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Abstract

When convoking privacy, group membership verification

checks if a biometric trait corresponds to one member of a

group without revealing the identity of that member. Simi-

larly, group membership identification states which group

the individual belongs to, without knowing his/her iden-

tity. A recent contribution provides privacy and security

for group membership protocols through the joint use of

two mechanisms: quantizing biometric templates into dis-

crete embeddings, and aggregating several templates into

one group representation.

This paper significantly improves that contribution be-

cause it jointly learns how to embed and aggregate instead

of imposing fixed and hard coded rules. This is demon-

strated by exposing the mathematical underpinnings of the

learning stage before showing the improvements through an

extensive series of experiments targeting face recognition.

Overall, experiments show that learning yields an excellent

trade-off between security / privacy and the verification /

identification performances.

1. Introduction

The verification that an item, a device or an individual is

a member of a group is a natural task which forms the basis

of many applications granting or refusing access to sensitive

resources (buildings, wifi, payment, conveyor units, . . . ).

Group membership can be implemented through a two-

phase process where an identification is first performed,

revealing the identity of the individual under scrutiny, fol-

lowed by a verification phase where it is checked whether

or not the identified individual is indeed a member of the

claimed group. That implementation breaks privacy: there

is no fundamental reason to identify the individual before

running the verification step. It is easier, but not truly

needed. It is fundamental to distinguish the members of

the group from the non-members, but it does not require to
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distinguish members from one another.

The same comments hold for group identification. Such

a system manages multiple groups, separating e.g. individ-

uals according to the team they work in. The goal is then

to identify the precise group a member belongs to, without

proceeding first to the identification of the individual.

Privacy preserving protocols exist, for the most part in

the area of signal processing in the encrypted domain [19,

4, 13]. These protocols, however, are costly, making them

hard to use in practice.

In contrast, some other approaches propose privacy pre-

serving mechanisms that are cheaper to use because they

solely rely on pure signal processing techniques, excluding

all encryption mechanisms. They tend to be less secure, of

course, but they put in the way of malicious users so many

obstacles that breaking privacy or counterfeiting identities

becomes discouragingly complicated and almost impossi-

ble. At their core, these approaches use for example sketch-

ing or quantization techniques that prohibit reconstructing

identities with sufficient precision [2, 3]. Other techniques

embed real vectors into another representational space with

the purpose of security and privacy [12, 11].

Recently, Gheisari et al. proposed a privacy preserving

group membership verification protocol quantizing iden-

tities’ biometric templates into discrete embeddings and

aggregating multiple embeddings into a group representa-

tion [5]. That scheme has several desirable properties: It

is pure signal processing and linear algebra, hence it is

cheap to run; quantization and aggregation fully succeed to

make reconstruction difficult and impede identification; it is

demonstrated to allow trading-off the strength of its security

against group verification error rates.

That work, however, is fully deterministic in the sense

that it sticks to a set of hard coded rules that drive the way

templates are embedded, how they are grouped and then ag-

gregated into group representations. Although well justified

and sound, these rules govern the behavior of two indepen-

dent procedures, one for embedding, the other for aggregat-

ing. The main contribution of this paper shows that jointly

considering the embedding and aggregation stages results

in better performances, i.e. a better membership verification



without damaging security.

This paper is therefore revisiting the core mechanisms

proposed by Gheisari et al. in [5], by jointly optimizing

the embedding and aggregation stages. It is structured as

follows. Section 2 defines the context of this work and sur-

veys existing approaches. Then, Section 3 gives a formal

problem statement and the details of proposed method are

introduced in Section 4. Section 5 presents the experimental

protocol and results.

2. Context and Related Work

2.1. Context

Without any loss of generality, group membership ver-

ification needs first to acquire templates of items (passive

PUF), devices (active PUF), or individuals (biometric trait)

and to enroll them into a data structure stored in a server.

Then, at verification time, that data structure is queried by

a client with a new template and the access is granted or

refused. Security assesses that the data structure is ade-

quately protected so that a honest but curious server cannot

reconstruct the templates. Privacy requires that verification

should proceed without disclosing the identity.

The nature of templates can vary from one application

to the other. For example, the templates encode informa-

tion related to fingerprints, iris, or faces of individuals, or

to Physically Unclonable Functions (PUF) like speckle pat-

terns captured from laser-illuminated transparent plastic.

It is worth highlighting two fundamental properties of

the templates. The template used at verification time is a

noisy version of the one acquired at enrollment time. Light-

ing conditions, blood pressure, aging, worn-outs, transient

physical conditions are possible factors that might cause

variations at acquisition time. The verification protocol

must be able to absorb such variations and cope with the

continuous nature of the templates. However, it is very un-

likely that a noisy version of the template corresponding

to one group member gets similar enough to the enrolled

template of any other group member. The first property is

therefore in relation with the continuous and distinguishable

nature of the templates. The second property is in relation

with the statistical independence of the enrolled templates.

The traditional operational scenario considers a server

which runs the group membership verification. The server

receives queries from clients. A client acquires a new tem-

plate and then queries the server. Clients are trusted. The

server is honest but curious: It may try to reconstruct the en-

rolled templates or spy on the queries. The design intends to

prevent the server from reconstructing the private template

from the system while correctly determining whether or not

a user is a member of the claimed group (group verification)

or identifying the group of membership (group identifica-

tion).

2.2. Related Work

2.2.1 Cryptography

There exist cryptographic protocols setting a key manage-

ment system to provide the members of a group with anony-

mous authentication [14]. There is no enrollment of bio-

metric or PUF templates since membership is equivalent to

holding one of the valid keys. As for biometry or PUF appli-

cations, our scenario is different from authentication, iden-

tification and secret binding. These applications secure the

templates at the server and/or the client sides, but ultimately

reveal the identity of the user/object.

Signal processing in the encrypted domain can provide

a solution to group membership verification. At enrollment

time, each template is quantized and protected with homo-

morphic encryption. The query is protected in the same

manner at the verification stage. This allows to compute dis-

tances between the query and the templates in the encrypted

domain [19]. There exist protocols for comparing encrypted

results to a threshold [4, 13]. These encrypted comparisons

are sent back to the clients which decrypt and check whether

there is at least one positive. Security and privacy are as

high as the security of the cryptographic primitives. Ho-

momorphic encryption, however, is costly, both in terms of

memory footprint (space) and CPU consumption (time).

2.2.2 Sketching techniques

Group membership is linked to the well-known Bloom filter

that is used to test whether an element is a member of a set.

A Bloom filter hashes and blends elements into one array

of bits. When used in the context of privacy, it was demon-

strated that a server using Bloom filters cannot infer any

information on one specific entry [2]. However, a Bloom

filter can not be used as is in our application, but it needs

two adaptations. First, a Bloom Filter deals with discrete

objects whereas we consider continuous high dimensional

vectors, the templates. We first need to design a quantizer

hashing the continuous templates into discrete objects. That

quantizer must absorb the noise, i.e. the difference between

the enrolled and the fresh template. Second, at verification

time, the hash of the query cannot be sent in the clear for pri-

vacy reasons [3]. For instance, Beck and Kerschbaum pro-

tect the query with partially homomorphic encryption since

there is no need to protect the filter at the server side [1].

2.2.3 Aggregating, Embedding

Aggregating signals into one representation is a very com-

mon mechanism in computer vision. Approaches like BoW

(Bag of Words) [17], VLAD [8], Fisher vectors [10], aggre-

gate some local descriptors extracted from one image into

one global description. However, these approaches are de-



signed to facilitate the identification of similar elements in

images and have no security or privacy capabilities.

Another recent aggregation method better fits with the

security and privacy requirements that we need. In [7], Is-

cen et al. use the group testing paradigm to design a strategy

for packing a random set of image descriptors into a unique

high-dimensional vector. One salient property of that strat-

egy is that the similarity between images can be determined

by solely comparing these (few) aggregated vectors to the

description of the query, without the need of the original

(and numerous) raw image descriptors. This saves space

(memory footprint of the database) and time (complexity at

query time). These gains are the main motivation of [7].

As for the embedding, our scenario is similar to a

privacy-preserving identification mechanism based on spar-

sifying transform [12, 11]. It obtains a sparse ternary em-

bedding preserving locality information while ensuring pri-

vacy of the data users and security of the templates.

Indeed, paper [5] uses the aggregation methods designed

in [7] combined with the sparsifying transform [12, 11].

Our design resorts to this latter mechanism for inheriting

its privacy-preserving properties as well, yet we replace the

former ad-hoc hard coded rules of [7] by a machine learning

approach.

2.2.4 Face recognition

Aggregating templates into one group representation also

exists in face recognition, but privacy and security are not

a requirement in the design of this primitive. They are usu-

ally taken into account with an extra layer (see Sect. 2.2.1).

In a common approach, multiple face captures of the same

person are combined to gain robustness against poses, ex-

pression, and quality variations [21]. In our scenario, the

group is composed of unique faces of different persons.

Paper [20] computes a single compact descriptor for the

faces of celebrities appearing in the same picture. The query

is a small set of face descriptors and their system returns

photos where these celebrities appear altogether. This pa-

per consists in jointly learning the face description and the

aggregation mechanism. The authors report “a minimal loss

of discriminability up to two faces per image, and degrades

slowly after that”.

Our paper deals with the aggregation for a given on-the-

shelf face descriptor. On one hand, our setup is easier be-

cause the query is a single face. On the other hand, our

group typically comprises more than two faces, and each is

possibly captured according to very different conditions.

3. Problem Formulation

This section details the way the group membership prob-

lem is formulated and also defines the metrics used to eval-

uate performances.

3.1. Notations

The set of individuals is denoted as ❬◆ ❪ ✿❂ ❢✶❀ ✿ ✿ ✿ ❀ ◆❣,

partitionned into ▼ groups: ❬◆ ❪ ❂
❙
❣✷❬▼ ❪ ❙❣ . The size of

a group ❙ is denoted by ❥❙❥. In the experiments of Sect. 5,

all the groups share the same size denoted as ♠.

The templates to be enrolled are the vectors ❢①✶, . . . ,

①◆❣ ✚ ❘
❞. They are stored column wise in ❞ ✂ ◆ ma-

trix ❳ according to the partition over the groups: ❳ ❂
❬❳✶❀ ✿ ✿ ✿ ❀❳▼ ❪, where❳❣ stores the templates belonging to

❙❣ , ✽❣ ✷ ❬▼ ❪. The output of the enrollment is a ❵✂▼ ma-

trix ❘ ❂ ❬�✶❀ ✿ ✿ ✿ ❀ �▼ ❪ composed of the representations of

the ▼ groups. It is imposed that the group representations

are quantized and sparse: �❣ ✷ ❆❵ with ❆ ✿❂ ❢
✶❀ ✵❀ ✶❣
and ❦�❣❦✵ ✔ ❙ ❁ ❵, ✽❣ ✷ ❬▼ ❪. Moreover, the analysis is

restricted to the case where ❵ ✔ ❞.

The template for which the membership has to be veri-

fied is a query vector ② ✷ ❘
❞ that is cast onto ❆❵ thanks

to an embedding before being compared to the group repre-

sentations.

3.2. Embedding

Function ❡ ✿ ❘❞ ✦ ❆❵ maps a vector to a sequence

of ❵ discrete symbols. We intentionally choose the sparsi-

fying transform coding described in [12, 11] for its secu-

rity and privacy good properties. It projects ① ✷ ❘
❞ on

the column vectors of ❲ ✷ ❘
❞✂❵. The output alphabet

❆ ❂ ❢
✶❀ ✵❀✰✶❣ is imposed by quantizing the components

of ❲❃①. The ❵ 
 ❙ components having the lowest ampli-

tude are set to 0. The ❙ remaining ones are quantized to +1

or -1 according to their sign.

❡ ✿ ❘❞ ✦ ❆❵ (1)

① ✼✦ ❡✭①✮ ❂ ❚❙✭❲
❚①✮✿

3.3. Performances Metrics

Paper [5] defines metrics to assess (i) the ability of the

protocol to correctly perform the verification task, and (ii)

the security and privacy.

3.3.1 Verification Performance

The first metrics is seeded by considering the following two

hypotheses:

✎ ❍✶: The query is related to one of the vectors of group

❣. For instance, it is a noisy version of vector ❥, ② ❂
①❥ ✰ ♥, with ♥ to be a noise vector and ❥ ✷ ❙❣ .

✎ ❍✵: The query is not related to any vector in the group.

The group membership test decides which hypothesis is

deemed true by comparing ❡✭②✮ to �❣ . This is done by first

computing a score function ❝ and thresholding its result:

� ✿❂ ❬❝✭❡✭②✮❀ �❣✮ ❃ ✜ ❪.



The probabilities of false negative, ♣❢♥✭✜✮ ✿❂ �✭� ❂
✵❥❍✶✮, and false positive, ♣❢♣✭✜✮ ✿❂ �✭� ❂ ✶❥❍✵✮ are sum-

marized by the AUC (Area Under the ROC Curve). Pa-

per [5] also considers ♣❢♥✭✜✮ for ✜ s.t. ♣❢♣✭✜✮ ❂ ✎, a required

false positive level, ✵✿✵✺ for example.

3.3.2 Security and Privacy Performance

A curious server can reconstruct the query template ② from

its embedding: ❫② ✿❂ �❡❝✭❡✭②✮✮. This endangers privacy of

the querying user. The mean squared error assesses how

accurate is this reconstruction:

▼❙❊� ❂ ❞�✶❊✭❦❨ � �❡❝✭❡✭❨✮✮❦✷✮❀ (2)

assuming that ❨ is a white gaussian vector in ❘❞.

As for the security of the enrolled templates, a curious

server can only reconstruct a single vector ❫① from the aggre-

gated representation, and this vector serves as an estimation

of any template in the group:

▼❙❊❙ ❂ ✭❞◆✮�✶
▼❳

❣❂✶

❥❙❣❥❳

✐❂✶

❊✭❦①✐ � ❫①❣❦
✷✮✿ (3)

4. Proposed Method

4.1. Variants of the Protocol

Our group membership protocol is based on embedding

and aggregation functions. Whereas the embedding func-

tion ❡ is fixed, we can have two constructions: The aggre-

gation of embeddings or the embedding of the aggregation.

EoA aggregates raw templates into one vector of ❘❞, and

then embeds this vector. Then, the group representative vec-

tor �❣ is computed as:

�❣ ❂ ❡✭❛EoA✭❳❣✮✮❀ (4)

where❳❣ is the ❞✂❥❙❣❥ matrix storing the templates of the

❣-th group.

AoE first embeds each template according to (1) before

aggregating them into �❣:

�❣ ❂ ❛AoE

�
❢❡✭①✐✮❣✐✷❙❣

✁
✿ (5)

This work aims at learning the aggregated vectors and

the embeddings jointly. For both construction, this is done

by minimizing an objective function summing a cost for

embedding ❈❊ and a cost for aggregating ❈❆.

For AoE (first embed, then aggregate), denote ❊ ✷
❆❵✂◆ the matrix storing the embeddings of the enrolled

templates. Like for ❳, we write ❊ ✿❂ ❬❊✶❀ ✿ ✿ ✿ ❀❊▼ ❪ with

❊❣ the matrix gathering the embeddings of the templates of

❳ ❊

❘❆

Embedding

Aggregation

Embedding

❲

❲

Aggregation

AoE

EoA

Figure 1: Overview

group ❙❣ . For EoA (first aggregate, then embed), denote

❆ ✿❂ ❬❛✶❀ ✿ ✿ ✿ ❀ ❛▼ ❪ ✷ ❘
❞✂▼ the matrix gathering the ag-

gregations of the templates enrolled in a group.

Matrices ❊ and ❆ will be defined through optimization

problems detailed below. For the embedding, function ❡

is still prototyped according to Sect. 3.2. Papers [12, 11]

show that privacy and security stem from the sparsifying

transform. Only its matrix ❲ is learned.

For EoA, Fig. 1 shows that it starts from ❳ to create

❆ before outputting ❘ using matrix ❲. This defines the

optimization problem:

♠✐♥
❆❀❲❀❘

✌❈❆
EoA
✭❳❀❆✮ ✰ ❈❊

EoA
✭❆❀❘❀❲✮❀ (6)

where ✌ is the penalty parameter, ❆ ✷ ❘❞✂▼ , ❲ ✷ ❘❞✂❵,
and ❘ ✷ ❆❵✂▼ .

On the other hand, Fig. 1 shows that for AoE, we start

from ❳ to create ❊ using matrix ❲ before outputting the

group representations ❘. This defines the optimization

problem:

♠✐♥
❊❀❲❀❘

❈❊
AoE
✭❳❀❲❀❊✮ ✰ ✘❈❆

AoE
✭❊❀❘✮❀ (7)

with ❊ ✷ ❆❵✂▼ , ❲ ✷ ❘❞✂❵, and ❘ ✷ ❆❵✂▼ .

Under both constructions, the optimization is joint be-

cause the embedding and the aggregating costs share a com-

mon variable (❆ or ❊). What follows define the costs and

solve the optimization problems.

4.2. AoE: Aggregation of Embeddings

This scheme first embeds and then aggregates by solv-

ing (7). The cost for embedding is defined as

❈❊
AoE
✭❳❀❲❀❊✮ ✿❂

◆❳

✐❂✶

✌✌❡✐ �❲❃①✐
✌✌✷
✷
❀ (8)

❂ ❦❊�❲❃❳❦✷❋ ✿ (9)



This term represents the fidelity penalty of an embedding ❡

w.r.t. a template ① in the transformed domain.

For each group of embedded templates, the aggregated

vector should satisfy some properties as well:

✎ For each group the overall distance between group

members and the aggregated vector is minimized.

✎ Aggregated vector should be represented as a sparse

ternary code.

The cost of aggregation is then defined as

❈❆
AoE

✭❊❀❘✮ ✿❂

▼❳

❣❂✶

❦❊❣ � �❣✶
❃
❥❙❣❥

❦✷✿ (10)

We add the following constraints:

❲
❃
❲ ❂ ■❵❀ (11)

❦❡✐❦✵ ✔ ❙❀ ✽✐ ✷ ❬◆ ❪ (12)

❦�❣❦✵ ✔ ❙ ✽❣ ✷ ❬▼ ❪✿ (13)

The constraint makes sure that the representative � is sparse,

ternary, and diverse.

We propose to optimize problem (7) iteratively by alter-

nating updates of one parameter while fixing the remain-

ing ones. Each step minimizes the total cost function lower

bounded by 0, insuring a convergence to a local minimum.

❲-Step. We fix ❊ and ❘ and update ❲ by solving:

♠✐♥
❲

✌✌❊�❲❃
❳
✌✌✷
❋

s.t. ❲
❃
❲ ❂ ■❵

(14)

This problem is a least square Procruste problem with or-

thogonality constraint. By setting ❙ ✿❂ ❳❊
❃, [15] shows

that ❲ ❂ ❯❱
❃, where ❯ contains the eigenvectors corre-

sponding to the ❵ (❵ ❁ ❞) largest eigenvalues of ❙❙❃ and❱

contains the eigenvectors of ❙❃❙.

❊-Step. ❲ and ❘ being fixed, we can solve the problem

for each ❊❣ independently: ✽❣ ✷ ❬▼ ❪,

♠✐♥
❊❣

✌✌❊❣ �❲❃
❳❣

✌✌✷
❋
✰ ✘
✌✌✌❊❣ � �❣✶❃❥❙❣❥

✌✌✌
✷

❋

s.t. ❊❣ ✷ ❆
❵✂❥❙❣❥❀ ❦❡✐❦✵ ✔ ❙❀ ✽✐ ✷ ❙❣✿

(15)

According to [12], we first find the solution without consid-

ering the constraints and then apply ternarization function

❚❙ (1) to obtain sparse codes. Therefore ❊❣ is found as:

❊❣ ❂ ❚❙✭❲
❃
❳❣ ✰ ✘�❣✶

❃
❥❙❣❥

✮✿ (16)

❘-Step. Like for the ❊-step, updating each group repre-

sentation �❣ is done independently, while fixing ❲ and ❊:

♠✐♥
�❣

✌✌✌❊❣ � �❣✶❃❥❙❣❥
✌✌✌
✷

❋

s.t. �❣ ✷ ❆
❵❀ ❦�❣❦✵ ✔ ❙✿

(17)

Then the representative of ❣-th group is obtained as:

�❣ ❂ ❚❙✭❊❣✶❥❙❣❥✮✿ (18)

4.3. EoA: Embedding of Aggregation

We now consider the construction of (6) that first aggre-

gates and then embeds. The cost of the aggregation is de-

fined as:

❈❆
EoA

✭❳❀❆✮ ✿❂

▼❳

❣❂✶

✌✌❳❃
❣ ❛❣ � ✶❥❙❣❥

✌✌✷
✷
✰ ✑ ❦❛❣❦

✷

✷
✿ (19)

Minimizing this cost amounts to equalize the similarity be-

tween each members of the group and the aggregated vector

❛. The cost for embedding is defined as previously:

❈❊
EoA

✭❆❀❘❀❲✮ ✿❂ ❦❘�❲❃
❆❦✷❋ ✿ (20)

As for the constraints:

❲
❃
❲ ❂ ■❵❀ (21)

�❣ ✷ ❆
❵❀ ❦�❣❦✵ ✔ ❙❀ ✽❣ ✷ ❬▼ ❪✿ (22)

The optimization problem (6) with these costs and con-

straints is solved by iterating the following steps.

❲- Step. Like for (14), updating❲ while❘,❆ are fixed

is a Procruste problem under orthogonality constraint:

min
❲

✌✌❘�❲❃
❆
✌✌✷
❋
❀

s.t. ❲
❃
❲ ❂ ■❵✿

(23)

Similar to (14), we define ❙ ✿❂ ❆❘
❃. The solution is

found as ❲ ❂ ❯❱
❃, where ❯ contains the eigenvectors

corresponding to the ❵ largest eigenvalues of ❙❙❃ and ❱

the eigenvectors of ❙❃❙.

❆- Step. When fixing ❲ and ❘, the aggregated vector

for each group ❣ ✷ ❬▼ ❪ is found independently by mini-

mizing:

♠✐♥
❛❣

✌✌�❣ �❲❃
❛❣

✌✌✷
✷
✰ ✌✭
✌✌❳❃

❣ ❛❣ � ✶❥❙❣❥
✌✌✷
✷
✰ ✑ ❦❛❣❦

✷

✷
✮❀

(24)

whose solution is

❛❣ ❂ ✭❲❲
❃ ✰ ✌✭❳❣❳

❃
❣ ✰ ✑■❞✮✮

�✶
✭❲�❣ ✰ ✌❳❣✶❥❙❣❥✮✿
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Figure 2: Performances comparison of our schemes vs. baseline for varying group size . at for group

verification (solid), the first step of group identification (dashed), and for the second step of group identification (dotted).

- Step. Projection matrix and the group aggregations

are fixed. The group representatives are obtained by ap-

plying sparse ternarization function on the projected aggre-

gated vectors: .

5. Experiments

We fully implemented the group membership protocol

that is described in [5]. Experimenting with this implemen-

tation gives the baseline performances. Note that the exper-

imental part of [5] only deals with synthetic data. Our im-

plementation could reproduce these results. However, the

sequel presents comparisons on real data.

5.1. Experimental Setup

We evaluate the performances of our scheme with face

recognition. Face images are coming from LFW [6],

CFP [16] and FEI [18] databases. Face descriptors are ob-

tained from a pre-trained network based on VGG-Face ar-

chitecture [9]. The output vector of the penultimate layer

(i.e. before the final classifier layer) is PCA reduced to a

lower dimension ( for LFW and CFP,

for FEI database), and then -normalized. The result is

the template . The values of , , , and are set

empirically as , , , and respectively. Also,

not all individuals from these databases are enrolled.

LFW. Labeled Faces in the Wild contains 13,233 images

of faces collected from the web. We used cropped LFW im-

ages. The enrollment set consists of individuals

with at least two images in the LFW database. One random

template of each individual is enrolled in the system, play-

ing the role of . The other templates are used for queries.

These are partitioned into two subsets: templates that are

correlated with with a similarity bigger than form

the “easy queries” set ; the remaining templates with a sim-

ilarity bigger than form the “hard queries” set. The re-

maining individuals not enrolled in the system ( )

play the role of impostors (hypothesis ).

CFP. The Celebrities in Frontal-Profile (CFP) database is

composed of subjects with frontal and profile im-

ages for each subject in a wild setting. We only use the

frontal images. The impostor set is a random selection of

individuals. One random template of the remaining

individuals is enrolled in the system. Like the setting de-

scribed for LFW, we have two subsets of queries.

FEI. We use frontal and pre-aligned images of the Brazil-

ian FEI database. There are subjects with two frontal

images (one with a neutral expression and the other with a

smiling facial expression). The database is created by ran-

dom sampling individuals. For each identity, one ran-

dom image is enrolled while the other is used as query. The

remaining individuals are considered as impostors.

At the enrollment phase, all groups have exactly the

same number of members: . Indi-

viduals are randomly assigned to a group.

The performances of the system are gauged with error

probabilities evaluated by Monte Carlo estimator over the

testing set. Since is not so large, the confidence interval

at is , which prevents us from es-

timating small probabilities. Therefore, we put our system

under stress by selecting a hard setup. First, note that LFW

and CFP are difficult datasets due to the ‘in the wild’ vari-

ations (poses, illuminations, expressions and occlusions).

They do not reflect the application of accessing a building

(as mentioned in the Introduction) where the capture envi-

ronment is more under control and the individuals collabo-

rate. Second, not only the dimension of the templates have

been reduced but also the length of the embeddings and the

group representation ( ) with a sparsity of

(unless stated otherwise). Probabilities of errors are then big
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Figure 3: The Detection and Identification Rate ( ) vs. for group identification. Performances for hard queries are

plotted in dashed lines.

but measurable with accuracy. We believe that this protocol

makes sense to benchmark approaches.

Two applications scenarios are investigated: group veri-

fication and group identification.

Group verification. A user claims she/he belongs to

group . This claim is true under hypothesis and false

under hypothesis (i.e. the user is an impostor). Her/his

template is embedded, and is sent to the sys-

tem, which compares to the group representation .

The system accepts ( ) or rejects ( ) the claim.

This is a two hypothesis test with two probabilities of er-

rors: is the false positive rate and

is the false negative rate. The figure of

merit is when .

Group identification. The scenario is an open set identi-

fication where the querying user is either enrolled or an im-

postor. The system has two steps. First, it decides whether

or not this user is enrolled. This is verification as above,

except that the group is unknow: The system computes

, . The system accepts if

the minimum of these distances is below a given thresh-

old . The figure of merit is when .

When , the system proceeds to the second step.

The estimated group is given by . The

figure of merit for this second step is or the

Detection and Identification Rate .

5.2. Exp. #1: Comparison to the baseline

Figure 2 shows that our method brings improvement

compared to the baseline, since the AoE and the EoA plots

are way below the ones corresponding to the baseline. The

high probabilities of false negatives for the baseline are

caused by the great losses in information: AoE (Baseline)

looses information from each template it embeds before the
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Figure 4: The Detection and Identification Rate ( ) vs.

for group identification on FEI.

aggregation—the accumulated losses are therefore great;

EoA (Baseline) has better performances since plain tem-

plates are first aggregated before running the embedding

step which causes less information loss.

Our method does not suffer that much from this informa-

tion loss: EoA and AoE have roughly similar performances,

with much more acceptable values.

5.3. Exp. #2: Detection and Identification Rate

Figure 3 compares the performances for group

identification with . Our schemes have results close

to perfection on the FEI dataset. Easy queries are correctly

handled on CFP but not on the LFW dataset at this size of

group. Hard queries are more difficult to cope with. This

is explained by the poor correlations they have with their

corresponding . That poor correlation, already existing

on the original templates, before any embedding or aggre-

gation, can only lower the performances of any membership

identification scheme.

Figure 4 shows the impact of the size of group on .

Packing more templates into one group representation is

detrimental even if the queries are well correlated with
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Figure 5: The impact of the similarity of the query with the

enrolled template on group verification and identification.

their corresponding enrolled template. This suggests to

split large groups into subgroups of size lower or equal to

. This restricts privacy to -anonymity as the server

is now able to identify the subgroup a query belongs to.

5.4. Exp. #3: Easy vs. Hard Queries

Figure 5 gives an additional perspective on the phe-

nomenon highlighted above, that is, the genuine similarity

between the query and the enrolled template is a key factor.

Easy queries are very well handled whereas hard queries

are more problematic. Put differently, the proposed method

do not severely degrade the recognition power of the de-

scriptors obtained through the VGG16 network. Descrip-

tors poorly correlated already at the image level can only

cause poor performance once embedded and aggregated.

This is also shown in Fig. 7 which displays some enrolled

and querying faces of the ‘in the wild’ datasets LFW and

CFP. All the failed identification examples show a change

of lighting, pose or expression, and / or occlusion. Yet, such

changes do not automatically give a failure.

5.5. Exp. #4: Security and Privacy

As for the security and privacy, the quantities (2) and (3)

were measured as empirical average over the dataset.

Knowing that the query has unit norm, the reconstruc-

tion mechanism yields a unit vector as follows:

. The quality of the reconstruction

mainly depends on the sparsity factor . When is small,

the template is reconstructed with few columns of .

When is big, more columns are used but the amplitude

modulating each column is coarsely reconstructed. There

might be two values of , one small, one large, providing

the same reconstruction MSE. However, these two values

do not yield the same performances as shown in Fig. 6.

Reconstructing enrolled templates is even more difficult

due to the aggregation (see (3)). Fig. 6 shows that our

method has decreased the security a little, but overall the
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Figure 6: The impact of sparsity factor on the trade-off

between security and performances, on FEI with

and .

Figure 7: Examples of group identification on CFP(left)

and LFW(right). Blue frames indicate enrolled samples,

green / red frames successful / failed queries, respectively.

trade-off between security and performances is more inter-

esting especially for AoE.

6. Conclusion

This paper proposes a framework for group membership

verification and identification by jointly learning the em-

bedding and the aggregation. Yet, this learning was not

completely free. Some guidances were still imposed, espe-

cially the prototyping of the embedding based on a sparse

ternary quantization. This is mainly for inheriting security

and privacy properties of this lossy information process-

ing [12, 11]. It is not clear whether an alternative approach

does exist.

Our future work looks at increasing the length of the

group representation in order to pack more templates into a

group. Yet, this raises scalability issues appealing for faster

but approximative learning.
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