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Abstract

Deep neural networks are vulnerable against adversar-

ial examples. In this paper, we propose to train and test

the networks with randomly subsampled images with high

drop rates. We show that this approach significantly im-

proves robustness against adversarial examples in all cases

of bounded L0, L2 and L∞ perturbations, while reducing

the standard accuracy by a small value. We argue that sub-

sampling pixels can be thought to provide a set of robust

features for the input image and, thus, improves robustness

without performing adversarial training.

1. Introduction

Deep neural networks are known to be vulnerable against

adversarial examples, inputs that are intentionally designed

to cause the model to make a mistake [1]. One particular

type of adversarial examples for image classifiers is slightly

perturbed images that are misclassified by the model, but

are recognizable to humans [2, 3]. Such adversarial images

are typically generated by adding a small perturbation with

bounded L0, L2 or L∞ norm to legitimate inputs [4].

Several methods have been proposed for defending

against adversarial examples, but later broken using adap-

tive iterative attacks [5, 6]. The state-of-the-art defense

against adversarial examples (with bounded L∞ perturba-

tion) is adversarial training, which iteratively generates ad-

versarial examples and trains the model to classify them cor-

rectly [7, 8]. This approach, however, significantly slows

down the training process and does not properly scale to

large datasets [9].

Adversarial training is shown to improve robustness at

the cost of reducing accuracy [8]. In [10], Tsipras et al., ar-

gued that the trade-off between adversarial robustness and

standard generalization is a fundamental property of ma-

chine learning classifiers. They analyzed a binary classifica-

tion problem and showed that the reduction in standard ac-

curacy is due to the tendency of adversarially trained mod-

els to assign non-zero weights only to a small number of

strongly-correlated or “robust” features. That is, such net-

Figure 1: Examples of original and subsampled images

with drop rate of 90%. (First and Third Rows) Images

from GTSRB and CIFAR10 datasets, respectively, (Sec-

ond and Fourth Rows) Corresponding subsampled images.

The accuracy on subsampled images reduces by about 4%
and 11% compared to original images for GTSRB and CI-

FAR10 datasets, respectively.

works discard the weakly-correlated (non-robust) features

that could potentially lead to better standard generalization.

In this paper, we investigate how this insight could be

used to train robust classifiers without performing adversar-

ial training. In natural image classifiers, it is not possible to

identify a fixed set of robust features in pixel domain due

to the position invariance of objects. As a result, the set of

robust features would be different for each image. To adapt

the idea of selecting robust features to natural images, we

use a slightly different notion of robust features as features

that are strongly-correlated with output given all other ro-

bust features. In other words, instead of selecting features

that are each highly correlated with output, we select the set



of features that has the highest correlation.

Image data contain high redundancy due to the strong

correlation between neighboring pixels, i.e., it is possible to

restore images even when a large fraction of pixels is re-

moved [11, 12]. Therefore, conditioned on that a pixel is

selected, its surrounding pixels are weakly-correlated with

output, because they significantly overlap in content with

the center pixel and removing them will not cause much re-

duction in accuracy. Hence, one straightforward approach

to construct robust features is by downsampling image pix-

els. Since farther pixels have smaller correlation, they non-

trivially contribute to model’s prediction and, thus, are con-

sidered to be robust features.

We propose to perform random (nonuniform) sampling

in order to improve both accuracy and robustness. Random

subsampling of pixels improves standard generalization be-

cause the model will be trained with different subsets of

pixels of each image. Also, at inference time, the accuracy

can be improved by averaging the prediction over multi-

ple sampling patterns. Moreover, since the randomness is

not known to the adversary, it further mitigates the attack

success rate. Randomly dropping pixels is suited to defend

against adversarial examples with bounded L0 perturbation,

since the model learns to recognize objects from images

with missing pixels. Nevertheless, we show that it provides

robustness against adversarial examples with bounded L2

and L∞ perturbation as well.

In this paper, we present our preliminary work and re-

sults on using random subsampling for adversarial robust-

ness. Our contributions are summarized in the following.

• We show image classifiers can be trained with inputs

with reduced redundancy, through random subsam-

pling of pixels, without significant reduction in accu-

racy. We show that the best results are obtained when

the model is trained with subsampled images with drop

rates chosen randomly in [0, 1].

• We apply the interpretability methods on models

trained with subsampled images and argue that such

approaches cannot explain how the model recognizes

images from few pixels. We also visualize convolu-

tional filters of the first layer of the network and show

that, in this respect, the model behaves similar to a net-

work trained using adversarial training.

• We evaluate adversarial robustness of the models

trained with random subsamled images. Experiments

are performed on GTSRB and CIFAR10 datasets and

with projected gradient descent (PGD) attack [13].

We show that training with subsampled images with

drop rates chosen randomly in [0, 1] improves the ro-

bustness against adversarial examples in all cases of

bounded L0, L2 and L∞ perturbation.
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Figure 2: Accuracy of models trained with subsampled images

with different drop rates. We used ResNet-20 and ResNet-110 for

GTSRB and CIFAR10, respectively. Dropping pixels at a higher

rate results in lower accuracy. However, even at very high drop

rates, the accuracy remains high.

2. Training with Subsampling Pixels

Natural images are high-dimensional data with high re-

dundancy due to the strong correlation between neighbor-

ing pixels. Hence, when training image classifiers, we can

potentially reduce the redundancy without significantly re-

ducing the standard accuracy. One approach for reducing

redundancy is randomly dropping pixels at a high rate. In

the following, we provide the results of training and testing

models with images with missing pixels.

Let X ∈ [−1, 1]d×d×3 be a color image. Let M ∈
{0, 1}d×d×3 be a mask with the same size as X , where

Mi,j,k is a Bernoulli random variable with mean 1− r, i.e.,

elements of M are equal to 0 with probability r and equal

to 1 otherwise. We generate the subsampled image X ′ as

X ′ = M ◦ X , where ◦ denotes Hadamard (element-wise)

multiplication. Figure 1 shows samples of original im-

ages of German Traffic Sign Recognition Benchmark (GT-

SRB) [14] and CIFAR10 dataset [15] and their correspond-

ing subsampled images with drop rate of 90%.

2.1. Experimental Results

We use ResNet-20 and ResNet-110 architectures [16]

for GTSRB and CIFAR10 datasets, respectively. The mod-

els are trained and tested with subsampled images. During

training, the mask is chosen randomly and differently for

each image and at each epoch. Figure 2 shows accuracy of

models trained with images with different drop rates. As ex-

pected, dropping pixels at a higher rate results in lower ac-

curacy. However, even at very high drop rates, the accuracy

remains high. Specifically, compared to standard training,

at drop rate of 90% the accuracy reduces by only about 4%
and 13% for GTSRB and CIFAR10 datasets, respectively.

We also observed that deeper networks perform better.

Table 1 shows the accuracy of ResNet models with differ-



Table 1: Results on CIFAR10 dataset. In experiment 1, model is

trained and tested with original images. In experiment 2, models

are trained and tested with subsampled images with drop rate of

90%. In experiment 3, model is trained with subsampled images

with drop rates chosen uniformly in [0, 1] and tested on subsam-

pled images with drop rate of 90%.

Model Accuracy

Experiment 1 (ResNet-110) 93.9%

Experiment 2 (ResNet-20) 75.2%

Experiment 2 (ResNet-56) 79.4%

Experiment 2 (ResNet-110) 81.1%

Experiment 3 (ResNet-110) 83.0%

ent depths on CIFAR10 images with drop rate of 90%. As

can be seen, ResNet-110 provides about 2% and 6% higher

accuracy compared to ResNet-56 and ResNet-20, respec-

tively. Moreover, the model achieves best results when the

drop rate of each image is chosen randomly between 0%
and 100% at each epoch.

2.2. Interpretability Analysis

In recent years, several “post-hoc” methods have been

proposed for interpreting the predictions of deep convo-

lutional neural networks [17, 18, 19, 20]. Such methods

typically identify input dimensions that the output is most

sensitive to. Let X be the input image, F be the classi-

fier and E be the explanation function that maps inputs

to objects of the same shape. Most explanation meth-

ods are based on some form of the gradient of the clas-

sifier function with respect to input [21]. In our analysis,

we use magnitude of gradient as the explanation map, i.e.,

E(X) = |∂F (X)/∂X| [17].

We examine the interpretability for a ResNet-110 net-

work trained with subsampled CIFAR10 images with drop

rates chosen randomly in [0, 1]. Figure 3a shows explana-

tion maps E(X) and E(X ′) for original and subsampled

images, respectively. For original images, the explanation

map is similar to the pattern of edges in image, a phe-

nomenon that [21] also observed and posed as a shortcom-

ing of interpretability methods. For subsampled images,

however, the explanation is not informative. We visualize

E(X ′)◦M and E(X ′)◦ (1−M), which respectively show

the gradient magnitude at pixels that have been dropped and

those that are not dropped. As can be seen, most of larger

values of gradient are at positions of dropped pixels, i.e.,

pixels that do not contribute to the model prediction.

The results raise questions about the usability of such

techniques in explaining model predictions. The gradient

captures the sensitivity of the model output with respect to

its input, i.e., it quantifies how much a change in a small

neighborhood around the input would change the predic-

𝑿 𝑿′ = 𝑿 ∘𝑴𝑬 𝑿 𝑬 𝑿′ 𝑬 𝑿′ ∘ 𝑴 𝑬 𝑿′ ∘ 𝟏 −𝑴

(a) Model is trained with images with drop rates chosen randomly in [0, 1].

(b) Model is trained to classify subsampled images with drop rate of

90% into their true label, while mapping original images to uniform

distribution. Accuracy on subsampled images is 78.9%.

(c) Model is trained to classify subsampled images into their true la-

bel, while mapping subsampled noisy images to uniform distribution.

The subsampled noisy images are obtained as X ′ = (X + ǫV ) ◦M ,

where M is sampling mask, V is a random variable that takes values

of {−1, 1} with equal probability and ǫ = 16/255. The drop rate is

90%. Accuracy on subsampled images is 80.9%.

Figure 3: Visualizing explanation maps. Notations: X , X ′ and

M are original and subsampled images and the sampling mask,

respectively. E(X) is the explanation map on X , computed as

E(X) = |∂F (X)/∂X|, and E(X ′) is the explanation on X ′.

The gradient quantifies the sensitivity of model output with respect

to its input. It, however, does not quantify how much each input

dimension contributes to model prediction.

tions F (X). It, however, does not quantify how much

each input dimension contributes to the model prediction.

Specifically, in our case, such interpretability methods do

not explain how the model recognizes the image from few

pixels.



For classifying subsampled images, the network might

implicitly rely on features of original images, i.e., it might

have learned to produce similar representations for origi-

nal and subsampled images. In order to prevent the model

to do so, we train a model to classify subsampled images

into their true label, while mapping original images to uni-

form distribution. This training approach results in a net-

work with accuracy of 78.9% on subsampled images (with

90% drop rate), which is only about 2% less than a model

that is only trained with subsampled images. The results

imply that the network is capable of classifying subsampled

images without actually learning features of natural images.

Figure 3b shows the explanation maps for few images. Sim-

ilar to 3a, the explanations do not provide insights into the

model workflow.

Finally, we train a model to classify subsampled images

and subsampled noisy images differently to investigate to

what extent the network relies on the exact values of sub-

sampled pixels. Specifically, we train the model to clas-

sify subsampled images into their true label, while mapping

subsampled noisy images to uniform distribution. The sub-

sampled noisy images are obtained as X ′ = (X+ ǫV )◦M ,

where M is sampling mask, V is a random variable that

takes values of {−1, 1} with equal probability and ǫ =
16/255. The drop rate is 90%.

Interestingly, the trained model achieves accuracy of

80.9% on subsampled images, which is almost the same

as a model trained only with subsampled images. Fig-

ure 3c shows the explanation maps for few images. For

this model, explanations on original images are not corre-

lated with edge pattern. Also, explanations on subsampled

images are sparser compared to 3a and 3b. Moreover, most

of larger values of gradient are at positions where pixels

have not been dropped. Further exploring interpretability of

networks trained with subsampled images is left for future

work.

2.3. Visualizing Convolutional Filters

Convolutional networks are known to learn basic image

patterns such as edges and blobs in early layers and then

combine them in later layers to distinguish complex ob-

jects [22]. Dropping pixels at a high rate disrupts such ba-

sic patterns. As a result, the network will not be able to

readily extract spatial features of the image data. To gain

insight into how the model classifies inputs, we examine

convolutional filters of the first layer. Figure 4 shows the

visualization of filters of ResNet-110 networks trained with

CIFAR10 dataset. We consider three cases of a normally

trained model, a model trained with subsampled images

with drop rate of 90% and a model trained with subsampled

images with drop rates chosen randomly in [0, 1].

As can be seen, the model that is trained with subsam-

pled images only has filters with large values at center po-

(a) Model is trained normally.

(b) Model is trained with images with drop rate of 90%.

(c) Model is trained with images with drop rates chosen randomly in [0, 1].

Figure 4: Visualizing convolutional filters of first layer of

ResNet-110 networks trained with CIFAR10 dataset. Models

trained with subsampled images have more concentrated weights.

sition. This means that the network recognizes that there is

no spatial correlation between adjacent pixels and, hence,

just passes several scaled versions of the image to the next

layer. Also, the model that is trained with subsampled im-

ages with different drop rates contains a mix of concentrated

filters and other filters similar to the normally trained model.

Interestingly, having concentrated filters in first layer is

also observed in adversarially trained networks on MNIST

dataset, where models were trained with adversarial exam-

ples with bounded L∞ perturbation [8]. The similar behav-

ior of the models trained with the two approaches suggests

that randomly dropping pixels is indeed related to the notion

of robust features observed in adversarial training. Further

exploring this relationship is left for the future work.

3. Robustness to Adversarial Examples

In this section, we first provide a background on adver-

sarial examples and then evaluate the robustness of models

trained with subsampled images.

3.1. Background on Adversarial Examples

We consider a class of adversarial examples for im-

age classifiers where small (imperceptible) perturbation is

added to an image so that the model misclassifies it (mis-

classification attack) or classifies it into the attacker’s de-

sired label (targeted attack). The perturbation is typically

quantified according to an Lp norm. The attacker’s prob-
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Figure 5: Accuracy on adversarial examples of (left) GTSRB and (right) CIFAR10 datasets with bounded L0 perturbation of 0.03D,

where D is the total number of pixels. The threshold of entropy is chosen such that accuracy on clean validation images is 1% less than

the case where each example is tested only once.

lem is formally stated as follows:

min‖X ′ −X‖p, (1)

s.t. f(X ′) 6= y or f(X ′) = yt,

where X and X ′ are the clean and adversarial examples,

respectively, y is the true label and yt 6= y is the attacker’s

desired target label.

We generate adversarial examples using the Projected

Gradient Descent (PGD) method [13, 8], such that the

added perturbation is bounded within ǫp for Lp norm, i.e.,

‖X ′ − X‖p ≤ ǫp. PGD is an iterative attack with the fol-

lowing update step:

Xj+1 = ΠX+S(X
j + V j), s.t. ‖V j‖p ≤ ǫ′p, (2)

where Xj is the image at step j, V j is the attack vector at

step j, ǫ′p is the added perturbation per step, and ΠX+S is

the projection operator where S is the set of allowed per-

turbations. According to attack goal, the attack vector is

specified as follows:

• V j = ∇Xℓ(Xj , y), for misclassification attack,

• V j = −∇Xℓ(Xj , yt), for targeted attack.

Attack Setup. To attack a model with random subsam-

pling, we generate 10 randomly subsampled images, for

each one compute the gradient at pixels which have not been

dropped, and then take average of gradients. Let M be the

sampling mask. The average gradient is formally obtained

as follows:

∇̄ = EM [∇Xℓ(X ◦M,y) ◦M ].

We consider the cases where the L0, L2 or L∞ norm of

perturbation is bounded. For GTSRB, we set ǫ0 = 0.03 D,

where D is the total number of pixels, ǫ2 = 512/255 and

ǫ∞ = 32/255. The attack step size is set to ǫ′0 = 1,

ǫ′2 = 32/255 and ǫ′∞ = 4/255. For CIFAR10, we set

ǫ0 = 0.03 D, ǫ2 = 1 and ǫ∞ = 16/255. The attack step

size is also set to ǫ′0 = 1, ǫ′2 = 16/255 and ǫ′∞ = 2/255.

We perform PGD attack with cross-entropy and CW [4] loss

functions and for misclassification and targeted attacks, and

present the best attack results.

3.2. Case of Bounded L0 Perturbation

Training with random subsampling is suited to defend

against L0 adversarial examples, since the model is trained

to be robust to missing pixels. We also observed that sub-

sampled adversarial examples result in more distributed

output probability vector than subsampled clean images.

Therefore, we enhance the defense mechanism by reject-

ing examples for which the entropy of probability vector is

larger than a threshold. The threshold is chosen so as to

have 1% false positive rate on validation data, i.e., the accu-

racy on clean validation images is reduced by 1%.

With random subsampling, the accuracy can be im-

proved by averaging the output on multiple different sub-

sampled versions of the input. To improve adversarial ro-

bustness, we compute the average output probability vector

over 10 different subsampled inputs and reject the example

if the entropy of probability vector is larger than a threshold.

The threshold is chosen such that accuracy on clean valida-

tion images is 1% less than the case where each example is

run only once.

Figure 5 shows the results on GTSRB and CIFAR10

datasets. As expected, larger drop rate improves adversarial

robustness at the cost of reducing standard accuracy. The

experiments are performed on a single model which has

been trained with images with drop rates in [0, 1]. Such a
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(a) GTSRB, L2 Attack.
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(b) GTSRB, L∞ Attack.
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(c) CIFAR10, L2 Attack.
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(d) CIFAR10, L∞ Attack.

Figure 6: Accuracy on adversarial examples of GTSRB and CI-

FAR10 datasets with bounded L2 and L∞ perturbation.

model has the advantage that at test time the drop rate can

be tuned to achieve different levels of trade-offs between

accuracy and robustness.

In Figure 5, it can be also seen that rejecting inputs based

on the value of entropy improves the trade-off of accuracy

and robustness, since the adversarial accuracy is increased

by larger value than the 1% reduction in standard accuracy.

Moreover, averaging over 10 runs and rejecting inputs with

high entropy results in adversarial accuracy to be on par

with standard accuracy at high drop rates.

3.3. Case of Bounded L2 and L∞ Perturbation

Figure 6 shows the attack results for L2 and L∞ cases

for GTSRB and CIFAR10 datasets. As can be seen, random

subsampling improves robustness in both cases and, similar

to L0 case, larger drop rate results in higher adversarial ro-

bustness. Intuitively, for attacking the model, the adversary

needs to distribute their budget to all features in such a way

that the expected attack success rate is maximized. This will

reduce the attack effectiveness compared to the case that the

attacker knows the exact sampling pattern.

4. Related Work

Defenses against adversarial examples with bounded Lp

perturbation have been widely studied [7, 4, 5, 8, 6, 23]. Ad-

versarial training is the state-of-the-art approach for L2 and

L∞ cases, but is shown to significantly slow down the train-

ing procedure [8, 10]. While most papers studied defenses

in L∞ setting, some of real-world attacks based on adver-

sarial examples fit in the L0 setting [24, 25]. For exam-

ple, [24] attacked traffic sign detection algorithms by adding

sticker-like perturbation to images. Also, [25] showed face

recognition algorithms can be fooled by adding physically-

realizable perturbation such as eyeglasses to images.

In [26], the authors proposed a method for improving

robustness in L0 attack setting by exploiting the sparsity

of natural images in Fourier domain. They showed attack

results on MNIST and Fashion-MNIST datasets and men-

tioned that the sparsity property might not hold in large im-

ages. Similar to their method, we used a property of natural

images, namely high spatial correlation, to mitigate the ef-

fect of adversarial perturbation. Our approach is, however,

general to natural images of any size. In fact, with larger

images, it is possible to drop pixels at a higher rate and still

restore the image [11, 12]. Hence, the classifier might be

able to recognize subsampled images with higher drop rates

and, as a result, achieve better robustness. Moreover, our

method improves the robustness against L2 and Linf ad-

versarial examples in addition to the L0 case. As a future

work, we will implement our method on Imagenet dataset.

Several papers have proposed using post-processing

algorithms to increase adversarial robustness [27, 28].

In [27], the authors proposed applying random resizing and

padding at inference time. [28] presented an algorithm for

pruning a random subset of activations of a pretrained net-

works and scaling up the rest. Unlike our method, such

algorithms do not train the model to learn the randomness.

Introducing randomness to inputs or the network itself at

both training and test times is recently explored and shown

to improve performance on adversarial examples [29, 30].

In [29], the authors proposed adding random noise layers

to the network and ensembling the prediction over random

noises. [30] adopted similar idea and used differential pri-

vacy to provide certified robustness against adversarial per-

turbations. In this paper, we proposed to train the model

with subsampled images, with the drop rates randomly cho-

sen in [0, 1], and test it with subsampled images with high

drop rates. We showed that our method improves adversar-

ial robustness in all cases of L0, L2 and L∞ perturbations.

5. Conclusion

In this paper, we showed that image classifiers can be

trained to recognize images with high drop rates. We then

proposed to train models with subsampled images with drop

rates randomly chosen in [0, 1]. Our experimental results

on GTSRB and CIFR10 datasets showed that such models

improve the robustness against adversarial examples in all

cases of L0, L2 and L∞ perturbation, while reducing stan-

dard accuracy by a small value.
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