 1st in the
Chalearn LAP multi-modal face anti-spoofing attack detec-
tion challenge [14].

2. Related work

There are two types of approaches to liveness detection
for biometric security systems. The first family of meth-
ods [18, 23, 1] requires interaction with the user in the
form of certain actions, such as eye blinking, head move-
ments or changing facial expressions. While such methods
may perform well to prevent spoofing attacks with printed
images and rigid 3D masks, they can be compromised by
video attacks demonstrating required actions. Moreover,
such methods can be inappropriate or undesired in certain
application scenarios.

The second family of methods [8, 21, 13, 15] is aimed
at detecting liveness from just a single image of a person.
Such algorithms are convenient and fast for end-users while
the liveness verification could be run in the background.

There is a number of datasets with fake and real im-
ages that could be used for developing non-cooperative
liveness detection. Replay-Attack [3], CASIA-FASD [27]
and SiW [15] datasets contain still RGB images. MSU-
MFSD [24], Replay-Mobile [5] and OULU-NPU [2] pro-
vide video recordings of attacks from mobile devices. How-
ever, these datasets contain only the RGB modality, hence,
limiting the power and generalization of associated meth-
ods. As new types of spoofing attacks emerge (3D realistic
silicon masks) and the quality of video devices is constantly
improving, RGB channel is not efficient enough to provide a
high level of security. Additional image channels, provided
by special cameras, such as infrared or depth, could enrich
the number of useful features (light distribution, eye reflec-
tion, face surface) therefore making anti-spoofing models
more reliable.

|| Surface | Eyes [ Nose | Mouth [ Split

1 Flat v val/test
2 | Curved v val/test
3 Flat v v val/test
4 | Curved v v train
5 Flat v v v train
6 | Curved v N v train

Table 1. Different types of spoofing attacks from CASIA-SURF.
All attacks contain printed images of the target, the paper prints
could be bent or left flat while some regions could be cut out.
Checkmarks indicate which regions were cut in each attack.

3. CASIA-SURF dataset

CASIA-SURF dataset [26] includes 21000 videos of
1000 subjects with one real and six fake videos per subject
where each fake videos belongs to a different type of attack.
The videos are recorded by the Intel RealSense SR300 cam-
era and contain three modalities (RGB, IR and Depth). The
dataset is divided into training, development and test sub-
sets each containing 300, 100 and 600 unique subjects. Ev-
ery 10th frame from each video is selected and distributed
over the three subsets with 148K, 48K and 295K frames re-
spectively.

To focus on the generalization to unknown attacks,
Chalearn LAP challenge provides only a part of the CASIA-
SUREF dataset for training, i.e. for each subject only a subset
of fake frames is available. Hence, challenge participants
were given with about 30K frames for training and 9.6K
frames for validation.

Examples of fake and real images from the CASIA-
SUREF dataset are illustrated in Fig. 1. Printed attacks dif-
fer by the shape (flat or curved) and regions showing parts
of the real face. More information on the type of attacks
is given in Table 1. Note, that attacks in the test set dif-
fer from attacks in the training set, therefore the successful
model should avoid intra-class overfitting which was a com-
mon issue in previous anti-spoofing datasets.

3.1. Baseline method

With the release of the CASIA-SURF dataset, Zhang
et al. [26] also introduced a method for the multi-modal
face anti-spoofing task. The proposed pipeline is processing
each of the three modalities separately using resnet-18 [10]
as a backbone, and then performs the re-weighting of fea-
tures from the last layer of each branch to select the more
informative channel features while suppressing the less use-
ful ones. Then the re-weighted features are concatenated
and processed by two more residual blocks. Finally, the
global average pooling (GAP) and two consecutive fully-
connected layers complete the network structure. Authors
provide extensive experiments to show the advantages of
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Figure 2. The proposed architecture. RGB, IR and Depth streams are processed separately using resl, res2, res3 blocks from resnet-34 as a
backbone. The res3 output features are re-weighted and fused via the squeeze and excitation (SE) block and then fed into res4. In addition,
branch features from resl, res2, res3 are concatenated and processed by corresponding aggregation blocks, each aggregation block also
uses information from the previous one. The resulting features from agg3 are fed into res4 and summed up with the features from the
modality branch. On the diagram: GAP - global average pooling; €p - concatenation; + - elementwise addition.

type are used for validation. Once trained, we treat three
different networks as a single model by simply averaging
their prediction scores.

this architecture and in our work we refer to it as a baseline
method.

3.2. Evaluation metrics

The evaluation of face anti-spoofing methods can be ’ ‘ Backbone Dataset \ Task
done in different ways. Prior work [2, 5, 16, 11] uses Av- 1 | resnet-34 | Casia-Web face [25] Face rec.
erage Classification Error Rate (ACER) since liveness pre- 2 | resnet-34 AFAD-lite [17] Gender class.
diction can be seen as a binary classification task. However, 3 | resnet-50 MSCeleb-1M [9] Face rec.
similar to face recognition, one should pay attention to the 4 | resnet-50 | Asian dataset [28] Face rec.

True Positive Rate at some fixed False Positive Rate. This
approach enables to measure how many real samples will
pass the anti-spoofing test while accepting no more than
some percentage of spoofing attacks.

Here we follow the evaluation metric of the Chalearn
LAP Challenge, and report TPR at 10~* FPR, which can be
obtained from the receiver operating characteristic (ROC)
on the target set.

Table 2. Face datasets and CNN architectures used to pre-train our
networks.

4.2. Transfer learning

Many image recognition tasks with limited training
data benefit from CNN pre-training on large-scale image
datasets, such as ImageNet [6]. Finetuning network pa-
rameters that have been pre-trained on various source tasks
leads to different results on the target task. In our exper-

4. Proposed method

In this section we describe our method and its training

details.
4.1. Attack specific folds

To increase robustness to new attacks, where attack types
at test time can differ from attacks presented in the training
set, we split training data into three folds. Each fold con-
tains two different attacks, while images of the third attack

iments we use four datasets designed for face recognition
and gender classification (see Table 2), to create good ini-
tialization for our face anti-spoofing networks. We also use
multiple backbone ResNet architectures and losses for ini-
tial tasks to increase the variability. Similar to networks
trained for attack-specific folds in Sec. 4.1, we average pre-
dictions of models trained with different initialization.



Method \ Initialization Fold TPR at FPR=10""*
Zhang, Wang et al.[20] 56.80*
resnet-18 subject 5-fold 60.54
resnet-34 subject 5-fold 74.55
resnet-34 attack 3-fold 78.89
resnet-34 ImageNet [6] attack 3-fold 92.12
resnet-34 CASIA-Web face [25] | attack 3-fold 99.80
A. resnet-34 with MLFA | CASIA-Web face [25] | attack 3-fold 99.87
B. resnet-50 with MLFA MSCeleb-1M [9] attack 3-fold 99.63
C. resnet-50 with MLFA Asian dataset [28] attack 3-fold 99.33
D. resnet-34 with MLFA AFAD-lite [17] attack 3-fold 98.70
A,B,C,D ensemble attack 3-fold 100.00

Table 3. Results on CASIA-SUREF validation subset.

4.3. Model architecture

Our final network architecture is based on the ResNet-
34 and ResNet-50 [10] backbone with SE modules as illus-
trated in Fig. 2. Following the method described in [26],
each modality is processed by the first three residual con-
volutional blocks, then the output features are fused us-
ing squeeze and excitation fusion module and processed by
the remaining residual block. Differently from the base-
line method we enrich the model with additional aggrega-
tion blocks at each feature level. Each aggregation block
takes features from the corresponding residual blocks and
from previous aggregation block, making model capable of
finding inter-modal correlations not only at a fine level but
also at a coarse one.

Additionally, we train each model using two initial ran-
dom seeds. Given separate networks for attack-specific
folds and different pre-trained models, our final liveness
score is obtained by averaging outputs of 24 neural network.

5. Experiments

This section describes the implementation, hardware
and software details and shows the importance of each
additional improvement in terms of evaluation metric
on the validation set, provided by Chalearn LAP chal-
lenge.  We release the code and our trained mod-
els at https://github.com/AlexanderParkin/
Chalearn_liveness_challenge.

5.1. Implementation details

All the code was implemented in PyTorch [20] and mod-
els were trained on 4 NVIDIA 1080Ti. Single model trains
about 3 hours and the inference takes 8 seconds per 1000
images.

All neural nets were trained using ADAM [12] with co-
sine learning rate strategy and optimized for standard cross
entropy loss for two classes. We trained each model for 30

epochs with initial learning rate at 0.1 with batch size of
128. The same learning strategy was applied to pre-train
models on the gender recognition task.

5.2. Preprocessing

CASIA-SUREF already provides face crops so no detec-
tion algorithms were used to align images. Face crops were
resized to 125 x 125 pixels and then center crop 112 x 112
was taken. At the training stage horizontal flip was applied
with 0.5 probability. We also tested different crop and rota-
tion strategies as well as test-time augmentation, however,
this did not result in significant improvements and no addi-
tional augmentation was used in the final model except the
above.

5.3. Baseline

Unless mentioned explicitly, we report results on
Chalearn LAP challange validation set obtained from the
Codalab evaluation platform. First of all, we reproduced
baseline method [26] with Resnet-18 backbone and trained
it using 5 fold cross-validation strategy. All folds are split
based on the subject identity so images from the same per-
son belong only to one fold. Then the score is averaged for
the five trained nets and TPRQF PR = 10~* is reported
in Table 3. The resulting performance is close to perfect and
similar to the previously reported results in [26], which was
calculated on the test set. The test set differs from the vali-
dation, but belongs to the same spoofing attack distribution.

Next, we expand the backbone architecture to ResNet-
34 which improves the score by a large margin. Due to the
GPU limitations we further focuse only on ResNet-34 and
add Resnet-50 only at the final stage.

5.4. Attack-specific folds

Here we compare the 5-fold split strategy based on sub-
ject ids with the strategy based on spoof attack types. Real
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Figure 3. Examples of fake and real samples with highest standard
deviation among predicted liveness scores from models A,B,C,D.

examples by subject identity were assigned randomly to the
one of the three folds.

Despite the fact that the new model computes an average
of three network outputs while each of these networks was
trained on less data compared to the subject 5-fold learning
strategy, our model achieves better performance compared
to baselines (see Table 3). We explain this by the improved
generalization to new attacks due to the training for different
types of attacks.

5.5. Initialization matters

In the next experiment we initialize each of the three
modality branches of our network with the resl, res2, res3
blocks from the ImageNet pre-trained network [6]. The Fu-
sion SE parts are left unchanged and the final res4 block is
also initialized by the ImageNet pre-trained weights. Fine-
tuning of this model on the CASIA-SUREF dataset gives sig-
nificant improvement over networks with random initializa-
tion (see Table 3). Moreover, switching pre-training to the
face recognition task on the CASIA-Web face dataset [25]
improves results by even a larger margin and reaches almost
perfect TPR of 99.80%.

5.6. Multi-level feature aggregation

Here we examine the effect of multi-level feature aggre-
gation (MLFA) described in the model architecture section.
We initialize aggregation modules with random weights and
train the new architecture following our best learning proto-
col. Our ResNet-34 network with MLFA blocks has demon-
strated error reduction by the factor 1.5x compared to the
network without MFLA blocks.

5.7. Ensembling

To improve the stability of our solution we use four
face related datasets as an inialization for the final model.
We used publicly available networks with weights trained
for face recognition tasks on the CASIA-WebFace [25],
MSCeleb-1M [9] and private asian faces [28]. We also
trained a network for gender classification on the AFAD-
lite [17] dataset. Different tasks, losses and datasets im-
ply different convolutional features and the average predic-
tion of models finetuned with such initializations leads to
100.00% TPR@FPR=10"*.

Such a high score meets the requirements of real world
security applications, however, it was achieved using a large
number of ensembling networks. In future work we plan
to focus on reducing the size of the model and making it
applicable for the real-time execution.

5.8. Solution stability

The consistency and stability of model performance on
unseen data is important especially when it comes to real
world security applications. During the validation phase of
the challenge seven teams achieved perfect or near perfect
accuracy, however only three solutions managed to hold
close level of performance on the test set (see Table 4),
where ours showed the smallest drop in performance com-
pared to the validation results.

Valid Test

Ours 100.0000 | 99.8739
Team 2 | 100.0000 | 99.8282
Team 3 | 100.0000 | 99.8052
Team 4 | 100.0000 | 98.1441
Team 5 | 99.9665 | 93.1550
Team 6 | 100.0000 | 87.2094
Team 7 | 100.0000 | 25.0601

Table 4. Shrinkage of TPR at FPR=10"* score on validation and
test sets of Chalearn LAP face anti-spoofing challenge.

We believe that the stability of our solution was caused
by the diversity of networks in our final ensemble in terms
of network architectures, pre-training tasks and random
seeds.

5.9. Qualitative results

In this section we analyze difficult examples for our
model. We run four networks (namely A,B,C,D in Table 3)
on the Chalearn LAP challenge validation set and select ex-
amples with highest standard deviation on the liveness score
among all samples. High STD implies conflicting predic-
tions by different models. Fig. 3 shows examples for which
the networks disagree at most. As can be seen, the model
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Figure 4. Examples of fake and real samples from validation sub-
set where predicted liveness score is close to the threshold at
FPR=10"".

D (which achieves the lowest TPR among all four mod-
els) tends to understate the liveness score, assigning reals
to fakes. But it is helpful in the case of hard fake examples,
when two out of three other networks are wrong. Therefore,
Using only three models in the final ensemble would have
led to lower score on the validation set.

Fig. 4 demonstrates fakes and real samples which were
close to the threshold at FPR=10"%. While they are dis-
tinguishable by human eye, one of the three modalities for
every example looks similar to the normal one from the op-
posed class, so models based only on one modality may
produce wrong predictions. Processing RGB, Depth and IR
channels together allows to overcome this issue.

5.10. Multi-modality

Finally, we examine the advantage of multi-modal net-
works over networks trained for each of the three modalities
separately. We take our architecture with three branches and
aggregation blocks, but instead of passing (RGB, IR, Depth)
channels, we trained three models with (RGB, RGB, RGB),
(IR, IR, IR) and (Depth, Depth, Depth) inputs. This allows
a fair comparison with multi-modal network since all these
architectures were identical and had the same number of pa-
rameters.

As can be seen from Table 5, using only RGB images
results in low performance. The corresponding model over-
fitted to the training set and achieved only 7.85% TPR
at FPR=10"%. The IR based model showed remarkably
better results, reaching 57.41% TPR at FPR=10"* since
IR images contained less identity details and the dataset
size in this case was not so crucial as it was for the RGB

. TPR at FPR
Modality — 102 ‘ —10=3 ‘ —1p==
RGB 71.74 22.34 7.85
IR 91.82 72.25 57.41
Depth 100.00 | 99.77 98.40
RGB+IR+Depth | 100.00 | 100.00 | 99.87

Table 5. The effect of modalities measured on the validation set.
All models were pre-trained on the CASIA-Web face recognition
task and finetuned with the same learning protocol.

model. The highest score of 98.40% TPR at FPR=10"* was
achieved by the Depth modality, suggesting the importance
of the facial shape information for the anti-spoofing task.

However, the multi-modal network performed much bet-
ter than the Depth network alone, reducing false rejection
error from 1.6% to 0.13%, and showing the evidence of the
synergetic effect of modality fusion.

6. Conclusion

In this paper we have presented a new method for face
anti-spoofing detection which has achieved top-1 rank at
the Chalearn LAP face anti-spoofing challenge. We dis-
cussed in details three different directions: data, architec-
ture and initialization, that summed up to a consistent so-
lution, demonstrating significant improvements on a test
set. First, we have demonstrated that careful selection of
a training subset by the types of spoofing samples better
generalizes to unseen attacks. Second, we have proposed a
multi-level feature aggregation module which fully utilizes
the feature fusion from different modalities both at coarse
and fine levels. Finally, we have examined the influence of
feature transfer from different pre-trained models on the tar-
get task and showed that using the ensemble of various face
related tasks as source domains increases the stability and
the performance of the system.

The code and pre-trained models for our approach
are publicly available from the github repository at
https://github.com/AlexanderParkin/
Chalearn_liveness_challenge.
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