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Abstract

As deep neural networks (DNNs) have become increas-

ingly important and popular, the robustness of DNNs is the

key to the safety of both the Internet and physical world.

Unfortunately, some recent studies show that adversarial

examples, which are hard to be distinguished from real ex-

amples, can easily fool DNNs and manipulate their pre-

dictions. Upon observing that adversarial examples are

mostly generated by gradient-based methods, in this pa-

per, we first propose to use a simple yet very effective non-

differentiable hybrid model that combines DNNs and ran-

dom forests, rather than hide gradients from attackers, to

defend against the attacks. Our experiments show that our

model can successfully and completely defend the white-box

attacks, has a lower transferability, and is quite resistant to

three representative types of black-box attacks; while at the

same time, our model achieves similar classification accu-

racy as the original DNNs. Finally, we investigate and sug-

gest a criterion to define where to grow random forests in

DNNs.

1. Introduction

Despite being remarkably effective in solving many real-

world problems such as the perception of images, videos,

and texts, Deep neural networks (DNNs) are surprisingly

vulnerable to adversarial attacks: one can easily fool the

networks and manipulate their predictions by generating ad-

versarial examples that are only slightly different from the

real examples for which the networks usually give rise to

correct predictions [29]. While at the same time, DNNs are

widely applied to many critical real-life applications, such

as self-driving cars, robotics, and Internet of Things, it is

vital to improve their robustness against adversarial attacks.

In the state-of-the-art adversarial attacking methods, gra-

dients are the key ingredient to perturb a normal example to

an adversarial one. These methods include white-box at-

tacks [14, 14], which assume that attackers have full knowl-

edge of the DNNs being attacked, including the architecture

and weights of the DNNs and, even the training data and

gradients during training. In like manner, black-box attack-

ing algorithms [28, 21] allow attackers access to nothing

but the DNNs’ outputs (e.g. classification prediction prob-

abilities) which are usually used to estimate the gradients.

Thus recent defense strategies focus on preventing the at-

tackers from inferring the gradients. As summarized in [1],

defense methods often use shattered gradients [6], design

stochastic gradients, or intentionally vanishing/exploding

gradients [31]. But since these methods are in the nutshell

of training with back-propagation, it essentially opens the

door to attackers. The gradient-based attack could still suc-

ceed as long as they find a way to obtain or approximate the

correct gradients, which seems feasible in most cases [1].

In this paper, we open a novel direction for defend-

ing against gradient-based attacking models by introduc-

ing non-differentiable algorithms into DNNs. We propose a

simple, intuitive yet effective method to transform a fragile

DNN classifier into a more robust one. We present a hy-

brid approach that we transform the last few layers of DNNs

classifiers into random forests that are non-differentiable at

all so that the gradients cannot been approximated. Our

proposed technique is very flexible for easily marrying

the strength of the representation power of DNNs as fea-

ture extractor and the security property thanks to the non-

differentiability of random forests.

Extensive experiments on several DNN classificaton

models including AlexNet [18], VGG-16 [30], and MNIST-

net [7] show the effectiveness of our method against some

popular attacking algorithms such as C&W model [7]

for white-box attacks and Zeroth Order Optimization

(ZOO) [8] for black-box attacks. White-box attack meth-

ods fail to attack our hybrid deep model because the last

few layers are not differentiable at all. Furthermore, most

previous defense methods suffer from failing to defend the

transferability of adversarial examples. We show that our

approach using random forests leverages the problem. On

the other hand, black-box attacks also find it hard to attack
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such hybrid model because the final prediction is not a sin-

gle continuous-valued probabilistic output but an ensemble

output. Details of experiments will be discussed latter.

We further provide technical study of our approach. We

investigate the performance of building the random forests

from different layers of the DNNs. We find that the relative

ℓ2 distance between the real examples and the corresponded

adversarial examples serves as good indicator to determine

the depth of DNN layers that the random forests best grow

upon. With careful examination and ablative study, experi-

ments show our models not only defend against the attacks

successfully but also achieve a high classification accuracy

on the original test instances.

Below we summarize the key contributions:

• We present a simple, flexible, and intuitive technique

to enhance the security of DNN classifiers against ad-

versarial attacks.

• We propose a novel direction for defending from

gradient-based attacks. We utilize random forests to

transform pure DNNs into non-differentiable classi-

fiers thus prevent the gradient from being inferred

which is the strategy that state-of-the-art attacking

models typically rely on.

• Extensive experiments show the effectiveness of our

model against some strong attackers in both white-box

and black-box literature.

2. Related work

Since the concept of adversarial samples comes up,

many attack and defense methods have been proposed. In

this section, we describe recent developments related to this

topic, including both adversarial attacks and adversarial de-

fense approaches.

2.1. Adversarial attacks

White-box attacks. White-box means attackers have

the full access of the architecture, parameters and weights

of the model [32, 7, 14]. One of the first methods is pro-

posed in [32], known as box-constrained L-BFGS, which

minimizes the additive perturbation based on the classifi-

cation constrains. Then, Goodfellow et al. proposed an

approach called Fast Gradient Sign Method (FGSM) [14]

to conquer the inefficiency. Later, Basic Iterative Method

(BIM) method [19] is introduced to add perturbations iter-

atively. In 2017, a very strong attack [7] (a.k.a. C&W)

method is proposed to find the minimal L0, L2, and L∞

distance. There are also generative network based attacking

methods. For example, [2] generates adversarial samples

through generative adversarial networks [13]. It is note-

worthy that Kantchelian proposes an attack method on tree

ensemble classifiers [16]. However, the approach handles

regression trees while we use classification trees, while the

authors also propose that the attack of tree classifiers can be

easily solved with adversarial training.

Black-box attacks. Compared to white-box attack

methods that request the target neural networks to be dif-

ferentiable, black-box attacks are introduced to deal with

non-differentiable systems or systems whose parameters

and weights cannot be reached. Zeroth Order Optimization

(ZOO) [8] can directly estimate the gradients of the target

network through zeroth order stochastic coordinate descent.

Papernot et al. propose [28] to achieve decision bound-

aries learning based on transfer attack. And Liu et al. [21]

use an ensemble of several pre-trained models as the source

model to generate adversarial examples even when no query

of probes are allowed.

2.2. Adversarial defenses

Defenses based on gradient masking. Gradient mask-

ing is one of the most popular defense methods that inten-

tionally or unintentionally mask the gradient that is needed

for computing perturbations by most white-box attackers.

Buckman encodes input images using thermometer encod-

ing to enable discrete gradient that cannot be attacked di-

rectly [6]. While Guo applies transformation to the inputs

to shatter the gradients [15]. By adding noise to the logit

outputs of neural networks, Nguyen introduces the masking

based defense against C&W attacks [27].

Defenses through adversarial training. Adversar-

ial training is one of the most straightforward and effi-

cient strategies when defending against the adversarial at-

tacks [32]. However, adversarial training only improves the

robustness of some specific attacks [24, 4]. For some strong

attack methods like [7], it is very hard to gain robustness via

adversarial training because of large search space. It is ob-

served that by adding noise before starting the optimizer for

the attack [22], the over-fitting towards specific attacks can

be reduced and ensembling adversarial samples generated

by different models also improves robustness [33].

Other defenses. There are also other defense methods

that fall into none of the two categories above. Metzen

defends against attacks through refusing classification by

detecting whether there are signs of tampering of the in-

put [23]. Goodfellow uses shallow RBF that is robust to

adversarial samples but has a much lower accuracy on the

clean samples [14]. Some other methods try to apply pre-

processing techniques towards the input to denoise before

the classifier such as JPEG compression [10] and median

filter [34].

3. Our Approach

To adversarially attack deep neural networks (DNNs),

the most effective existing methods are almost gradients-

based (e.g. [7, 14]) probably because the DNNs are usually



trained by (stochastic) gradient descent. As a result, to de-

fend DNNs against such attacks, gradient masking has be-

come the main idea behind recent defense methods [6]. It

means that although the gradients exist in the deep models,

they could be hidden from the attackers. However, such de-

fenses fail once attackers find some ways to approximate

the gradients [1]. We first introduce our methdology, then

summarize the the two streams of attack models we used to

examine our method.

3.1. Model

We design a defense approach with a completely differ-

ent strategy instead. By incorporating a standard CNN clas-

sifier with a random forest into a robust classifier, we in-

tegrate the merit of neural networks in extracting abstract

and informative features and the advantage of non-gradient

based classifiers. In practice, our hybrid model is achieved

through a two-stage training procedure. We first train a

DNN classifier, with back-propagation from cross-entropy

loss, then discard the last few layers in the DNNs and re-

place them with a random forest (e.g. built with classifica-

tion trees) to work as a non-differentiable classifier. Fig-

ure 1 illustrates our approach. It could be understood as

attaching random forests upon a well-trained DNN feature

extractor. Thanks to the powerful feature extractor and

the expressive capabilities of random forests, our approach

achieves almost the same accuracy as the original DNN

classifier on the testing sets. Meanwhile, it disable white-

box attacking methods to compute gradients through such

a hybrid model. We show in experiments that our hybrid

model is also robust to the transfer attacks which we pro-

poses as the ultra white-box attack.

In formal, we introduce our hybrid model. To re-purpose

pre-trained DNNs as feature extractors [12], a straightfor-

ward implementation is to use output from the penultimate

layer. However, in practice directly stacking a random for-

est after the penultimate layer yields poor performance. To

address this problem, we propose a passive strategy to iden-

tify the proper layer of the DNNs from which we grow the

random forests. We find that after adding a small pertur-

bation to the input, there is a difference for the relative ℓ2
distance between the original samples and the correspond-

ing adversarial samples generated by the C&W attack af-

ter each activation, which means that different layers in the

DNNs have different amplifying ability towards the pertur-

bation. The average relative ℓ2 distance of the kth layer is

calculated based on:

Dk =
1

|M |

M∑

i=1

‖a
(k)
i − ã

(k)
i ‖2

‖a
(k)
i ‖2

(1)

where M denotes the number of images, a
(k)
i and ã

(k)
i de-

note the activation of the ith original input xi and the cor-

responding adversarial example x̃i at the kth layer of DNN

F , respectively.

Using ℓ2 as the criterion, we keep as many layers as pos-

sible at the beginning from the input layer until we reach the

one that causes significantly larger distortion than the other

layers. Our experiments in Section 4 demonstrate that this

criterion is effective, allowing the resulting hybrid model to

achieve a high classification accuracy and meanwhile to be

robust against the transfer attacks or black-box attacks.

Afterwards, we use the output of the (k−1)th layer of the

DNN F , while k denotes the layer with the largest relative

ℓ2 distance between the original samples and the adversarial

samples, as the input of the random forests. We build our

random forests with classification trees by following the ap-

proach in [9]. For each split in each tree, we compute the

split score S through:

S = G(L) +G(R) (2)

where L and R denote the left and right per-class probability

count vector, respectively. The idea is to calculate the Gini

impurity to give the lowest split score S. The Gini impurity

is calculated by:

G(C) = 1−

J∑

j

(
Cj

Nc

)2, Nc =

J∑

j

Cj (3)

where there are J classes and Cj denotes the number of sam-

ples classified into the jth class. The problem can be solved

through Hoeffding tree [11]. Let Ph denote the output of the

hth classification tree and suppose there are H trees in the

random forests. The final predictions of sample x in our hy-

brid model becomes the ensemble of the classification trees:

Pf (j|x) =
1

H

H∑

h=1

Ph(j|Fk−1(x)) (4)

where Fk−1 denotes the output of the (k− 1)th layer in the

DNN F , j is the jth class and H is the number of trees in

the forest.

Next, we introduce the two categories of white-box and

black-box attacks we mainly focus against in experiments.

3.2. Defending against white­box attacks and trans­
fer attacks

White-box attacks are the most powerful adversarial at-

tacks. However, by stacking the random forests, the hy-

brid model becomes non-differentiable and the conven-

tional white-box attackers cannot get meaningful results by

attacking the hybrid model because there is no way of back-

propagating gradients through random forests. Besides, to

further demonstrate the robustness of the hybrid model, we

also propose a attack setting named ultra white-box attack.

In the ultra white-box attack setting, not only our our hybrid



Figure 1. An overview of our approach. We build a hybrid model through three steps: First we identify the proper layer of growing the

random forest by locating the kth layer in the DNN which has the biggest amplifying ability with Equation 1. Then we dispatch the DNN

from the kth layer and connect a random forest to imitate the classification ability of the DNN and dissolve the gradients to avoid being

attacked by the adversarial attackers.

model but also the original DNNs upon which our model is

built are released to attackers. Therefore, the ultra-white-

box attackers will be able to generate adversarial exam-

ples for our end-to-end differentiable DNNs through gradi-

ent methods and transfer the attacking results to our hybrid

model. The setting is based on the observations that adver-

sarial examples have remarkable transferabilities [21, 32]:

given two neural networks trained for solving the same

problem, the adversarial examples generated for one neu-

ral network can also successfully attack the other.

In the white-box attacks experiments, a strong white-box

attack, C&W attack, is used to conduct the experiments.

Specifically, we use their most efficient ℓ2 attack.

3.3. Defending against black­box attacks

We also discuss the robustness of our model against the

black-box attacks since black-box attackers should be able

to attack any model without access to the gradients. As

there are countless number of black-box attack methods

and we would not be able to test all of them, we therefore

categorize the existing black-box attacks into the following

three representative groups. Then in each group, a represen-

tative and latest method is selected to test the effectiveness

of our method.

Gradient estimation One of the most efficient category

is gradient estimation based methods that use various tech-

niques to estimate the unknown gradients of the target

model [8, 25, 3]. We choose ZOO [8] out of this category

in our experiments as it is one of the strongest black-box at-

tack methods. ZOO achieves almost the same success rate

as white-box attacks by estimating the gradients of the tar-

get network through the zeroth-order stochastic coordinate

descent.It is worth pointing out that there is no ground-truth

gradients at all in our hybrid model. However, ZOO still

tries to attack it by the zeroth-order gradients. As a result,

our approach is experimentally shown hard to be attacked

by ZOO.

Decision-based attacks The decision-based attacks are

black-box methods that solely rely on the final decision

of the model [26, 4]. As a representative decision-based

method, Boundary Attack [5] achieves a comparable attack

performance with one of the best gradient-based attacks [7]

in both targeted and untargeted scenarios which literately

modifies a random sample from the target class to be visu-

ally similar to the original sample.Boundary Attack is hard

to be defended because one of the pre-requisites of the al-

gorithm is to maintain the target classification. Therefore,

the attack success rate would always be 100% although the

generated adversarial samples might be quite different from

the original samples. During the experiment, we use the ℓ2
distance to evaluate the performance of the attack and de-

fense.



Table 1. The average relative ℓ2 distance between adversarial and original samples

Activation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MNISTnet 0.03 0.05 0.08 0.18 0.22 0.30 0.60 - - - - - - - -

AlexNet 0.01 0.03 0.08 0.17 0.17 0.43 0.50 0.62 - - - - - - -

VGG-16 0.01 0.02 0.03 0.07 0.12 0.14 0.29 0.43 0.45 0.51 0.53 0.48 0.53 0.52 0.65

Training a substitute model While knowing the num-

ber of target classes, the attackers could train a substitute

DNN to mimic the behavior of the model. Ideally, the sub-

stitute DNNs shares the same decision boundaries as the

target model and the adversarial samples generated by the

substitute DNNs would be able to fail the target network as

well. We use the recent Practical Black-Box Attack method

proposed in [28] to test our defending approach against this

type of methods.

4. Experiments

Our experiments are conducted on CIFAR-10 [17] and

MNIST [20] dataset, following the previous experiment

protocols [7, 8]. We pre-process all the images by re-scaling

the pixel values to the range [-0.5, 0.5]. For all of the exper-

iments on CIFAR-10, we use two popular neural networks

VGG-16 [30] and AlexNet [18] as our backbone networks.

For MNIST, we use the architecture proposed in the C&W

attack [7], i.e., a 7-layer convolutional neural network and

we denote it as MNISTnet in our following experiments. In

the testing stage, we also follow the C&W attack and use

the first 1000 originally correctly classified images from the

test set to evaluate the success rate of the attack.

We consider the untargeted attack for the substitute

model method [28] and targeted attack for the other meth-

ods. In the targeted attack, we use all the 9 classes in turn

except for the ground truth class as the target class for each

image and calculate the average attack success rate over all

the target classes. For the ZOO and ultra white-box attacks,

margin κ [7] is set to zero. In our experiments, we use the

attack success rate (i.e. ASR) to measure the effectiveness

of different attacks (or, our defense). ASR is calculated as

the percentage of the adversarial examples that are success-

fully classified to the target classes by the attacks out of all

examples tested. Additionally, we also include ℓ2 distance

in most of our experiments [7, 8], which is calculated us-

ing the mean squared distance between the original images

and the adversarial images. We find that a random forest of

300 trees and 10,000 nodes gives rise to the best trade-off

between the classification accuracy and the defense perfor-

mance on CIFAR-10. However, to save computational cost,

we use 300 trees and 10,000 nodes for AlexNet and 300

trees and 1,000 nodes for VGG-16 in our experiments. For

AlexNet, we keep the first five layers as the feature extrac-

tor and, for VGG-16, we grow the forest from the 8th layer.

For the neural network applied to MNIST, we use 10 trees

and 1,000 nodes taking as input the activations of the 6th

layer.

4.1. Finding the proper layers to grow the random
forests

To find the most suitable layer to grow the random

forests, we use the relative ℓ2 distance (Equation 1) defined

in Section 3.1 as our criterion. In this experiment, we ran-

domly select 1,000 originally correctly classified images out

of the validation sets to evaluate the relative distortion be-

tween the original samples {x} and the adversarial samples

{x̃} generated by the C&W attack. Since the amplifying

ability of each activation is different, the relative growth of

ℓ2 distance between each two activations changes. To our

surprise, the relative ℓ2 distance grows slowly in both the

first layers and the last few layers for AlexNet and VGG-

16, while on the contrary, faster in some intermediate layers

as shown in Table 1.

Recall that our original intention of building the hybrid

model is to take advantage of the strength of the represen-

tation power of DNNs as feature extractor, the experimen-

tal results declare the fact that each layer in the neural net-

works plays a different role (e.g. the bottom layers extract

low level features and the top layers in charge of the classi-

fication). Then the different role of each layer result in the

different ability of the layer to manipulate the adversarial

distance. It turns out the intermediate layers in AlexNet and

VGG-16 have best of the ability to generate the adversari-

als. Hence we are safe to replace the top layers which are

responsible to classification with the random forest which

has no gradient. The distance also grows differently in dif-

ferent networks (MNISTnet and others), which also request

special dispatch point in distinctive networks.

We therefore choose to grow the random forests after

the one with the largest relative growth which is the 6th

for MNISTnet, 5th for AlexNet and 8th for VGG-16 after

trade-off between the defense performance and the classifi-

cation accuracy. The selection turns out to be effective in

the following experiments. The ablation study of the ultra

white-box performance while growing random forests from

different layers is shown in Section 5.3.



4.2. White­box attacks and transfer attacks

We use the C&W method as the white-box attack meth-

ods following the setting of the original paper [7]. As men-

tioned before, directly attacking our hybrid model gives 0%

attack success rate. And our model also has a very low

transferability in the ultra white-box setting. Since there’s

no counterpart in the original DNNs for comparison with

our ultra white-box setting, we also test the regular trans-

fer attacks in which we generate adversarial samples on one

network(i.e. AlexNet) and test the accuracy of the gener-

ated adversarial samples on another network(i.e. VGG-16

and our AlexNet hybrid model) The results are shown in

Table 2. For this and the following tables, we denote accu-

racy as ’acc’ and attack success rate as ’ASR’.

Table 2. Results of the white-box and transfer attack
Acc% ASR% Ultra%

AlexNet
dnn 83.4 100 100

ours 82.7 0.0 4.8

VGG-16
dnn 93.5 100 100

ours 90.6 0.0 9.7

MNISTnet
dnn 99.2 100 100

ours 98.4 0.0 4.4

Compared to the 100% attack success rate achieved in

the original DNNs, the C&W attack barely succeeds in one

single attack to our hybrid models as shown in the 4th col-

umn of Table 2. Besides, testing the transferability on the

same DNNs is meaningless, we just keep it as 100% for

comparison. After making it a hybrid model, we achieves

a transfer attack success rate of 4.8%,9.7% and 4.4% on

AlexNet, VGG-16 and MNIST, respectively. Thus we can

safely claim that even if we release the architecture and

weights of both our original neural network and the hybrid

network, our approach can still successfully defend against

the current strongest white-box attack.

4.3. Black­box attack: ZOO

Since the comparison is already significant enough, in

the experiment of the Zeroth Order Optimization (ZOO) at-

tack [8] we only run 1,500 iterations to attack the original

neural networks but 15,000 iterations to attack our hybrid

model to save computational time. For MNIST, we did not

re-produce the experiment but directly include the result re-

ported in their paper as the same network is used. The re-

sults are shown in Table 3.

In terms of the classification accuracy, our hybrid models

are on a par with the original neural networks; the absolute

decreases are only 0.5% 2.9% and 1% for AlexNet VGG-

16 and MNISTnet, respectively. In terms of the defense

performance, the hybrid models are much better than the

original neural networks. For AlexNet, the attack success

Table 3. Results of defending against the ZOO attack [8]

Network Acc% ASR% ℓ2 distance

AlexNet
dnn 83.2 89.7 8.79

ours 82.7 5.4 37.2

VGG-16
dnn 93.5 86.8 9.89

ours 90.6 3.6 38.1

MNISTnet
dnn 99.2 98.9 2.0

ours 98.2 0.9 185.2

rate (i.e. ASR, the lower the better) decreases from 89.7%

to 5.4% with an average ℓ2 distance between the original in-

put examples and the adversarial examples increasing from

8.79 to 37.2 (the higher the better from the defense perspec-

tive). The same observation also happens to VGG-16 and

MNISTnet, where the ASR decreases from 86.8% to 3.6%

and from 98.9% to 0.9% with an average distance increas-

ing from 9.89 to 38.1 and from 2.0 to 185.2, respectively.

Thanks to our hybrid defense method that has about the

same classification accuracy as DNNs, we can safely claim

that the strong black-box attack method, ZOO, fails.

4.4. Black­box attack: Decision­based attack

For decision-based attack [5], we test 100 samples from

the testset that have been correctly classified by our model.

For each example with label l, we set the target label as

(l + 1) mod 10. For each example, we set the maximum

number of steps to be 100, where very few steps are already

sufficient to demonstrate the difference between our model

and the original. In each step, the length of the total per-

turbation δ and the length of the step ǫ towards the original

input are initially set to 0.1 and 1.0, respectively, as sug-

gested by [5]. In each δ step, 5 orthogonal perturbations

are generated compared with 10 in the original paper. Our

results are shown in Table 4.

Table 4. Results attacked by Decision Based Attack Model [5]

Network Acc% ℓ2 dist Time (s)

AlexNet
dnn 83.2 4.58 1.84

ours 82.7 5.87 61.2

VGG-16
dnn 93.5 5.66 2.57

ours 90.6 5.74 46.0

MNISTnet
dnn 99.2 16.6 0.86

ours 99.2 11.1 5499.6

Since the decision-based method follows the rule that

the target classification must been maintained, it makes no

sense to compare the attack success rate. Instead, we com-

pare the ℓ2 distance of the generated adversarial samples

through attacking the DNNs and our hybrid models and the

attack time. The longer the attack time and the ℓ2 distance,



the poor the attack. Our results are shown on Table 4.

4.5. Black­box attack: Practical Substitute Model

Recall that the substitute model in [28] only conducts ex-

periments on MNIST. We expand their experiment setting

to CIFAR-10 by re-adjusting the parameters. To compare

adversarial attacks on CIFAR-10, we set learn rate = 0.001.

In addition, we increase the number of seed samples from

150 to 1500. The substitute model is also enhanced, specif-

ically, we use VGG-16 as the substitute model for AlexNet

and AlexNet as the substitute model for VGG-16. We use

learning rates 0.001 and 0.0001 for AlexNet and VGG-16,

respectively. We train the model with 5 data augmentations,

each for 50 epochs, which is 1 data augmentation less than

the original experiments in [28] since the number of train-

ing samples grow exponentially with each data augmenta-

tion process and the seed training set is already 10 times

larger compared to the original experiments. And for the

experiment of MNIST, we use the same setting as the origi-

nal paper, which means ǫ is set to 0.4. The results are shown

in Table 5. ”Acc” and ”Acc:sub” denote the accuracy of the

original and the substitute model respectively.

Table 5. Results attacked by Practical Substitute Model [28]

Network ǫ Acc% Acc:sub% ASR%

AlexNet

0.03
dnn 83.2 45.6 19.2

ours 82.5 44.1 19.8

0.1
dnn 83.2 45.5 47.2

ours 82.5 43.0 44.9

VGG-16

0.03
dnn 93.5 42.8 13.1

ours 90.5 44.4 12.5

0.1
dnn 93.5 42.1 70.3

ours 90.5 40.1 69.7

M-net 0.4
dnn 99.2 70.1 45.7

ours 98.7 78.1 43.1

In Table 5, ASR denotes the performance of our defense

of untargetd attacks, as only untargeted attacks are involved

in [28]. It represents that the generated adversarial samples

cannot be correctly classified by our hybrid model after the

attack. It can be found from the experiment that it is very

hard to train a substitute model on natural images especially

when the model is complex. Therefore we also test when

ǫ = 0.1 where ǫ is the perturbation magnitude preset for the

FGSM attack [14] which in most cases, ǫ is set to 0.031.

Among the three categories of black-box attacks, our hy-

brid model also performs well qualified. It either decreases

attack success rate or increase ℓ2 distance, or attack time.

To the best of our knowledge, there are very few research

that have done a wholesome attack towards a single de-

fense method from white-box to black-box attacks, from

directly attacks to transfer attacks, and gain a satisfying per-

formance on almost all of the experiments.

5. Technical study

In this section, we perform technical studies to quantify

the details of our designs including the effect of parameters

involved in our model, the influence of adversarial training,

and the difference of the depths of DNN layers that the ran-

dom forests build on. Specifically, we re-train our approach

using different parameters in the random forests and DNNs,

and demonstrate the results after adversarial training.

5.1. Effectiveness of adversarial training

To investigate whether adversarial training helps, we im-

plement two kinds of experiments to verify this issue, as

shown in Table 6. In the first experiment, we train the

original DNNs with the adversarial samples generated from

C&W attack and PGD attack [22], respectively, and then

generate two new hybrid models. Then we test the two

new hybrid models using the ultra white-box attack. It can

be found from Table 6 that adversarial training on original

DNNs does not affect the attack success rate too much but

the average distortion increases.

Table 6. Results of adversarial training

Adv train Acc% ASR% Distortion

None 83.4 32.8 0.44

Hybrid: C&W 81.1 33.5 0.69

Hybrid: PGD 79.4 33.9 0.52

Random forest 83.2 16.2 0.44

In the second experiment, for a hybrid model, we tune

its random forest by the adversarial samples generated from

C&W attack. Then we test the tuned hybrid model again us-

ing the ultra white-box attack. The attack success rate drops

since the random forests already learns the adversarial sam-

ples. To better observe the experiment difference, only the

last few fully connected layers are deprived and replaced by

random forests. The experiment is conducted on AlexNet

and all the attack success rates are calculated based on the

ultra white-box settings.

5.2. Parameters in the random forests

We only tune two parameters of the random forests, i.e.,

the number of trees and the number of max nodes in each

tree. We test the number of trees between 10 to 300 and the

number of max nodes between 100 and 10000. The param-

eters are tested using grid search and the results are reported

with respect to the performance of the ultra white-box task.

Table 7 shows the results on AlexNet where the substitution

is conducted from the 5th layer and VGG-16 where the sub-



Table 7. Results of the ultra white-box attack with different number of trees and nodes
Trees Nodes AlexNet VGG-16 MNISTnet

Acc ASR Hyb acc Trans Acc ASR Hyb acc Trans Acc ASR Hyb acc Trans

10 100

83.4 100

74.2 10.7

93.5 100

83.1 14.2

99.2 100

94.0 9.1

10 1000 77.7 8.2 86.4 13.0 97.1 8.3

10 10000 77.8 8.9 86.8 12.3 97.8 7.6

100 100 80.5 6.2 87.9 11.8 96.4 7.1

100 1000 81.9 6.2 89.8 11.6 97.8 5.6

100 10000 82.6 5.8 90.4 10.4 98.2 4.5

300 100 80.8 6.6 88.3 10.7 96.3 6.5

300 1000 82.3 5.3 90.1 11.1 97.7 5.1

300 10000 82.7 4.8 90.6 9.7 98.4 4.4

Table 8. Results when starting the substitution from the second-last and the best activation

Trees Nodes AlexNet VGG-16

From 7th activation From 6th activation From 14th activation From 7th activation

Hybrid acc Trans Hybrid acc Trans Hybrid acc Trans Hybrid acc Trans

10 100 81.4 36.1 74.2 10.7 93.4 48.6 69.2 9.0

100 1000 83.3 37.1 81.9 6.2 93.5 55.2 81.8 6.6

300 10000 83.3 36.9 82.7 4.8 93.6 57.3 84.4 5.6

Table 9. Results when starting the substitution from different layers (AlexNet)

Trees Nodes After the conv After activation After Pooling After Batchnorm

Hybrid acc Trans Hybrid acc Trans Hybrid acc Trans Hybrid acc Trans

10 100 72.8 13.0 74.2 10.7 75.9 17.7 76.0 16.6

100 1000 81.8 9.8 81.9 6.2 82.1 10.7 82.2 11.2

300 10000 82.6 10.6 82.7 4.8 83.0 10.9 82.9 10.9

stitutition is conducted from the 8th layer. The activation

layers are numbered from the bottom layers to top layers.

It can be found that the more trees and nodes we have,

the higher the performance of our hybrid network achieves

on the original testset, and the lower transferrability the hy-

brid network has. Basically, the defense performance grows

with the performance of the hybrid model. This turns out to

be a very pleasant trend since some existing defense mod-

els increase the robustness of their systems but at the cost of

the drop of the accuracy [14]. However, when the number

of parameters grows, the system turns out to be slower and

requires more computing resources. We utterly choose 300

trees and 10000 nodes to attain the proper performance and

speed within our hardware capabilities.

5.3. From which layer to grow random forests

Theoretically speaking, we can substitute the neural net-

work from any layer. But actually, the starting layer matters

regarding the final performance of our model. Using the

proposed criterion defined in Section 4.1, we find starting

from the layer that has the largest gap of relative ℓ2 distance

from its prior layer gains a better transferability than the

penultimate layer, which is shown in Table 8.

We also investigate the impact of max pooling and batch

normalization layers. We conduct the experiment after the

6th activation of AlexNet, where there are 4 layers includ-

ing convolutional, activation, max pooling and batch nor-

malization. Table 9 shows the best performance is achieved

after the activation layer.

6. Conclusion

To the best of our knowledge, there is no previous work

considering using models with no gradients to defend ad-

versarial attacks, probably because of the poor performance

of non deep learning methods on high-level tasks (e.g. im-

age classification). While in our paper, we propose a sim-

ple hybrid model to overcome the drawbacks of individual

DNNs and random forests. Through comprehensive experi-

ments, we demonstrate that our proposed method is very ef-

fective for defending both white-box (including ultra white-

box attack) and different kinds of black-box attacks. Sim-

ple but advantageous, our approach provides a preliminary

evidence in support of the effectiveness of hybrid models,

shedding lights on a promising direction to pursue.
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[15] C. Guo, M. Rana, M. Cissé, and L. van der Maaten. Coun-

tering adversarial images using input transformations. arXiv

preprint arXiv:1711.00117, 2017.

[16] A. Kantchelian, J. Tygar, and A. Joseph. Evasion and harden-

ing of tree ensemble classifiers. In International Conference

on Machine Learning, pages 2387–2396, 2016.

[17] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[19] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial exam-

ples in the physical world. arXiv preprint arXiv:1607.02533,

2016.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[21] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into trans-

ferable adversarial examples and black-box attacks. arXiv

preprint arXiv:1611.02770, 2016.

[22] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and

A. Vladu. Towards deep learning models resistant to adver-

sarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[23] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff.

On detecting adversarial perturbations. arXiv preprint

arXiv:1702.04267, 2017.

[24] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard. Deep-

fool: a simple and accurate method to fool deep neural

networks. In Proceedings of 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), number

EPFL-CONF-218057, 2016.

[25] N. Narodytska and S. Kasiviswanathan. Simple black-box

adversarial attacks on deep neural networks. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), pages 1310–1318. IEEE, 2017.

[26] B. Nelson, B. I. Rubinstein, L. Huang, A. D. Joseph, S. J.

Lee, S. Rao, and J. Tygar. Query strategies for evading

convex-inducing classifiers. Journal of Machine Learning

Research, 13(May):1293–1332, 2012.

[27] L. Nguyen and A. Sinha. A learning and masking approach

to secure learning.

[28] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,

and A. Swami. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia Con-

ference on Computer and Communications Security, pages

506–519. ACM, 2017.

[29] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,

and A. Swami. The limitations of deep learning in adversar-

ial settings. In Security and Privacy (EuroS&P), 2016 IEEE

European Symposium on, pages 372–387. IEEE, 2016.

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[31] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman.

Pixeldefend: Leveraging generative models to understand

and defend against adversarial examples. arXiv preprint

arXiv:1710.10766, 2017.

[32] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. arXiv preprint arXiv:1312.6199, 2013.

[33] F. Tramr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,

and P. McDaniel. Ensemble adversarial training: Attacks



and defenses. In International Conference on Learning Rep-

resentations, 2018.

[34] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting

adversarial examples in deep neural networks. arXiv preprint

arXiv:1704.01155, 2017.


