
Deep Residual Learning for Image Compression

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, Jiro Katto

Department of Computer Science and Communication Engineering, Waseda University, Tokyo, Japan

{zxcheng@asagi., hemingsun@aoni., masaru-t@aoni., katto@}waseda.jp

Abstract

In this paper, we provide a detailed description on our

approach designed for CVPR 2019 Workshop and Chal-

lenge on Learned Image Compression (CLIC). Our ap-

proach mainly consists of two proposals, i.e. deep residual

learning for image compression and sub-pixel convolution

as up-sampling operations. Experimental results have indi-

cated that our approaches, Kattolab, Kattolabv2 and Katto-

labSSIM, achieve 0.972 in MS-SSIM at the rate constraint

of 0.15bpp with moderate complexity during the validation

phase.

1. Introduction

Image compression has been an significant task in the

field of signal processing for many decades to achieve ef-

ficient transmission and storage. Classical image com-

pression standards, such as JPEG [1], JPEG2000 [2] and

HEVC/H.265-intra [3], usually rely on hand-crafted en-

coder/decoder (codec) block diagrams. Along with the fast

development of new image formats and high-resolution mo-

bile devices, existing image compression standards are not

expected to be optimal and general compression solutions.

Recently, we have seen a great surge of deep learning

based image compression works. Some approaches use

generative models to learn the distribution of images us-

ing adversarial training [4, 5, 6]. They can achieve better

subjective quality at extremely low bit rate. Some works

use recurrent neural networks to compress the residual in-

formation recursively, such as [7, 8, 9]. These works are

progressive coding, which can compress images at differ-

ent quality levels at once. More approaches on relaxations

of quantization and estimations of entropy model have been

proposed in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Their

ideas include using differentiable quantization approxima-

tion, or estimating the distribution for latent codes as en-

tropy models, or de-correlating different channels for latent

representation. Promising results have been achieved com-

pared with classical image compression standards.

However, selecting a proper network structure is a daunt-

ing task for all types of machine learning tasks, including

learned image compression. In this paper, we mainly dis-

cuss two issues. The first is about the kernel size. In clas-

sical image compression algorithms, filter sizes are quite

important. Motivated from this, we conduct some exper-

iments with different filter sizes to find larger kernel size

contributes to better coding efficiency. Based on this obser-

vation, we propose to utilize deep residual learning to main-

tain the same receptive field with fewer parameters. This

strategy not only reduces the model size, but also improves

the performance greatly. On the other hand, the design of

up-sampling operations at the decoder side is also signif-

icant to determine the reconstructed image quality and the

type of artifacts. This issue has been widely discussed in su-

per resolution tasks, and up-sampling layers can be imple-

mented in various ways, such as interpolation, transposed

convolution, sub-pixel convolution. We compare two popu-

lar up-sampling operations, i.e. transposed convolution and

sub-pixel convolution to illustrate their performance.

In CLIC 2019, we submitted three entries including Kat-

tolab, Kattolabv2, and KattolabSSIM in the low rate track,

to achieve 0.972 MS-SSIM with moderate complexity.

2. Deep Residual Learning for Image Com-

pression with Sub-Pixel Convolution

The network architectures that we used as anchors are

illustrated in Fig. 1. This architecture is referred from the

work [12] and the work [14], which has achieved the state-

of-the-art compression efficiency. The network consists of

two autoencoders. The main autoencoder controls the rate-

distortion optimization for image compression, and the loss

function is formulated as

J = λd(x, x̂) +R(ŷ) (1)

where λ controls the tradeoff between the rate and dis-

tortion. The auxiliary autoencoder is used to encode the

side information to model the distribution of compressed

information. Gaussian scale mixture is used to estimate an

image-dependent and adaptive entropy model, where scale

parameters are conditioned on a hyperprior. Moreover, [14]

proposed a joint autoregressive and hyperprior approach,

1



(a) Baseline-9 (b) HyperPrior-9

Figure 1: The network structure of anchors we used.

denoted as Joint. The only difference is to append a masked

5× 5 convolution after quantization and to concatenate the

output of auxiliary autoencoder and masked convolution to-

gether to learn the entropy model.

2.1. From Small Kernel Size to Large Kernel Size

In classical image compression algorithms, transform fil-

ter sizes are quite important to improve the coding efficien-

cy, especially for UHD videos. From the smallest trans-

form size 4 × 4, larger and larger transform size is grad-

ually used into video coding algorithms. Specifically, up

to 32 × 32 DCT coefficients have been incorporated into

HEVC [3]. Large kernel size brings benefits on captur-

ing the spatial correlation and semantic information. Mo-

tivated from this, we conduct some experiments using Ko-

dak dataset [26] with different filter sizes in the main and

auxiliary autoencoders respectively to explore the effect of

larger kernel size on coding efficiency. Table 1 shows for

the Baseline architecture, along with the increasing of k-

ernel sizes, the rate-distortion performance are becoming

better. Table 2 demonstrate similar results for HyperPrior

architectures. Table 3 shows large kernel in the auxiliary

autoencoder cannot bring any benefits on RD performance

and even gets worse, because the compressed codes y has

small size, so 5 × 5 are large enough. Too many learn-

able parameters instead increase the difficulty to learn. It is

worth noting for Joint architecture [14], a sequential decod-

ing is inevitable, which is extremely time-consuming when

Table 1: The effect of kernel size on Baseline on Kodak,

optimized by MSE with λ = 0.015.

Method PSNR MS-SSIM Rate

Baseline-3 32.160 0.9742 0.671

Baseline-5 32.859 0.9766 0.641

Baseline-9 32.911 0.9776 0.633

Table 2: The effect of kernel size on HyperPrior on Kodak,

optimized by MSE with λ = 0.015.

Method PSNR MS-SSIM Rate

HyperPrior-3 32.488 0.9742 0.543

HyperPrior-5 32.976 0.9757 0.518

HyperPrior-9 33.005 0.9765 0.512

Table 3: The effect of kernel size in the auxiliary autoen-

coder on Kodak, optimized by MS-SSIM with λ = 5.

Method PSNR MS-SSIM Rate

HyperPrior-9-Aux-5 26.266 0.9591 0.169

HyperPrior-9-Aux-9 26.236 0.9590 0.171

the test image becomes larger. Therefore, we exclude the

masked convolution in this challenge, but keep the 1 × 1
conv as they are, for HyperPrior architecture. An ablation

on the effect of 1× 1 conv will be conducted in the future.

2.2. From Shallow Network to Deep Residual Net
work

With respect to the receptive field, the stack of four 3×3
kernels capture the same receptive field as one 9 × 9 ker-

nel with fewer parameters. We have tried to replace one

large kernel with several 3× 3 filters, however, experiment

shows the stack of 3×3 kernels cannot converge. Motivated

from [20], we add the shortcut connection for neighboring

3 × 3 kernels. Our proposed deep residual network for im-

age compression is shown in Fig. 2. Fig. 2(a) is denoted as

3×3(3), where the stack of three 3 × 3 kernels reaches the

same receptive field as 7×7. The architecture of Fig. 2(b)

is ResNet-3×3(4), where the stack of four 3 × 3 kernels

reaches the same receptive field as 9×9. As for the acti-

vation functions, to prevent more parameters overhead, we

only use GDN/IGDN [11] for one time in each residual unit

when the output size changes. For other convolutional lay-

ers, we use parameter-free Leaky ReLU as activation func-

tion to add the non-linearity in the networks. The shortcut

projection is shown in Fig. 3. As shown in Table 4, ResNet-

3×3(4) is better than ResNet-3×3(3) and Hyperprior-9.

2.3. Upsampling Operations at Decoder Side

The encoder-decoder pipeline is a symmetric architec-

ture. The down-sampling operations at the encoder side



(a) ResNet-3×3(3) (b) ResNet-3×3(4)

Figure 2: Network structure of proposed deep residual

learning, where the solid and dotted lines denote the short-

cut connection without and with size change, respectively.

are intuitively implemented using convolution filters with

stride, however, up-sampling operations at the decoder side

have various ways, including bicubic interpolation [21],

transposed convolution [22], sub-pixel convolution[23].

Typically, almost all the previous works use the transposed

convolution (TConv), except for the work [10] use sub-pixel

convolution at the decoder side. Considering for fast end-

to-end learning, we exclude bicubic interpolation and com-

pare two popular up-sampling operations, i.e. TConv and

Sub-pixel Conv. For sub-pixel conv, we increase the num-

(a) Without size change (b) With size change

Figure 3: The network structure of one residual unit.

Table 4: Comparison of residual networks and upsampling

operations on Kodak, optimized by MS-SSIM with λ = 5.

Method PSNR MS-SSIM Rate

Hyperprior-9 26.266 0.9591 0.1690

ResNet-3×3(3) 26.378 0.9605 0.1704

ResNet-3×3(4)-TConv 26.457 0.9611 0.1693

ResNet-3×3(4)-SubPixel 26.498 0.9622 0.1700

Table 5: The effect of wide bottleneck on Kodak dataset.

Method PSNR MS-SSIM Rate

ResNet-3x3(4)-Bottleneck128 26.498 0.9622 0.1700

ResNet-3x3(4)-Bottleneck192 26.317 0.9619 0.1667

Table 6: Rate control on CLIC validation dataset [27].

Method λ PSNR MS-SSIM Rate

ResNet-3x3(4)-Bottleneck192 5 29.708 0.9697 0.1369

ResNet-3x3(4)-Bottleneck192 10 30.710 0.9765 0.1816

ber of channels by 4 times and then use tf.depth to space

function in Tensorflow. Results in Table. 4 show sub-pixel

convolution filters bring some improvement on PSNR and

MS-SSIM than transposed convolution filters.

3. Implementation Details

For training, we use 256 × 256 patches cropped from

ILSVRC validation dataset (ImageNet [24]). Batch size is

8, and up to 2M iterations are conducted to reach stable

results. The model was optimized using Adam [25], and the

learning rate was maintained at a fixed value of 1 × 10−4

and was reduced to 1× 10−5 for the last 80K iterations.

We also use two strategies for CLIC2019. One is Wide

Bottleneck. More filters can increase the model capacity.

Regarding that increasing the number of filters for large

feature maps will significantly increase FLOPs, we only in-

crease the number of filters in the last layer of encoder from

128 to 192, so that FLOPs are only increased a little, from



Table 7: Results on CLIC validation dataset [27].

Entry Description PSNR MS-SSIM Rate

Kattolab HyperPrior-9 28.902 0.9674 0.134

Kattolab HyperPrior-9 + Rate Control 29.102 0.9701 0.150

Kattolab ResNet-3×3(4)-TConv + Rate Control 29.315 0.9716 0.150

Kattolabv2 ResNet-3×3(4)-SubPixel+ Rate Control 29.300 0.9720 0.150

KattolabSSIM ResNet-3×3(4)-SubPixel + Wide Bottleneck + Rate Control 29.211 0.9724 0.150

2.50×1010 to 2.56×1010. Results are compared in Table. 5.

Bottleneck192 reduces the bitrate a lot, but also degrades

quality compared to Bottleneck128.

The other is Rate Control. For the low-rate track,

0.15bpp is the hard threshold. We train two models at dif-

ferent bit rates by adjusting λ, where the averaged rate with

λ = 5 is less than 0.15bpp for the validation dataset, and

the averaged rate with λ = 8 is larger than 0.15bpp. Re-

sults are shown in Table. 6. Then we can encode all the test

images twice and select adaptive to push the rate to 0.15bp-

p with the maximized MS-SSIM. One bit should be added

into the bitstream to specify which model is used for decod-

ing, which will not increase the complexity of the decoder.

4. Result Analysis

The compression results of our approaches on CLIC val-

idation dataset are summarized in Table 7.

Although deep residual network brings the coding gain,

the model size grows significantly. In this section, we

will analyze the number of parameters and the model com-

plexity with respect to floating point operations per second

(FLOPs) for all kinds of architectures. Specifically, take

the architecture HyperPrior-9 as an example, the layer-wise

model size analysis is illustrated in Table 8. The number of

parameters and FLOPs are calculated by

Para = (h× w × Cin + 1)× Cout

FLOPs = Para ×H ′
×W ′

(2)

where h × w is the kernel size, H ′
× W ′ is the output

size. Cin and Cout are the number of channels before or

after one operation. If no bias is applied, the +1 are re-

moved, such as conv4. Quantization and leaky-ReLU are

parameter-free. GDN [13] only run across different chan-

nels, but not across different spatial positions, the number of

parameters of GDN is only (Cin+1)×Cout. FLOPs of the

total GDN and inverse GDN calculation is only 7.10×108.

This paper mainly focus on the backbone of convolutional

layers, so we omit the FLOPs of GDN, inverse GDN and

factorized prior. The comparison is listed in Table 9, where

the last column is relative value of FLOPs using Baseline-

5 [11] as a baseline model. ResNet-3×3(4) also denotes

ResNet-3×3(4)-TConv. Our models achieve better coding

performance with low complexity.

Table 8: The model size analysis of HyperPrior-9.

Layer Kernel Channel Output Para FLOPs

h w Cin Cout H′ W ′

conv1 9 9 3 128 128 128 31232 5.12×10
8

conv2 9 9 128 128 64 64 1327232 5.44×10
9

conv3 9 9 128 128 32 32 1327232 1.36×10
9

conv4 9 9 128 128 16 16 1327104 3.40×10
8

GDN/IGDN 99072 -

Hconv1 3 3 128 128 16 16 147584 3.78×10
7

Hconv2 5 5 128 128 8 8 409728 2.62×10
7

Hconv3 5 5 128 128 4 4 409728 6.56×10
6

FactorizedPrior 5888 -

HTconv1 5 5 128 128 8 8 409728 2.62×10
7

HTconv2 5 5 128 192 16 16 614592 1.57×10
8

HTconv3 3 3 192 256 16 16 442624 1.13×10
8

layer1 1 1 256 640 16 16 164480 4.21×10
7

layer2 1 1 640 512 16 16 328192 8.40×10
7

layer3 1 1 512 256 16 16 131072 3.36×10
7

Tconv1 9 9 128 128 32 32 1327232 1.36×10
9

Tconv2 9 9 128 128 64 64 1327232 5.44×10
9

Tconv3 9 9 128 128 128 128 1327232 2.17×10
10

Tconv4 9 9 128 128 256 256 31107 2.04×10
9

Total 11188291 3.88×10
10

Table 9: The model complexity of different architectures.

Method Para FLOPs Relative

Baseline-3 997379 4.25×10
9 0.36

Baseline-5 2582531 1.18×10
10 1.00

Baseline-9 8130563 3.82×10
10 3.24

HyperPrior-3 4055107 4.78×10
9 0.40

HyperPrior-5 5640259 1.23×10
10 1.04

HyperPrior-9 11188291 3.88×10
10 3.28

ResNet-3×3(3) 5716355 1.75×10
10 1.48

ResNet-3×3(4) 6684931 2.43×10
10 2.06

ResNet-3×3(4)-SubPixel 8172172 2.50×10
10 2.12

ResNet-3×3(4)-SubPixel-

Bottleneck192
11627916 2.56×10

10 2.17

5. Conclusion

In this paper, we have described the proposed deep resid-

ual learning and sub-pixel convolution for image compres-

sion. This is the basis of our submitted entries Kattolab,

Kattolabv2 and KattolabSSIM. Results have shown our ap-

proaches achieve 0.972 in MS-SSIM at the rate of 0.15bpp

with moderate complexity during the validation phase.



References

[1] G. K Wallace, “The JPEG still picture compression stan-

dard”, IEEE Trans. on Consumer Electronics, vol. 38, no. 1,

pp. 43-59, Feb. 1991. 1

[2] Majid Rabbani, Rajan Joshi, “An overview of the JPEG2000

still image compression standard”, ELSEVIER Signal Pro-

cessing: Image Communication, vol. 17, no, 1, pp. 3-48, Jan.

2002. 1

[3] G. J. Sullivan, J. Ohm, W. Han and T. Wiegand, “Overview of

the High Efficiency Video Coding (HEVC) Standard”, IEEE

Transactions on Circuits and Systems for Video Technology,

vol. 22, no. 12, pp. 1649-1668, Dec. 2012. 1, 2

[4] Ripple Oren, L. Bourdev, “Real Time Adaptive Image Com-

pression”, Proc. of Machine Learning Research, Vol. 70, pp.

2922-2930, 2017. 1

[5] S. Santurkar, D. Budden, N. Shavit, “Generative Compres-

sion”, Picture Coding Symposium, June 24-27, 2018. 1

[6] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and

L. V. Gool, “Generative Adversarial Networks for Extreme

Learned Image Compression”, arXiv:1804.02958. 1

[7] G. Toderici, S. M.O’Malley, S. J. Hwang, et al., “Variable rate

image compression with recurrent neural networks”, arXiv:

1511.06085, 2015. 1

[8] G, Toderici, D. Vincent, N. Johnson, et al., “Full Resolution

Image Compression with Recurrent Neural Networks”, IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

pp. 1-9, July 21-26, 2017. 1

[9] Nick Johnson, Damien Vincent, David Minnen, et al., “Im-

proved Lossy Image Compression with Priming and Spa-

tially Adaptive Bit Rates for Recurrent Networks”, arX-

iv:1703.10114, pp. 1-9, March 2017. 1

[10] Lucas Theis, Wenzhe Shi, Andrew Cunninghan and Ferenc

Huszar, “Lossy Image Compression with Compressive Au-

toencoders”, Intl. Conf. on Learning Representations (ICLR),

pp. 1-19, April 24-26, 2017. 1, 3

[11] J. Balle, Valero Laparra, Eero P. Simoncelli, “End-to-End

Optimized Image Compression”, Intl. Conf. on Learning Rep-

resentations (ICLR), pp. 1-27, April 24-26, 2017. 1, 2, 4

[12] J. Balle, D. Minnen, S. Singh, S. J. Hwang, N. Johnston,

“Variational Image Compression with a Hyperprior”, Intl.

Conf. on Learning Representations (ICLR), pp. 1-23, 2018.

1

[13] J. Balle, “Efficient Nonlinear Transforms for Lossy Image

Compression”, Picture Coding Symposium, 2018. 1, 4

[14] D. Minnen, J. Balle, G. Toderici, “Joint Autoregressive and

Hierarchical Priors for Learned Image Compression”, arX-

iv.1809.02736. 1, 2

[15] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R.

Timofte, L. Benini, L. V. Gool, “Soft-to-Hard Vector Quan-

tization for End-to-End Learning Compressible Representa-

tions”, Neural Information Processing Systems (NIPS) 2017,

arXiv:1704.00648v2. 1

[16] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, L.

V. Gool, “Conditional Probability Models for Deep Image

Compression”, IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), June 17-22, 2018. 1

[17] Z. Cheng, H. Sun, M. Takeuchi, J. Katto, “Deep Convolu-

tional AutoEncoder-based Lossy Image Compression”, Pic-

ture Coding Symposium, pp. 1-5, June 24-27, 2018. 1

[18] Z. Cheng, H. Sun, M. Takeuchi, J. Katto, “Performance

Comparison of Convolutional AutoEncoders, Generative Ad-

versarial Networks and Super-Resolution for Image Compres-

sion”, CVPR Workshop and Challenge on Learned Image

Compression (CLIC), pp. 1-4, June 17-22, 2018. 1

[19] M. Li, W. Zuo, S. Gu, D. Zhao, D. Zhang, “Learning Con-

volutional Networks for Content-weighted Image Compres-

sion”, IEEE Conf. on Computer Vision and Pattern Recog-

nition (CVPR), June 17-22, 2018. 1

[20] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learn-

ing for Image Recognition”, arXiv.1512.03385, 2015. 2

[21] C. Dong, C. C. Loy, K. He, X. tang, “Image Super-resolution

using Deep Convolutional Networks”, arXiv.1501.00092. 3

[22] C. Dong, C. C. Loy, X. tang, “Accelerating the

Super-Resolution Convolutional Neural Network”. arX-

iv.1608.00367. 3

[23] W. Shi, J. Caballero, F. Huszar, et al. “Real-time single image

and video super-resolution using an efficient sub-pixel convo-

lutional neural network”, Intl. IEEE Conf. on Computer Vi-

sion and Pattern Recognition, June 26-July 1, 2016. 3

[24] J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei,

“ImageNet: A Large-Scale Hierarchical Image Database”,

IEEE Conf. on Computer Vision and Pattern Recognition, pp.

1-8, June 20-25, 2009. 3

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization”, arXiv:1412.6980, pp.1-15, Dec. 2014. 3

[26] Kodak Lossless True Color Image Suite, Download from

http://r0k.us/graphics/kodak/ 2

[27] Workshop and Challenge on Learned Image Compression,

CVPR2019, http://www.compression.cc/ 3, 4


