RRU-Net: The Ringed Residual U-Net for Image Splicing Forgery Detection

Xiuli Bi†, Yang Wei‡, Bin Xiao∗, Weisheng Li
School of Computer Science & Technology, Chongqing University of Posts and Telecommunication
{bixl}@cqupt.edu.cn, {yalesaleng}@outlook.com, {xiaobin, liws}@cqupt.edu.cn

Abstract

Detecting a splicing forgery image and then locating the forgery regions is a challenging task. Some traditional feature extraction methods and convolutional neural network (CNN)-based detection methods have been proposed to finish this task by exploring the differences of image attributes between the un-tampered and tampered regions in an image. However, the performance of the existing detection methods is unsatisfactory. In this paper, we propose a ringed residual U-Net (RRU-Net) for image splicing forgery detection. The proposed RRU-Net is an end-to-end image essence attribute segmentation network, which is independent of human visual system, it can accomplish the forgery detection without any preprocessing and post-processing. The core idea of the RRU-Net is to strengthen the learning way of CNN, which is inspired by the recall and the consolidation mechanism of the human brain and implemented by the propagation and the feedback process of the residual in CNN. The residual propagation recalls the input feature information to solve the gradient degradation problem in the deeper network; the residual feedback consolidates the input feature information to make the differences of image attributes between the un-tampered and tampered regions be more obvious. Experimental results show that the proposed detection method can achieve a promising result compared with the state-of-the-art splicing forgery detection methods.

1. Introduction

Recently, the widespread availability of image editing software makes it extremely easy to edit or even change the digital image content, which is becoming a fearful problem. Struggling to the public trust in photographs, in this paper, our research is specifically focused on the image splicing forgery detection. The splicing forgery copies parts of one image and then pastes into another image to merge a new image as shown in Fig. 1.(a). Because the tampered regions come from other images, the differences of image attributes between the un-tampered and tampered regions exist, such as lighting, shadow, sensor noise, camera reflection and so on, which can be utilized to identify an image suspected of being tampered with and to locate the tampered regions in the forgery image. The existing splicing forgery detection methods have tried to make use of some feature extraction methods for exploring the differences of image attributes. According to the feature extraction methods used in the existing splicing forgery detection methods, they can be mainly classified into two classes: traditional feature extraction-based detection methods and convolutional neural network (CNN)-based detection methods.

For traditional feature extraction-based methods, they can be broadly categorized into four types: detection methods based on the image essence attribute [3, 25, 34], detection methods based on the imaging device attribute [6, 8, 13,
17], detection methods based on the image compression attribute [12, 14, 30], and detection methods based on the hash techniques [23, 26, 29, 35]. These detection methods generally focus on one specified image attribute, thus they have the following limitations on real-world tasks: a) The detection methods based on the image essence attribute may fail if some hidden processes (such as the overall fuzzy operation) are performed after the process of splicing forgery; b) If the device noise intensity of an image is weak, the detection methods based on the imaging device attribute may fail; c) The detection methods based on the image compression attribute can only detect the image saved by JPEG format; d) The detection methods based on the hash techniques rely on the hash of the original un-tampered image, so they cannot be strictly regarded as the blind type of forgery detection method.

In recent years, convolutional neural network (CNN) has achieved a great success in the research area of computer vision. The feature extraction and mapping of CNN give some researchers an insight that CNN can also be adapted to accomplish the image splicing forgery detection. CNN is originally used to judge whether the image has been tampered in [20], but it cannot locate the tampered regions. In [33], the authors try to locate the tampered regions by CNNs, but the detected regions just can be shown by the inaccurate rough areas that are made up of some square white blocks. These two detection methods based on CNN are just the preliminary attempts, their results are not ideal. For improving the detected tampered regions, the detection methods [1, 27] use the non-overlapping image patch as the input of CNNs. However, when an image patch totally comes from the tampered regions, this image patch will be judged un-tampered label. In [15], the authors utilize the bigger image patch to reveal the image attributes of the tampered regions, however, the detection method may fail if the forgery image is small. For the existing CNN-based detection methods, since they use the image patch as the input of the network, the contextual spatial information is lost, which easily causes incorrect prediction. Moreover, when the network architecture is deeper, the gradient degradation problem will appear and the discrimination of features will become weaker, which will lead to the splicing forgery detection more difficult or even fail.

For overcoming the drawbacks of traditional feature extraction-based methods, meanwhile, further solving the problems of current CNN-based detection methods, a ringed residual U-Net (RRU-Net) is proposed in this paper. RRU-Net is an end-to-end image essence attribute segmentation network, which is independent of human visual system, it can directly locate the forgery regions without any preprocessing and post-processing. Furthermore, RRU-Net can effectively decrease incorrect prediction since it makes better use of the contextual spatial information in a image.

And most of all, the ringed residual structure in RRU-Net can strengthen the learning way of CNN and simultaneously prevent the gradient degradation problem of deeper network, which ensure the discrimination of image essence attribute features be more obvious while the features are extracted among layers of network.

2. Related Work

U-Net: U-Net has been proposed by Olaf Ronneberger et al. [21] in 2015. U-Net is a great success in the neuronal structure segmentation, its framework is pathbreaking since features are propagated among layers. In U-Net, the contextual information is captured by a contracting path (successive layers), the output feature is upsampled and then combined with the high-resolution features propagated by a symmetric expanding path, which reduces the loss of detail information and enables precise location. Therefore, some image segmentation methods [4, 10] based on U-Net have been
subsequently proposed. In fact, the image splicing forgery detection can be viewed as a complicated image segmentation task independent of the human visual system. We need to segment out the tampered regions in an image that cannot be distinguished by the human eyes at most time. The only way to locate the tampered regions depends on the differences of image essence attributes, which can be discovered by extracting the discriminative features. Though the U-Net can extract some relatively shallow discriminative features among layers of network, only the two sides of the U-Net structure are interacting, which is not enough for confirming the tampered regions. Besides, the gradient degradation problem [7] will appear when network architecture is deeper.

ResNet: ResNet has been proposed by Kaiming He et al. [7] in 2015, it has won the championship in the classification task of ImageNet match. In ResNet, the residual mapping is defined as Eq.(1).

\[
y = F(x) + x
\]

For a few stacked layers, \(x \) represents the input, \(y \) is the output, the operation \(F(x) + x \) is performed by a shortcut connection and element-wise addition. The residual mapping is proposed to solve the gradient degradation problem in deeper networks. For the splicing forgery detection, the gradient degradation problem will cause another extra serious problem. The discrimination of image essence attribute features will be weaker through the direct multilayer structure, which makes the differences of image essence attributes become hard to discover. For solving the gradient degradation problem and simultaneously strengthening the learning way of CNN, the residual mapping should be utilized more efficiently.

3. The Ringed Residual U-Net (RRU-Net)

3.1. Residual Propagation

According to the discussion above, the differences of image essence attributes are the significant basis for detecting image splicing forgery, however, the gradient degradation problem will destroy the basis when the network architecture gets deeper. For solving the gradient degradation problem, we add the residual propagation to each stacked layers. A building block is shown in Fig. 2, which consists of two convolutional (dilated convolution [31], dconv) layers and residual propagation. The output of the building block is defined as:

\[
y_f = F(x, \{W_i\}) + W_s * x,
\]

where, \(x \) and \(y_f \) are the input and output of the building block, \(W_i \) represents the weights of layer \(i \), the function \(F(x, \{W_i\}) \) represents the residual mapping to be learned. For the example in Fig. 2 that has two convolutional layers, \(F = W_2\sigma(W_1 * x) \) in which \(\sigma \) denotes ReLU [19] and the biases are omitted for simplifying notations. The linear projection \(W_s \) is used to change the dimension of \(x \) to match the dimension of \(F(x, \{W_i\}) \). The operation \(F + W_s * x \) is performed by a shortcut connection and element-wise addition.

The residual propagation looks like the recall mechanism of the human brain. We may forget the previous knowledge when we learn several more new knowledge, so we need the recall mechanism to help us arouse those previous fuzzy memories.

3.2. Residual Feedback

It is obvious that, in splicing forgery detection, if the differences of image essence attributes between the un-tampered and tampered regions can be further strengthened, the performance of the detection can be further improved. In [36], the proposed method superposes the additional difference of noise attribute by passing the forgery image through an SRM filter layer to enhance detection results. The SRM filter layer has a certain effect, however, it is a manual choosing method and can only for the RGB image forgery detection. Moreover, when the un-tampered and tampered regions come from the cameras with the same brand and model, the SRM filter layer will reduce effectiveness sharply, since they have same noise attribute. For further strengthening the differences of image essence attributes, the residual feedback is proposed, which is an automatic learning method and not just focus on one or several specific image attributes. Furthermore, we design a simple and effective attention mechanism, which take advantage of ideas of Hu et al. [9], and then we add it on the residual feedback to pay more attention to the discriminative features of input information. In this attention mechanism, we opt to employ a simple gating mechanism with a sigmoid activation function to learn a nonlinear interaction between discriminative feature channels and avoid diffusion of feature information, and then we superpose the response values obtained by sigmoid activation on input information to amplify differences of image essence attributes between the un-tampered and tampered regions. The residual feedback in a building block is shown Fig. 3 and is defined as Eq.(3),

\[
y_b = s(G(y_f) + 1) * x
\]

where, \(x \) is the input, \(y_f \) is the output of residual propagation defined in Eq.(2), \(y_b \) is the enhanced input. The function \(G \) is a linear projection, which is used to change the dimensions of \(y_f \). The function \(s \) is a sigmoid activation function.

In contrast to the recall mechanism imitated by the residual propagation, the residual feedback seems to act as the consolidation mechanism of the human brain, we need to
consolidate the knowledge already learned by us to obtain the new feature comprehension. The residual feedback can amplify the differences of image essence attributes between the un-tampered and tampered regions in the input, as shown in Fig. 1.(c), the tampered region ‘eagle’ is amplified to global maximal response values by the residual feedback. Furthermore, it also has two far-reaching effects: (1) the strengthening of the discriminative features can simultaneously be viewed as the repression of the negative label features; (2) the convergence rate of network in the training process is more fast.

3.3. Ringed Residual Structure and Network Architectures

The proposed ringed residual structure that combines the residual propagation and the residual feedback is shown in Fig. 4. The residual propagation is just like the recall mechanism of the human brain, which recalls the input feature information to solve the degradation problem in the deeper network; the residual feedback consolidates the input feature information to make the differences of image essence attributes between the un-tampered and tampered regions be amplified. To sum up, the ringed residual structure guarantees the discrimination of image essence attribute features be more obvious while the features are extracted among layers of network, which can achieve better and stable detection performance than traditional feature extraction-based detection methods and existing CNN-based detection methods. The network architecture of RRU-Net is shown in Fig. 5, it is an end-to-end image essence attribute segmentation network, and can directly detect the splicing forgery without any preprocessing and post-processing.

4. Evaluation Experiment and Comparative Analysis

For evaluating the performance of the proposed RRU-Net, we carry out various experiments in terms of effectiveness and robustness. Meanwhile, the proposed method is compared with some other image splicing forgery detection methods under different cases.

Experimental Datasets: We chose two public datasets for evaluation, i.e., CASIA [24] and COLUMB [8]. On CASIA, the splicing forgery regions are objects, which are small and elaborate. On COLUMB, the splicing forgery regions are some simple, large, and meaningless regions. For training RRU-Net better, we resize the size of images in the training and validation sets to 384×256, and then we perform data augmentation with random Gaussian noise, JPEG compression and random overturn, which quadruples the capacity of the two datasets. All of experimental datas is listed in Tab. 1, on CASIA, we randomly select 715 sets of images that contain the original images and forgery images as the training set, 35 sets of images as the validation set, and then 100 sets of images as the testing set. Similarly, on COLUMB, 125 sets of images are chosen as the training
set, 10 sets of images as the validation set, and then 44 sets of images as the testing set. The Augmented Splicing represents the combination of augmented datasets (2860 images) and the Plain Splicing datasets (715 images), moreover, for comparing and analyzing the robustness of the image splicing forgery detection method, JPEG compression and noise corruption are applied to the forgery datasets to create various attack cases.

- JPEG Compression: after a splicing forgery image is created, the splicing forgery image will be saved in JPEG format with different compression quality factor.
- Noise Corruption: after a splicing forgery image is created, white Gaussian noise with mean value 0 and different variances will be added to the splicing forgery image.

As listed in Tab. 1, 7038 images are used in total in the following experiments. For the fair comparison, we convert all experimental images from TIFF format to JPEG format with quality factor 100%, since the detection methods based on the compression property only can detect the image in JPEG format.

Evaluation Metrics: For image splicing forgery detection, at the pixel level, the significant evaluation is the performance of locating the tampered regions. The evaluation metrics are the number of correctly detected tampered pixels (TP), the number of incorrectly detected tampered pixels (FP), and the number of incorrectly detected un-tampered pixels (FN). In the following experiments, we use **Precision**, **Recall**, and **F-measure** to evaluate the performance of the proposed splicing forgery detection methods in pixel level. **Precision** is defined in Eq.(4), which denotes the probability that the detected regions are the truly tampered regions in the ground-truth image. **Recall** is the probability that the tampered regions in the ground-truth image are correctly detected, which is defined in Eq.(5). **F-measure** combines **Precision** and **Recall** to one measure to synthetically evaluate the performance of detection method, it is formulated in Eq.(6). In the experiments, the **Precision**, **Recall**, and **F-measure** are the main values of the testing set. Moreover, the performance of distinguishing the un-tampered image and tampered image is another significant evaluation, which means the un-tampered image should not be detected as the tampered image and vice versa. For further demonstrating the detection effects of the proposed RRU-Net, at the image level, we evaluate the detection results by using the accuracy rate.

\[
Precision = \frac{TP}{TP + FP} \tag{4}
\]

\[
Recall = \frac{TP}{TP + FN} \tag{5}
\]

\[
F - \text{measure} = \frac{2 \times Precision \times Recall}{Precision + Recall} \tag{6}
\]

Compared Detection Methods: For comparing the performance of the proposed RRU-Net, we choose three traditional feature extraction-based detection methods, two CNN-based detection methods and two semantic segmentation methods, they are DCT [30], CFA [5], NOI [18], DF-Net [15] C2R-Net [27], FCN [16] and DeepLab v3 [2]. The DCT is an inconsistent detection method for JPEG DCT coefficient histogram. In CFA, the interference in the color filter array (CFA) interpolation pattern is modeled as a mixture of Gaussian distributions to detect the tampered regions. The NOI detects the splicing regions by using the wavelet Filtering to extract the local image noise variance modeling. Compared detection methods (DCT, CFA, and NOI) have been mainly implemented by Zampoglou, Papadopoulos and Kompsatsiaris [32]. We choose this version algorithms to estimate in our experiments. The C2R-Net and DF-Net detect the tampered regions by using CNN, they use image patch as the input of CNN, the algorithm codes are provided by authors. The DF-Net is inefficient on CASIA, since this method uses 64 × 64 image patch as the input and the images on CASIA are small, we do not present its result on this dataset. The FCN and DeepLab v3 are classic and

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Set</td>
<td>Augmented Splicing</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3575</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>Original Image</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>715</td>
<td>125</td>
</tr>
<tr>
<td>Validation Set</td>
<td>Plain Splicing</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>175</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Original Image</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>Testing Set</td>
<td>Plain Splicing</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Original Image</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>JPEG Compression</td>
<td>Quality Factor</td>
<td>50 ~ 90</td>
<td>10</td>
<td>500</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Noise Corruption</td>
<td>Variance</td>
<td>0.002 ~ 0.01</td>
<td>0.002</td>
<td>500</td>
<td>220</td>
</tr>
</tbody>
</table>

Table 1. The generation of training, validation and testing sets based on CASIA [24] and COLUMB [8].
effective detection methods for image semantic segmentation task, both of them have achieved better detection performance. Moreover, we utilize two detection methods the U-Net and the residual U-Net (RU-Net) to further evaluate validity of the residual residual structure in RRU-Net. Implementation of U-Net refers to its original structure in [21], and the structure of RU-Net gets rid of the residual feedback in RRU-Net.

Implementation Detail: The RRU-Net and the compared detection methods are run on a computer with Intel Xeon E5-2603 v4 CPU and NVIDIA GTX TITAN X GPU. The parameters of all compared detection methods are set according to their best performances. The U-Net, RU-Net, and RRU-Net are implemented by PyTorch. In the training process of RRU-Net, we utilize random value to initial parameters and use stochastic gradient descent with a batch size of 10 samples, the momentum is 0.9, the weight decay is 0.0005 and the initial learning rate is 0.1. The group normalization (GN) [28] is used to normalize scattered data in high dimensional space since a batch size of 10 samples is insufficient to support for batch normalization (BN) [11]. The cross-entropy introduced in [22] is used as a loss function.

4.1. Detection at Pixel Level

4.1.1 Detection Results under Plain Splicing Forgery

In this subsection, the proposed RRU-Net and other compared detection methods are estimated under the case of plain splicing forgery, the detected results of four examples are shown in Fig. 6. From a subjective perspective, it is clear that the performance of the RRU-Net is better than the other eight detection methods. For more objective and fair comparisons, we calculate the averages of **Precision**, **Recall**, and **F-measure** of detection results on both of the two datasets, which is listed in Tab. 2. It can be seen that RRU-Net is better than other nine detection methods in **Precision**, **Recall** and **F-measure**. Although the **Recall** of RRU-Net is a little worse than the DCT [30] and DeepLab v3 [2], from the subjective perspective, we can find that the DCT almost loses effectiveness and the detection effect of the DeepLab v3 is far worse than the RRU-Net.

4.1.2 Detection Results under Various Attacks

For further verifying the effectiveness and robustness of the proposed detection method, we also evaluate the performance of the detection methods under various attacks, including JPEG compression and noise corruption.

Experimental Results under JPEG Compression Attack. The comparative experiment results under JPEG compression attack are shown in Fig. 7. In Fig. 7, three columns indicate **Precision**, **Recall**, and **F-measure** of the comparative experiment results respectively. The first and second rows are the experiment results under different quality factor of JPEG compression on CASIA and COLUMB respectively. From this Fig. 7, it can be easily observed that the RRU-Net is better than the other eight detection methods in **Precision** and **F-measure** on CASIA, and it is slightly lower than the DCT, the CFA, the DeepLab v3 and the
RU-Net in Recall. Similarly, the RRU-Net is better than the other nine detection methods in Precision and F-measure on COLUMB, and it is only slightly lower than the DeepLab v3 in Recall. The Recall of the RRU-Net is worse than the CFA and the DCT, the reason is both of them detect almost the whole image as the tampered regions. The performance and robustness of the U-Net without the residual propagation and the residual feedback are far lower than the RU-Net and the RRU-Net. It can be found through the experiments that the detection results of the RRU-Net are preferable than the other detection methods and have high robustness under JPEG compression attack on the two datasets.

Experimental Results under Noise Corruption Attack. The comparative experiment results under noise (Gaussian-distributed additive noise) corruption attack are shown in Fig. 8. Fig. 8.(a1-a3) and Fig. 8.(b1-b3) represent the experimental results of noise corruption with different variances (mean of the random distribution is 0) on CASIA and COLUMB respectively. On CASIA, the Precision and F-measure of the RRU-Net are better than the other eight detection methods. On COLUMB, the Precision of the RRU-Net is better than the other nine detection methods, and the F-measure of the RRU-Net is slightly lower than the DeepLab v3. The robustness of the RU-Net without the residual feedback is weak under noise corruption attack.

Table 2. Detection results under the plain splicing forgery. The sign '-' denotes that the result is not available in the Table.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>Recall</td>
</tr>
<tr>
<td>DCT [30]</td>
<td>0.349</td>
<td>0.871</td>
</tr>
<tr>
<td>CFA [5]</td>
<td>0.057</td>
<td>0.846</td>
</tr>
<tr>
<td>NOI [18]</td>
<td>0.079</td>
<td>0.088</td>
</tr>
<tr>
<td>DF-Net [15]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C2R-Net [27]</td>
<td>0.417</td>
<td>0.424</td>
</tr>
<tr>
<td>FCN [16]</td>
<td>0.509</td>
<td>0.173</td>
</tr>
<tr>
<td>DeepLab v3 [2]</td>
<td>0.481</td>
<td>0.636</td>
</tr>
<tr>
<td>U-Net [21]</td>
<td>0.761</td>
<td>0.737</td>
</tr>
<tr>
<td>RU-Net</td>
<td>0.783</td>
<td>0.814</td>
</tr>
<tr>
<td>RRU-Net</td>
<td>0.848</td>
<td>0.834</td>
</tr>
</tbody>
</table>

Figure 7. Comparison results under JPEG compression attacks. The three columns represent the Precision, Recall, and F-measure. (a1) - (a3) represent the experiment results on CASIA; (b1) - (b3) represent the experiment results on COLUMB.
(a1) Noise corruption (a2) Noise corruption (a3) Noise corruption
(b1) Noise corruption (b2) Noise corruption (b3) Noise corruption

Figure 8. Comparison results under noise corruption attack. The three columns represent the Precision, Recall, and F-measure. (a1) - (a3) represent the experiment results on CASIA; (b1) - (b3) represent the experiment results on COLUMB.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCT [30]</td>
<td>52.78%</td>
</tr>
<tr>
<td>CFA [5]</td>
<td>59.63%</td>
</tr>
<tr>
<td>NOI [18]</td>
<td>63.89%</td>
</tr>
<tr>
<td>DF-Net [15]</td>
<td>15.28%</td>
</tr>
<tr>
<td>C2R-Net [27]</td>
<td>46.53%</td>
</tr>
<tr>
<td>FCN [15]</td>
<td>68.4%</td>
</tr>
<tr>
<td>DeepLab v3 [27]</td>
<td>69.4%</td>
</tr>
<tr>
<td>U-Net [21]</td>
<td>67.2%</td>
</tr>
<tr>
<td>RU-Net</td>
<td>72.6%</td>
</tr>
<tr>
<td>RRU-Net</td>
<td>76%</td>
</tr>
</tbody>
</table>

Table 3. The detection results of the RRU-Net and the other nine detection methods at image level.

Table 3 shows the accuracy of different methods at the image level. RRU-Net has the highest accuracy, indicating its superior performance.

4.2. Detection at Image Level

For comparing the performance of the RRU-Net and other detection methods at the image level, we carry out an experiment to identify the un-tampered image and the tampered image. 144 plain splicing forgery images and 144 original images are selected as testing images from CASIA and COLUMB. The accuracy of the detection methods is listed in Tab. 3. It is clear that the accuracy of RRU-Net is better than other nine detection methods, which proves RRU-Net not only can locate the tampered regions in splicing forgery images but also can judge whether an image has or has not been tampered.

5. Conclusion

In this paper, we propose a ringed residual U-Net (RRU-Net) for image splicing forgery detection, which is an end-to-end image essence property segmentation network and can achieve the forgery detection without any preprocessing and post-processing. Inspiring by the recall and consolidation mechanisms of the human brain, the proposed RRU-Net strengthens the learning way of CNN by the propagation and feedback process of the residual. Simultaneously, we also prove the validity of the ringed residual structure in RRU-Net from theoretical analysis and experimental comparison. We will further explore and visualize the latent discriminative feature between tampered and un-tampered regions to explain the key issues of image splicing forgery detection in our future works.

Acknowledgment

This work was partly supported by the National Natural Science Foundation of China (61572092, U1713213 and 61806032), the National Science & Technology Major Project (2016YFC1000307-3), the Chongqing Research Program of Application Foundation & Advanced Technology (cstc2018jcyjAX0117) and the Scientific & Technological Key Research Program of Chongqing Municipal Education Commission (KJZD-K201800601).
References

