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Abstract

Deception (the action of deliberately cause someone to

believe something that is not true) can have many different

repercussions in daily life. However, deception detection

is an inherently complex task for humans. Due to this, not

only there is uncertainty on which features should be used

as cues for automatic deception detection, but labeled data

is scarce. In this paper, we explore typical features that can

be extracted from videos for affective computing and study

their performance for deception detection in videos. Addi-

tionally, we perform a study of different multimodal fusion

methods meant to improve the results obtained by using the

different sets of extracted features separately, including a

novel set of methods based on boosting. For this study, high-

level features are extracted with open automatic tools for

the visual, acoustical and textual modalities, respectively.

Experiments are conducted using a real-life trial dataset for

deception detection, as well as a novel Mexican deception

detection dataset using Spanish as the spoken language.

1. Introduction

Decision making is a process that requires the analysis

of available data. However, an “optimal” decision can be

harmful if such data is inaccurate -not to say strictly wrong.

Spreading inaccurate or wrong information purposely is a

way to mislead people’s decisions for our own convenience.

According to the Oxford dictionary, that is the action of

deceiving: “deliberately cause (someone) to believe some-

thing that is not true, especially for personal gain”. Job in-

terviews, court trials, police investigations... there are many

cases where believing in someone who is actually lying can

imply severe consequences.

Although deception detection is a hard task for ordinary

people, previous research [7, 13, 15, 14] supports a well-

known assumption that a difference exists in the way liars

communicate in contrast with truth tellers. Particularly, evi-

dence suggests that such difference can be pointed out using

machine learning.

Furthermore, there are many available sources of cues

for deception: eye movements, facial expressions, voice,

speech, etc. Recent research [2, 1, 17] points out that mul-

timodal analysis of videos is useful to achieve better results

in the deception detection task, rather than using different

modalities independently such as visual cues, thermal im-

ages, voice analysis or text analysis.

Inspired by such evidence, this work aims to explore

high-level features, extracted from different modalities, that

can be interpreted by humans while being useful for the au-

tomatic detection of deception in videos. Furthermore, a

study is conducted on diverse methods inspired by classi-

fier ensembles to fuse together such features (multimodal

fusion), including a set of novel methods based on boosting

to deal with data from different media (multimedia fusion).

Two datasets are used for these experiments: a real-life trial

dataset for deception detection as well as a novel Mexican

deception detection dataset using Spanish as the spoken lan-

guage.

Summarizing, this paper aims to: 1) present a study on

high-level (interpretable by humans) feature sets that can be

automatically extracted from videos for the deception de-

tection task; 2) analyze the complementarity between such

features to provide evidence on the benefits that could be

obtained from fusing them; 3) present a study on first at-

tempts to perform such fusion by using methods inspired in

classifier ensembles; 4) perform a comparison for both sin-

gle feature sets and fusions on two datasets with different

language and contexts, including a novel Mexican database.

2. Related Work

Deception detection from videos is of particular interest

as a non-invasive method, unlike traditional ones like the

polygraph which are based on physiological data. Typical

non-invasive sources of information include RGB videos,

thermal videos, audio recordings and speech transcripts.



Abouelenien et al. [1] presented a database consisting of

both physiological features (heart rate, blood volume pulse,

respiration rate, skin conductance) and thermal videos, as

well as transcriptions from videos. Thermal images are an-

alyzed by face regions, while traditional linguistic features

such as POS tags, unigrams, LIWC embeddings, etc. are

extracted from transcriptions. They tested multiple modal

combinations (early fusion approach) using decision trees,

concluding that following a multimodal approach outper-

formed relying solely on single modalities. Furthermore,

the fusion of features extracted from videos outperformed

the results obtained by physiological features.

However, the above mentioned database was constructed

by the cooperation of test subjects under controlled circum-

stances (e.g. participants may not really be motivated to

lie). For studying deception in a more real context, Pérez-

Rosas et al. [14] presented a novel dataset of real court trial

videos. A multimodal approach is used again consisting

on unigrams and bigrams from transcriptions and manual

annotation of facial displays and hand gestures. Results ob-

tained from individual features are compared to those from

early fusions, reaching the highest score when using all the

modalities together.

An automated deception detection system trained with

this dataset is presented by Wu et al. [17]. The approach is

multimodal again extracting a new modality, using features

extracted from transcriptions, audio stream and video. Fa-

cial gestures (treated as micro-expressions) are used again,

extracted by a trained classifier; additionally, video se-

quences are analyzed employing IDT (Improved Dense Tra-

jectories). MFCC (Mel-frequency Cepstral Coefficients)

are extracted and encoded from the audio modality. Fi-

nally, transcriptions are analyzed by using Glove (Global

Vectors for Word Representation). As the aforementioned

works, they performed experiments on single features as

well as their combinations using a simple late fusion ap-

proach, reaching the best results when combining all the

modalities.

Exploring an end-to-end framework, Karimi et al. [10]

used a Deep Learning approach for automatic feature ex-

traction from the video and audio channel, respectively. Un-

like previous works, these are low level features; those are

used again individually and early fused in the court trial

dataset for classification, obtaining the best results once

again when modalities are fused.

Despite the variety of features extracted from different

modalities in the mentioned works, they all share a com-

mon characteristic: a simple fusion approach is used for

final classification, that is, features are combined into a sin-

gle vector before or after training a classifier without car-

ing about the complementarity between features. As far as

we are concerned, there are not works exploring alternative

multimodal fusion methods (either early or late approaches)

for deception detection in videos.

3. Feature Extraction

3.1. Datasets

3.1.1 Real-life Deception Detection Database

Nowadays, this database [14] works as a baseline for decep-

tion detection in “real-life” videos: unlike other databases,

these videos were not recorded in a controlled ambient de-

veloped for the deception detection task (to the best of our

knowledge, it is the only public real-life datasate available).

It is composed of 121 trial videos, 61 deceptive and 60

truthful, extracted from the web; labeling was done man-

ually based mainly on the court verdicts, posterior exon-

eration, verification of police reports against declarations,

etc. There is a total of 58 different identities, from which

each identity has an unbalanced set of deceptive or truth-

ful videos -usually, a person’s videos are uniformly from a

single class.

3.1.2 Novel Spanish Abortion/Best Friend Database

Not only deception detection video datasets are scarce, but

they are usually composed from American people; even if

not, they use English as spoken language. Furthermore,

most of them are not publicly available due to IRB restric-

tions. Motivated by this fact, we are working in the de-

velopment of a public novel dataset composed of Mexican

people speaking Spanish. Inspired by the protocol used by

Abouelenien et al. [2], the participants are asked to give a 2-

3 minutes description about their genuine position towards

abortion, followed by another description of a fake posture

on the same topic. Similarly, they are asked to talk 2-3 min-

utes about their best friend, as well as talking 2-3 minutes

about a person they can’t stand as if that person was their

best friend. The database so far is composed of 42 videos,

21 deceptive and 21 truthful, with 11 different identities.

3.2. Data Extraction

This section is devoted to explain the different features

extracted from videos, as well as the tools used for it. First,

we introduce the two level hierarchy that will be used from

now on:

• Modality: a video is a multimedia type of file, com-

posed basically of two types of media (namely im-

ages and audio). With this idea, we call modalities to

each stream of data that can be extracted independently

from a video

• View: inspired by the “view” concept used by Barbu

et al. [4], we call view to all different perspectives or

feature sets that can be extracted independently from a

modality sharing a semantic relationship



As above-mentioned, from videos we can extract straight

forward two modalities. However, we can also extract tran-

scriptions from the audio modality to create a third modal-

ity: text. In the next subsections, we discuss the way modal-

ities and views were extracted for analysis.

3.2.1 Visual

The videos from the database are fed to OpenFace [3] 2.1.0,

a facial behavior analysis toolkit. This toolkit analyses

videos at frame level, returning different type of features:

facial landmark detection, head pose estimation, facial ac-

tion unit recognition (both binary presence and intensity)

and eye-gaze estimation. These sets of features are used

separately as the views for the visual modality. Facial anal-

ysis is of particular interest because not only face is usu-

ally the most visible body part when talking with some-

one but it reveals a vast amount of information about the

internal state of speakers, including behavior that can be

distinguished between lying and truthfullness as stated by

Paul Ekman [8]. Particularly, action units (AU) are use-

ful to identify emotions that want to be kept in secret by

a person; however, identifying the existence of such hid-

den emotions can be misleading of deception as stated by

Ekman too [6]. Therefore, analyzing AU further than for

emotion recognition can be useful for the deception detec-

tion task. Additionally, facial landmarks are not only useful

for the automatic detection of AU, but to describe faces and

facial behavior. Head pose estimation can be used as an ad-

ditional descriptor of body language, giving an insight of

involuntary movements beyond face.

3.2.2 Acoustical

For each video, FFmpeg is used to extract a WAV audio file.

Each of these files is fed to a MATLAB script from CO-

VAREP [5], an open-source repository of advanced speech

processing algorithms. Unlike the visual modality, analy-

sis can’t be done at frame level and must be done among

time-windows. For the experiments done in this work,

this windows (sample rate) were of 0.01 seconds (default

value). For each time-window, the next views were ex-

tracted: glottal flow (NAQ, QOQ, H1-H2, HRF, PSP, MDQ,

Peak Slope, Rd, Rd confidence, Creky Voice), voice (F0,

V/UV), MCEP (MCEP 0-24), HMPDM (HMPDM 0-24)

and HMPDD (HMPDD 0-12) [5].

Glottal flow has an important contribution to the supra-

segmental characteristics of speech and is known to sig-

nificantly vary with changes in phonation type, so its pa-

rameterisation can be useful in many areas of speech re-

search [5]. Mel-frequency cepstral coefficients (MFCC)

have been widely used for Automatic Speech Recognition;

however, COVAREP extracts an alternative set of MFCCs

which are extracted from the “True Envelope” spectral rep-

resentation (MCEP) which showed usefulness for emotion

recognition [5]. F0 and V/UV are used to study the pitch

an rhythm of a person while lying or telling the truth.

Harmonic model and phase distortion mean and deviations

(HMPDM and HMPDD) have been used before for depres-

sion detection in videos, showing its usefulness for an af-

fective computing task hard for humans.

3.2.3 Textual

This modality was only extracted for the court-trial dataset

due to the available tools. Although this dataset is dis-

tributed with manual transcriptions, we want to explore a

fully automated mechanism for deception detection. As

such, video transcriptions are extracted automatically us-

ing Watson Speech to Text from IBM; results are fairly

convincing for the court videos in English, but video tran-

scription was discarded for the Spanish dataset as the results

from Watson (using the Spanish model) were unacceptable.

Based on the study presented by Rill-Garcı́a et al. [16], the

next views were extracted at video level using the Natural

Language Toolkit from Python: character n-grams (from 1

to 4, a view for each), Part-Of-Speech n-grams (from 1 to 4,

a view for each) and LIWC dictionary encoding. The POS

tags were extracted using Syntaxnet. Additionally, a typi-

cal Bag-Of-Words representation with NLTK was added as

a view as suggested by the work of Pérez-Rosas et al. [14].

Finally, a simple syntax analysis as done by OpenMM [12]

is used as a view too; these “syntax features” have been used

previously for sentiment and deception detection [11].

3.2.4 Dealing with Time

This far, the visual and acoustical modalities are depen-

dent on each video’s length. As different size vectors

can’t be used by typical binary classifiers, we need a way

to get fixed-size vectors from each video. As done by

OpenMM [12], an open-source multimodal feature extrac-

tion tool, the final representation from a variable length se-

quence of features is computed as 11 statistical functionals

for each feature at view label (see Fig. 1).

The reason behind this is that we want a numeric descrip-

tion of the behavior of the features along the video keeping

as much information as possible: mean behavior, extreme

values, variation along the video, etc., thus embedding a

single feature into a vector of statistics aiming to describe

its behavior into variable-length videos.

4. Experiments and Results

A 10-fold cross-validation is used to evaluate the differ-

ent experiments. However, as we are exploring the multi-

modal analysis of deception cues, we want to avoid the clas-



Figure 1. Creation of a fixed size vector from number-of-frames-

dependent matrix.

sifiers to degenerate into identity detectors -we don’t want

to classify a person in the test set as a liar just because all

their training examples were deceptive. Therefore, our 10-

folds are identity based rather than instance based (no per-

son in the test set was used in the training set as suggested

by Wu et al. [17]). As the labels per subject are unbalanced

in the court dataset, AUC ROC is used as evaluation metrics.

In the case of the Spanish dataset, as labels per subject are

balanced, the AUC should be similar to accuracy, so AUC

is conserved for convenience.

4.1. Per Modality Study

Before exploring multimodal fusion, we want to explore

the effectiveness of each modality independently. Experi-

ments were performed using scikit-learn 0.20.2 with Linear

SVC (SVM) as baseline classifier (as it tended to show the

best results in preliminary experiments without any hyper-

parameter tuning). Per modality, studies were performed at

two levels: modality and views. That is, we want to evaluate

each view separately to gain insight of the performance of

“intuitive” features separately, and then evaluate how all this

views work together when concatenated as a single feature

set. For fair comparison, no hyperparameter optimization is

done across experiments.

4.1.1 Visual

Results for the visual modality in the court dataset can be

seen in Fig. 2 with blue bars. From the 6 explored views, 3

stand out: binary presence of facial action units, eye land-

marks and gaze direction. When combining all 6 views into

a single vector, results are still over the 0.5 AUC threshold,

but the overall results are worst than picking the best view.

For the Spanish dataset, visual modality results can be

seen in Fig. 3. Again, eye landmarks stand out among

views; but now, instead of binary presence, intensity of AU

stands out, as well as facial landmarks.

The change in best-performing view, as well as the in-

creased relative performance of AU intensity could be ex-

plained by the camera distance/angle with respect to the

speaker in both datasets, as in the Spanish dataset the cam-

era is close to the person in all videos unlike the court

dataset, therefore simplifying the facial analysis task.

However, again, the best single-view result outperforms

the concatenated results, which are still above the 0.5 AUC

threshold (and above the concatenated results from the court

dataset).

4.1.2 Acoustical

For the acoustical modality, results obtained from the court

dataset are presented in Fig. 2 using orange bars. MCEP

achieve the best overall single-view result, matching the

best view from the visual modality (AU presence). How-

ever, this is the only view from the acoustical modality to

surpass the 0.5 AUC threshold. Furthermore, when con-

catenating all the acoustical views the result is still above

the 0.5 threshold but below the obtained with MCEP.

With respect to the Spanish dataset, results using the

acoustical modality are shown in Fig. 3. Again, MCEP

outstand among views (suggesting the envelope strategy on

MFCC can be useful indeed for deception detection), but a

particular view performs better this time: voice, composed

solely of fundamental frequencies (F0) and voiced/unvoiced

segment binary identification. Unlike the court dataset, in

the Spanish one there are near-to-zero utterances from other

speakers rather than the analyzed person in all videos; also,

the speeches are longer. This suggests deception can be de-

tected simply based on the analysis through time of F0 and

pauses in the speech of a single speaker.

However, even if single-view results are better in the

Spanish dataset, the acoustical modality as a single vector

have a better performance in the court-trial dataset.

4.1.3 Textual

As aforementioned, the textual modality was extracted from

the court dataset only. Those results can be found in Fig. 2

using green bars. Particularly, the best results are achieved

with Bag-Of-Terms representations, namely: bag of words,

bag of char 2-grams, bag of char 3-grams and bag of char

4-grams. Also, LIWC encoding and syntax features achieve

similar results. A brief parenthesis is used here to provide a

possible explanation on the low performance of POS tags:

POS tagging is done based on context (for example, orange

can be either adjective or substantive); the automatic tran-

scription done by Watson comprise every utterance in the

audio stream, retrieving therefore a mixed text containing

sentences/words spoken by all the people in the audio file.

With such a text, automatic POS tagging it’s a harder task,

in a text that is hard to understand itself without hearing the

original conversation.



Figure 2. AUC achieved by the different views in the court-trial dataset, including their concatenation (rightmost column).

Figure 3. AUC achieved by the different views in the Spanish dataset, including their concatenation (rightmost column).

4.2. Complementarity

Once each modality has been analyzed, we want to find

out if it is potentially useful to combine them in order to

achieve better results. In order to do this, we analyze the

results obtained at instance level to see how complementary

they are at both views and modalities levels: that is, even if

each type of features has many mistakes, we want them to

be wrong at different instances -so that, if we combine them

in a proper way, we get better results.

To know the best possible result after fusion, we use

the Maximum Possible Accuracy (MPA) metric: at instance

level, if any of the views/modalities classified the instance

correctly, the instance is considered as correctly classified.

This is then an optimistic measure of a perfect fusion.

Also, we want a numeric measure to evaluate how di-

verse are the errors between views/modalities. For this pur-

pose, we use the Coincident Falure Diversity (CFD) met-

ric, which ranges from 0 (when all views/modalities always

make the same label predictions) to 1 (when misclassifica-

tions are unique to one view/modality).

As it can be seen (see Fig. 4, 5), not only the CFD is far

from 0 both at views and modality levels, but the MPA is

greater at views level rather than at modalities level. This

suggests there is, in fact, complementarity both at views and

modalities level; also, it seems like there are complementar-

ity reasons to split the different modalities into views.

4.3. Baseline Fusion Methods

In order to do multimedia fusion, we took an approach

based on classifier ensembles. With this paradigm, we en-

semble views/modalities rather than classifiers. As baseline

methods, we used two traditional ensemble methods both at

views and modalities levels: hard majority votes and stack-

ing. These methods are in the category of late fusion (fusion

is done after independent classifications).

Additionally, two early fusion (fusion is done before any

classification) approaches were used as baseline too. The



Figure 4. CFD between views and modalities from the court

dataset, as well as their MPA.

Figure 5. CFD between views and modalities from the Spanish

dataset, as well as their MPA.

first one was simply concatenating all the views/modalities

into a single vector for classification before performing a

classification task. The second one is a temporal “informed”

fusion between modalities presented by Morales [11] and

used originally for multimodal depression detection in

videos.

4.4. Multimodal Boosting Methods

For the boosting strategies, we parted from the Boosting

With Shared Sampling Distributions (BSSD) first presented

by Barbu et al. [4] for multiple representation fusion based

on Adaboost, where weak learners are built at “view” level

(our “view” definition was inspired by them) at each iter-

ation. The weak learner with the lower error rate is cho-

sen at each step, and its errors are used to calculate a new

probability distribution of the training instances for the next

iteration, giving greater weights to the wrongly classified

instances. All views share the same sampling distribution,

so each weak learner at each iteration gives greater impor-

tance to those examples that were “harder” to predict in the

previous iterations.

BSSD was originally used with views for visual modality

tasks only. We use it in our experiments as well as some

variances proposed by us and described next for multimodal

deception detection in videos using 50 iterations.

4.4.1 Hierarchical BSSD

Our first approach was extending BSSD with a hierarchical

strategy, by using BSSD per modality and then using the

label calculated for each modality as a new feature for late

fusion. For consistency, the classifier used for late modality

fusion is the same used to build weak classifiers. This ap-

proach improves the results obtained by BSSD using all the

views separately or using modality vectors as views in the

court dataset (Fig. 6). In the Spanish database (7), however,

it is not the case; there is not a clear advantage from any of

the three approaches mentioned in this paragraph.

4.4.2 Nested Cross-validation BSSD

Our hierarchical proposal ensures all the modalities are

taken into account for the final decision; however, there

is a special case where BSSD is not capable of doing so.

BSSD’s nature implies most consistent data types (views)

dominate over time, as at each iteration it chooses a weak

learner built over a single view (the weak learner with the

minimum error rate is chosen). However, this error rate

is calculated over the training data. Validating within the

training data is not a good pointer of the overall perfor-

mance of a classifier (weak learner, in this case), as it is

highly susceptible to over-fitting. In the case where any of

the views used for BSSD achieves a perfect score in the

training data (probably due to over-fitting), the algorithm

will ignore any other view at all iterations.

To explore the benefits of using other validation metrics

rather than accuracy in the training set for selecting the best

view at each iteration, we modified the BSSD algorithm:

for each view, an expected performance is calculated per

iteration using a nested weighted 10-fold cross validation

over the training data; the weights are normalized per fold

from the sample distribution used for the training data at a

given iteration. The view with the lowest expected error is

used then to build the weak learner corresponding to that

iteration. Furthermore, this approach was implemented too

doing identity based nested cross-validation as explained in

Section 4. Both approaches are reported as “bssd x cv” and

“bssd x cv subject”, respectively, in Fig. 6, 7. For the court

dataset, this validation tends to improve the performance of

BSSD when using modalities, but it actually decreases it

when using views. In the Spanish dataset, this validation

doesn’t seem to improve classification at all.



Figure 6. AUC achieved by different fusion methods in the court

dataset.

4.4.3 Stacking BSSD

Lastly, Adaboost (and therefore BSSD) classifies an in-

stance with a linear function of the labels predicted for such

instance from each weak learner trained. The weights from

this linear function are learned by the boosting algorithm as

a function of the error rate of each weak learner; however,

there might be a benefit from learning these weights outside

the boosting algorithm. Hatami and Ebrahimpour [9] try

a similar approach, using the weak learners obtained by a

boosting algorithm as base classifiers for a staking method,

achieving better results than using boosting alone. We use

the same approach, using the weak learners generated by

BSSD as base classifiers for stacking.

For the court dataset (6), this stacking approach shows a

clear improvement at either view or modality level with re-

spect to the original BSSD method. On the other hand, for

the Spanish dataset (7), performance of stacking and stan-

dard BSSD is very similar.

4.5. Independent Modalities vs Fusion

Among fusion methods, for the court dataset (Fig. 6)

stacking stands out among the traditional methods, partic-

ularly when stacking views (reaching up to 0.645 AUC).

This method, however, is improved with the boosting meth-

ods, namely BSSD, stacking BSSD and hierarchical BSSD

(0.651, 0.659 and 0.671, respectively). Furthermore, these

results were surpassed with the “syntax informed” method

proposed by Morales [11] (0.675). These results, however,

are slightly below the best single-view ones, corresponding

to a tie between MCEP and binary presence of AU (0.699).

Although the fused results are below the best single-view

ones, we can see that the boosting fusion methods are robust

to the inclusion of features with low performance (many of

the included views were below the 0.5 threshold when eval-

uated solely). This is due to automatic feature set selection

Figure 7. AUC achieved by different fusion methods in the Spanish

dataset.

during training, which can be easily analyzed by looking at

the views selected for each weak learner: the best feature

sets are used automatically, using lower performing ones

only for specific cases which are hard for the best feature

sets. Furthermore, when the hierarchical approach is used,

we ensure that all the different modalities extracted from the

videos are used.

When it comes to the Spanish dataset (Fig. 7), how-

ever, we have a different scenario. Again, stacking views

is among the best classic fusion methods (0.625), along

with majority vote of modalities and outperformed by a sim-

ple early fusion (0.631); again, an “informed” method has

a good result (0.600). But this time, traditional methods

were not surpassed by the boosting ones, achieving a best

result of 0.575 using either normal or stacking BSSD with

modalities. For this dataset, the best fused result is consider-

ably below the best single-view one, namely gaze direction

(0.769). Given the small number of training instances, this

could be explained by the curse of dimensionality.

4.6. LSTM study case

As the best results for fusion were acquired with the

court dataset, we wanted to preliminary explore the use of

Deep Laarning as an additional baseline for this database.

This was motivated by 3 reasons: 1) stacking methods used

here have a layer-nature, similar to that of neural networks

(NN); 2) the performance of “informed” methods showed

good results using a fewer amount of views, 3) DL is a

state-of-art technique for many video-related tasks. Putting

together those reasons, Long Short-Term Memory (LSTM)

networks were used as a way to use NN including the

temporal-sequence nature of videos, analyzing features at

frame level.

For this experiments, a LSTM layer with 200 hidden

units is fed with sequences of frame analysis, the output



is fed to a fully-connected layer with 100 hu and its output

is finally fed to a fully-connected layer with a single output.

This architecture was tested with the visual and acoustical

modalities only, achieving 0.560 and 0.730 AUC, respec-

tively (SVM results were 0.574 and 0.638, respectively).

Two fusion approaches were tested then: feeding the net-

work with both modalities concatenated (early fusion) and

feeding two different LSTM with each modality and con-

catenating both outputs to fed the first fully-connected layer

(late fusion). For this fusion strategies, 0.665 and 0.610

AUC were reached, respectively. Both results are below the

one achieved by hierarchical BSSD with SVM (0.671).

The same experimental setup was used with the Spanish

dataset. However, the results were considerably low, reach-

ing an AUC of 0.384 and 0.294 for the visual and acousti-

cal modalities respectively. When attempting early fusion,

the network reached 0.475 AUC only, improving the single-

modality results but being still below the 0.5 threshold.

5. Conclusions

In this paper we explored high-level features (at “view”

and “modality” level) extracted from videos, using open

tools, for the deception detection task. Those features

where evaluated in two datasets for deception detection (one

constructed from real-life court trials from the web, and

other constructed from Mexican people speaking in Span-

ish about a sensible topic and a personal topic).

Despite the cultural, language, context and topic-related

differences, there were indeed shared views that showed a

tendency as good discriminators of deception independently

of the analyzed person, namely: AU, eye landmarks, gaze

direction (visual modality), and MCEP (acoustical modal-

ity).

For the court dataset, BoW, bags of char n-grams, and

the extraction of syntax features seem to be able to detect

deception from automatically transcripted texts (even for

multispeaker audios). For the Spanish dataset, there’s ev-

idence suggesting that F0 and voiced/unvoiced periods are

good features to detect deception from a person talking un-

interruptedly (at least for 2-3 minute periods).

Additionally, a study of complementarity between the

studied features was performed on both datasets, showing

evidence on the convenience of approaching the deception

detection in videos as a multimodal problem. Given such

evidence, we presented preliminary work on multimodal

classification inspired by classification ensemble methods,

including a novel pair of boosting based methods competi-

tive with a Deep Learning approach such as LSTM.

Future work involves analysis of fusion methods using

the most predictive features studied in this paper, as well as

the tuning of hyperparameters for classifiers that can exploit

such features (including DL architectures). Moreover, we

are working in the expansion of Spanish data for deception

detection in videos.
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