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Abstract

Neural networks are susceptible to adversarial sam-

ples: samples with imperceptible noise, crafted to manip-

ulate network’s prediction. In order to learn robust mod-

els, a training procedure, called Adversarial Training has

been introduced. During adversarial training, models are

trained with mini-batch containing adversarial samples. In

order to scale adversarial training for large datasets and

networks, fast and simple methods (e.g., FGSM:Fast Gra-

dient Sign Method) of generating adversarial samples are

used while training. It has been shown that models trained

using single-step adversarial training methods (i.e., adver-

sarial samples generated using non-iterative methods such

as FGSM) are not robust, instead they learn to generate

weaker adversaries by masking the gradients. In this work,

we propose a regularization term in the training loss, to mit-

igate the effect of gradient masking during single-step ad-

versarial training. The proposed regularization term causes

training loss to increase when the distance between log-

its (i.e., pre-softmax output of a classifier) for FGSM and

R-FGSM (small random noise is added to the clean sam-

ple before computing its FGSM sample) adversaries of a

clean sample becomes large. The proposed single-step ad-

versarial training is faster than computationally expensive

state-of-the-art PGD adversarial training method, and also

achieves on par results.

1. Introduction

Deep Neural Networks (DNN) achieve impressive per-

formance across various computer vision tasks including

critical applications such as autonomous driving, and medi-

cal diagnosis. On the negative side, these networks are sus-

ceptible to adversarial samples [23, 4, 16]: samples with

imperceptible noise, crafted to manipulate network’s pre-

diction. Further, Szegedy et al. [23] showed that these ad-

versarial samples transfer across multiple models i.e., ad-

versarial samples crafted on one model are capable of mis-

leading even other models with different architecture. This

transferable nature of adversarial samples increases the sus-

ceptibility of models deployed in the real world, i.e., vul-

nerable to black-box attacks [10, 17] (no knowledge of the

deployed model is available). Generation of these adversar-

ial samples is performed by making use of simple [4, 24] to

complex optimization techniques [2, 13, 15, 20, 19, 14].

In order to learn robust models, Goodfellow et al. [4]

proposed Adversarial Training method. During adversarial

training, mini-batches are augmented with adversarial sam-

ples. These adversarial samples are generated using fast

and simple methods such as Fast Gradient Sign Method

(FGSM) [4] and its variants, so as to scale adversarial

training to large networks and datasets. Kurakin et al. [8]

observed that models trained using single-step adversarial

training methods (i.e., adversarial samples are generated

using non-iterative methods such as FGSM) are suscepti-

ble to multi-step attacks (e.g., iterative methods such as I-

FGSM). Further, Tramer et al. [24] explained this pseudo

robustness of models trained using single-step adversarial

training method is due to gradient masking effect i.e., lin-

ear approximation of model’s loss function becomes unreli-

able to generate adversaries of higher perturbation strength.

To summarize, models trained using single-step adversarial

training, (i) exhibit Gradient Masking effect [24], and Label

Leaking effect [8] (for some datasets), and (ii) vulnerable to

transfer attacks i.e., black-box attacks.

Madry et al. [12] demonstrated that, adversarial train-

ing can yield robust models, if adversarial samples included

while training closely maximizes the model’s loss, and fur-

ther showed that this can be achieved by generating adver-

saries using Projected Gradient Descent (PGD) [12]. Since,

PGD method is an iterative method, it causes training time

to increase substantially. Whereas, in this work we show

that it is possible to learn robust models using single-step

adversarial training by penalizing the gradient masking ef-

fect. To achieve this, we introduce a regularization term in

the training loss that penalizes gradient masking effect, and

this in turn helps in the inclusion of stronger adversaries that

maximizes the training loss. The proposed regularization

term causes training loss to increase when the Euclidean

distance between logits for FGSM and R-FGSM [24] (ran-



dom noise is added before computing FGSM sample) ad-

versaries of a clean sample is large. Following are the major

contributions of this work:

• We propose a regularization term in the training loss

that penalizes gradient masking effect during adver-

sarial training. Unlike, models trained using exist-

ing single-step adversarial training methods, models

trained using proposed method are robust to both

single-step and multi-step attacks.

• The proposed single-step adversarial training with reg-

ularizer is much faster than SOTA PGD adversarial

training [12], and achieves on par results.

Note, that adversarial training with R-FGSM or with

both R-FGSM and FGSM samples does not improve the

model’s robustness against adversarial attacks. Results for

these experiments are shown in section 5

The paper is organized as follows: section 2 discusses

existing works that are relevant, section 3 introduces the no-

tation followed in the subsequent sections of the paper, sec-

tion 4 presents the proposed adversarial training method,

section 5 hosts the experiments and results, and section 6

concludes the paper.

2. Related works

For defense against adversarial attack multiple meth-

ods [18, 4, 1, 11, 5, 3, 26, 22, 21, 25] have been proposed. In

this direction, adversarial training method by [4] has shown

promising results. Kurakin et al. [8] observed that mod-

els trained using single-step adversarial training method

were susceptible to multi-step adversarial attack. Further,

Tramer et al. [24] observed these models to be highly sus-

ceptible to transfer attacks, and explained this pseudo ro-

bustness of the model trained using single-step adversar-

ial training method is due to gradient masking effect i.e.,

linear approximation of model’s loss function is unreliable

to generate adversarial sample. Madry et al. [12] demon-

strated that adversarial training can yield robust models, if

perturbation crafted during training maximizes the model’s

loss and this is achieved by generating adversaries using

Projected Gradient Descent (PGD) which is an iterative

method.

Whereas, in this work we show that it is possible to learn

robust models using single-step adversarial training by pe-

nalizing the gradient masking effect. To achieve this, we

introduce a regularization term in the training loss that pe-

nalizes gradient masking effect, and this in turn helps in the

inclusion of stronger adversaries that maximizes the train-

ing loss. The proposed regularization term causes training

loss to increase when the Euclidean distance between logits

for FGSM and R-FGSM [24] (random noise is added before

computing FGSM sample) adversaries of a clean sample is

large.

3. Notations and Terminology

In this section we define the notations followed through

out this paper:

• x : clean image from the dataset.

• ytrue : ground truth label corresponding to the image

x.

• f : neural network that maps input image x to the class

score.

• θ : parameters of the neural network.

• J : loss function used to train neural network e.g.,

cross-entropy loss.

• ∇xJ : gradient of loss with respect to input image x
• m : size of training mini-batch.

• ǫ : strength of perturbation/crafted noise added to the

clean image.

• xfgsm : potential adversarial sample corresponding to

the image x, generated using FGSM.

• xrfgsm : potential adversarial sample corresponding

to the image x, generated using R-FGSM.

3.1. Adversarial Sample Generation Methods

In this section we explain methods for generating adver-

sarial samples. All these attacks use L∞ norm constraint

on generated perturbation for perceptual constraints.

Fast Gradient Sign Method (FGSM): Proposed by [4],

generates adversarial samples based on the first order

approximation of the loss function and via performing

simple gradient ascent:

x∗ = x+ ǫ.sign
(

∇xJ(f(x; θ), ytrue)
)

(1)

Random + Fast Gradient Sign Method (R-FGSM):

Proposed by [24]. This method adds small random noise

before generating adversarial sample using FGSM method.

x′ = x+ α.sign
(

N (0d, Id)) (2)

x∗ = x′ + (ǫ− α).sign
(

∇x′J(f(x′; θ), ytrue)
)

(3)

Iterative Fast Gradient Sign Method (I-FGSM): In this

method FGSM is applied in iterative fashion with small step

size. In our experiments we use α = ǫ/steps.

x0 = x (4)

xN+1 = xN + α.sign
(

∇xNJ(f(xN ; θ), ytrue)
)

(5)

Projected Gradient Descent (PGD): Proposed by [12],

here the perturbation is initialized with a random point

within the allowed Lp-norm ball and then I-FGSM is ap-

plied with re-projection.



Algorithm 1: Adversarial training of network N with

proposed regularization term.

Input:

m = Size of the training mini-batch

MaxItertion = Maximum training iterations

Hyper-parameters: λ

1 Initialization

Randomly initialize network N

iteration = 0

2 while iteration ≤ MaxItertion do

3 Read minibatch B = {x1, ..., xm} from training

set

4 Generate FGSM adversarial samples

B1={x1
fgsm, ..., xm

fgsm} from corresponding

clean samples {x1, ..., xm} using the current

state of the network N

5 Generate R-FGSM adversarial samples

B2={x1
rfgsm, ..., xm

rfgsm} from corresponding

clean samples {x1, ..., xm} using the current

state of the network N

6 Make new mini-batch B∗={B1, B2}

7 Forward pass with mini-batch B∗

8 Compute Loss (Eq. 8)

9 Backward pass and update model’s parameters

10 iteration = iteration+ 1

11 end

4. Proposed Approach

In this section, first we will explain the criteria for learn-

ing robust models [12], followed by the effect of gradient

masking during single-step adversarial training, and finally

the proposed single-step adversarial training with regular-

ization term.

4.1. Criteria for learning robust models

Madry et al. [12] demonstrated that, adversarial train-

ing can yield robust models, if adversarial samples included

while training maximizes the model’s loss. This objec-

tive can be formulated as a mini-max optimization problem

Eq.(6).

min
θ

ρ(θ), (6)

where ρ(θ) = E(x,y)∈D

[

max
δ∈S

J
(

f(x+ δ; θ), ytrue
)

]

(7)

At each iteration, we need to find a perturbation δ with L∞

norm constraint ǫ, that maximizes the model’s loss and fur-

ther we need to update the model’s parameter (θ) which

minimizes this loss. Madry et al. solves this inner max-

imization problem by generating adversarial samples us-

ing PGD method (iterative method) with pre-fixed itera-

tions/steps. Iterative methods ensure that generated pertur-

bation will always increase the model’s loss, since at each

step of the generation process perturbation with small ǫ is

added to the image. This is not true when perturbation with

high ǫ is added to the image in a single step.

4.2. Effect of gradient masking during single­step
adversarial training

In section 5.1, we empirically show that the extent of

maximization of loss that is achieved by FGSM (non-

iterative method) adversaries during the initial stages of

single-step adversarial training, is similar to that achieved

by PGD (iterative method) adversaries i.e., the difference

between loss on FGSM adversaries and on PGD adversaries

is small (see bottom-left plot of Fig. 1 for ǫ=0.3). As train-

ing progress, due to gradient masking the ability of FGSM

samples to maximize the loss diminishes i.e., the differ-

ence between loss on FGSM adversaries and on PGD ad-

versaries becomes large (see bottom-right plot of Fig. 1 for

ǫ=0.3). Further, we observe that this difference between

loss on FGSM adversaries and on PGD adversaries becomes

large, when the Euclidean distance between logits of FGSM

sample and R-FGSM samples becomes large (see top plot

of Fig. 1). During single-step adversarial training, when

model starts to mask the gradient, its decision surface ex-

hibits sharp curvature near the data points [24]. This sharp

curvature obfuscates the linear approximation of loss func-

tion. Further, adding a small noise to the image causes ∇xJ
(gradient of loss w.r.t image ‘x’) to change significantly.

Then, if the model is exhibiting gradient masking effect, its

pre-softmax representation (i.e., logits) for adversarial sam-

ple generated using FGSM and R-FGSM would be different

(measured in terms of Euclidean distance).

Whereas, during PGD adversarial training we observe

that for the entire training duration this Euclidean distance

between logits of FGSM samples and R-FGSM samples is

small (see top plot of Fig. 2), and also the difference be-

tween average loss on FGSM adversaries and on PGD ad-

versaries is small (see bottom plots of Fig. 2 for ǫ=0.3).



Table 1: Architecture of networks used for FGSM and Ensemble Adversarial Training on MNIST dataset.

LeNet+ A B C D

Conv(32,5,5) + Relu Conv(64,5,5) + Relu Dropout(0.2) Conv(128,3,3) + Tanh
{

FC(300) +Relu
}

× 4
MaxPool(2,2) Conv(64,5,5) + Relu Conv(64,8,8) + Relu MaxPool(2,2) Dropout(0.5)

Conv(64,5,5) + Relu Dropout(0.25) Conv(128,6,6) + Relu Conv(64,3,3) + Tanh FC + Softmax

MaxPool(2,2) FC(128) + Relu Conv(128,5,5) + Relu MaxPool(2,2)

FC(1024) + Relu Dropout(0.5) Dropout(0.5) FC(128) + Relu

FC + Softmax FC + Softmax FC + Softmax FC + Softmax

Table 2: Setup used for Ensemble Adversarial Training. For

MNIST networks refer table 1.

Network to be trained Pre-trained Models

ResNet-34(Ensemble A) ResNet-34, ResNet-18

CIFAR-10 ResNet-34(Ensemble B) ResNet-34, VGG-16

ResNet-34(Ensemble C) ResNet-18, VGG-16

A(Ensemble A) A,B,C

MNIST B(Ensemble B) B, C ,D

C(Ensemble C) C, D, A

D(Ensemble D) D, A ,B

4.3. Proposed single­step adversarial training with
regularization term

In section 4.2, we showed that when the model starts to

mask the gradient then the Euclidean distance between log-

its of FGSM and R-FGSM adversaries of a clean sample

becomes large. Based on this observation, we introduce a

regularization term in the training loss Eq.(8) in order to

mitigate the effect of gradient masking during single-step

adversarial training. In Eq.(8), the first term corresponds to

classification loss e.g., Cross-Entropy loss, and the second

term represents the proposed regularization. During train-

ing, if the model starts to mask the gradient then the Eu-

clidean distance between logits of FGSM and R-FGSM ad-

versaries of clean sample increases, this in turn causes the

training loss Eq.(8) to increase. This behavior of the pro-

posed regularization prevents the model from masking the

gradient. Unlike, existing single-step adversarial training

methods, models trained using the proposed method are ro-

bust to both single-step and multi-step attacks. Note, that

adversarial training with R-FGSM or with both R-FGSM

and FGSM samples does not improve the model’s robust-

ness against adversarial attacks. Results for these experi-

ments are shown in section 5.

Loss =
1

m

m
∑

i=1

J(f(xi
fgsm; θ), yitrue)

+ λ
1

m

m
∑

j=1

∥

∥logitsjfgsm − logitsjrfgsm
∥

∥

2

2

(8)

5. Experiments

In our experiments we show results on MNIST [9], and

CIFAR-10 [7] datasets. We use LeNet+ shown in table 1 for

MNIST dataset. For CIFAR-10 dataset, ResNet-34 [6] is

used. These networks are trained using SGD with momen-

tum, and for learning rate scheduling step-policy is used.

For all the datasets, images are pre-processed to be in [0,1]

range. For CIFAR-10 dataset, random crop and horizontal

flip are performed for data-augmentation. We follow [12],

for the attack perturbation strength (ǫ) and attack parame-

ters. For all attacks, we use L∞ norm for perceptual con-

straints.

In order to show the effectiveness of the proposed

regularization term, we show results for two ablation

experiments. (i) FGSM + R-FGSM adv.: train with

mini-batch containing both FGSM and R-FGSM samples.

(ii) Proposed adv. with λ=0: training without proposed

regularization term.

5.1. Effect of gradient masking during single­step
adversarial training

We train LeNet+ shown in table 1 on MNIST dataset us-

ing FGSM adversarial training method. During training,

we compute the average Euclidean distance between log-

its of FGSM and R-FGSM adversaries with ǫ=0.3. Fig-

ure 1 shows the obtained plot of average Euclidean distance

between logits of FGSM and R-FGSM adversaries versus

training iteration. From the plot, it can be observed that af-

ter 20 iterations (× 50), the L2 distance increases to a large

value (i.e., L2 distance is in the range of 300 to 450) rapidly.

Whereas, for the model trained using PGD method, the L2

distance is relatively low (i.e., L2 distance is in the range of

0 to 1.2) for the entire training duration, shown in Fig. 2.

In order to validate that the increase in the average L2

distance is due to gradient masking effect, we obtain the

plot of average loss of the model on validation set versus

perturbation strength (ǫ) of PGD, R-FGSM and FGSM at-

tacks respectively. Bottom-left of Fig. 1 represents this plot

obtained at iteration 20 (× 50) i.e., before L2 distance in-

creases, and the bottom-right plot of Fig. 1 is obtained at

iteration 100 (× 50) i.e., after the increase in the L2 dis-
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Figure 1: Top: Plot of average L2 distance between log-

its of FGSM and R-FGSM adversaries of clean samples,

obtained for the model trained on MNIST dataset using

FGSM adversarial training method. Observe the increases

in the L2 distance after 20 iterations (× 50). Bottom: Plot

of average loss of the model on val. set versus ǫ of PGD,

R-FGSM and FGSM attacks. Bottom-left: Plot obtained

at iteration 20 (× 50), Bottom-right: Plot obtained at iter-

ation 100 (× 50). Observe the gradient masking effect in

the bottom-right plot i.e., for ǫ=0.3 difference between the

average loss on PGD and on FGSM samples is large.
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Figure 2: Top: Plot of average L2 distance between logits

of FGSM and R-FGSM adversaries of clean samples, ob-

tained for the model trained on MNIST dataset using PGD

adversarial training method. Observe that for the entire

training duration average L2 distance is relatively small.

Bottom: Plot of average loss of the model on validation set

versus ǫ of PGD, R-FGSM and FGSM attacks. Bottom-

left: Plot obtained at iteration 20 (× 50), Bottom-right:

Plot obtained at iteration 300 (× 50).

tance. From bottom-left plot of Fig. 1, it can observed that

for ǫ=0.3 the loss on PGD and on FGSM adversaries are

in the same range i.e., difference between average loss on

PGD and on FGSM adversaries is small, and this indicates

that there is no gradient masking effect. The extent of max-

imization of loss (Eq. 7) achieved by FGSM (non-iterative

method) adversaries during the initial stages of single-step

adversarial training, is similar to that achieved by PGD (iter-

ative method) adversaries. Further, from bottom-right plot

of Fig. 1, it can be observed that for ǫ=0.3, the difference

between average loss on PGD adversaries and on FGSM

adversaries is very large indicating gradient masking effect.

Whereas, for the model trained using PGD method, this dif-

ference between the average losses is small for the entire

training duration as shown in bottom plots of Fig. 2.

5.2. Proposed single­step adversarial training with
regularization term

MNIST: We train LeNet+ shown in table 1 on MNIST

dataset, using the proposed adversarial training method

(Alogrithm 1). We use ǫ=0.3 [12] for generating FGSM

and R-FGSM adversarial samples. We set hyper-parameter,

λ=5. For PGD adversarial training [12], we use adversaries

generated by PGD method with ǫ = 0.3, steps = 40
and step size = 0.01. For Ensemble Adversarial Train-

ing (EAT) [24], we use the setup shown in table 2. Table 3

compares the performance of models trained using different

training methods against white-box attacks. Rows represent

training methods and its performance against different at-

tack methods. From table 3 it can be observed that models

trained using FGSM and EAT methods fail to defend against

multi-step attacks (I-FGSM and PGD), whereas models

trained using the proposed method and PGD method are

able to defend against multi-step attacks. Table 5 shows the

performance of models trained using proposed method and

PGD method, against FGSM black-box attack with ǫ = 0.3.

CIFAR-10: We train ResNet-34 on CIFAR-10 dataset, us-

ing the proposed adversarial training method (Alogrithm 1).

We use ǫ=8/255 [12] for generating FGSM and R-FGSM

adversarial samples. We set hyper-parameter, λ=5. For

PGD adversarial training [12], we use adversaries gener-

ated by PGD method with ǫ = 8/255, steps = 7 and

step size = 2/255. For Ensemble Adversarial Train-



Table 3: White-Box attack: Classification accuracy (%) of

models trained on MNIST dataset using different training

methods. For all attacks ǫ=0.3 is used and for PGD attack

step size is set to 0.01. Note that models trained using

PGD and the proposed adversarial training methods are ro-

bust to both single-step attack (FGSM) and multi-step at-

tacks (I-FGSM and PGD).

Attack Method

Training Method Clean FGSM I-FGSM PGD PGD

steps=40 steps=40 steps=100

Normal 99.24 11.65 0.31 0.01 0.00

FGSM Adv. 99.34 89.04 1.19 0.17 0.01

R-FGSM Adv. 93.92 57.06 41.85 29.31 28.76

EAT

A 99.35 83.48 18.75 10.13 3.41

B 99.31 80.16 48.13 37.85 22.86

C 99.20 82.48 4.00 1.29 0.08

D 97.66 56.85 0.87 0.29 0.08

R-FGSM + FGSM Adv. 95.39 61.60 44.62 34.15 33.41

Ablation-Proposed λ=0 97.62 92.52 4.92 1.89 0.17

PGD Adv. 98.41 95.56 92.64 92.08 91.13

Proposed 98.74 95.1 89.91 89.48 87.74

Table 4: White-Box attack: Classification accuracy (%) of

models trained on CIFAR-10 dataset using different train-

ing methods. For all attacks ǫ=8/255 is used and for PGD

attack step size is set to 2/255. Note that models trained

using PGD and the proposed adversarial training methods

are robust to both single-step attack (FGSM) and multi-

step attacks (I-FGSM and PGD).

Attack Method

Training Method Clean FGSM I-FGSM PGD PGD

steps=7 steps=7 steps=20

Normal 91.52 14.00 0.00 0.00 0.00

FGSM Adv. 92.42 98.58 0.09 0.05 0.00

R-FGSM Adv. 79.39 98.64 0.35 0.22 0.02

EAT

A 90.80 82.14 10.56 4.69 0.67

B 90.43 60.59 32.76 28.9 18.31

C 90.28 66.49 36.49 29.41 20.24

R-FGSM + FGSM Adv. 80.88 97.92 2.18 1.16 0.22

Ablation-Proposed λ=0 77.00 98.96 0.21 0.06 0.01

PGD Adv. 79.44 53.25 50.53 50.08 47.51

Proposed 80.45 53.14 49.83 49.13 46.07

Table 5: Accuracy (%) of models trained on MNIST

dataset for black-box attack. Source models are used to

generate FGSM adversarial samples with ǫ=0.3 and tested

on target model. Subscript denotes the training method.

Here M represents LeNet+

Source Model
Target Model

MPGD MProposed

Model-A 93.70 93.53

Model-B 93.57 93.25

Table 6: Accuracy (%) of models trained on CIFAR-10

dataset for black-box attack. Source models are used

to generate FGSM adversarial samples with ǫ=8/255 and

tested on target model. Subscript denotes the training

method. Here M represents ResNet-34.

Source Model
Target Model

MPGD MProposed

VGG-11 76.09 76.81

VGG-19 77.24 77.92

ing (EAT), we use the setup shown in table 2. Table 4

compares the performance of models trained using differ-

ent training methods against white-box attacks. For the

model trained using FGSM method label leaking effect is

observed i.e., accuracy of the model on FGSM adversar-

ial set is greater than that on clean set. Further, it can be

observed that models trained using FGSM and EAT meth-

ods fail to defend against multi-step attacks (I-FGSM and

PGD). Although, models trained using the proposed method

and PGD method are not fully robust against white-box at-

tacks, they are able to defend against it to an extent. Ta-

ble 6 shows the performance of models trained using the

proposed method and PGD method, against FGSM black-

box attack with ǫ = 8/255. Figure 4 shows the plot of aver-

age loss on test set vs. perturbation strength (ǫ) of PGD and

FGSM attack, obtained for models trained using the pro-

posed method.

Accuracy versus Perturbation strength of PGD attack:

In order to verify that gain in the robustness of the model

trained using the proposed method is not due to gradient

masking effect, we obtain the plot of test-set accuracy of

models trained using the proposed method, against PGD

adversaries of different perturbation strength (ǫ). Figure 3

shows the obtained plot. It can be observed that for higher

perturbation strength model’s performance degrades. The

purpose of obtaining this plot is to verify that the model’s

robustness is not due to gradient masking effect. If gradient

masking effect is present, model’s accuracy does not drop

even for the attack with higher perturbation strength (nor-

mally for higher perturbation strength, image gets distorted

and performance of model should degrade).

5.3. Time Complexity

In this subsection we show the time complexity of dif-

ferent training methods, which are measured in terms of

training time per epoch. Table 7 compares the training

time per epoch (seconds) for models trained on MNIST

and CIFAR-10 datasets respectively, using different train-

ing methods. We ran these timing experiments on a machine

with NVIDIA Titan Xp GPU, with no other jobs running on

it.
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Figure 3: Performance of models trained using the pro-

posed method, against PGD adversaries of different per-

turbation strength (ǫ). For PGD attack, we set steps = 40
for MNIST dataset, and steps = 7 for CIFAR-10 dataset.

Dashed lines indicates the ǫ used while adversarial train-

ing.
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Figure 4: Average loss on test set versus perturbation

strength (ǫ) of an attack. Obtained for models trained on

MNIST and CIFAR-10 dataset using the proposed method.

Table 7: Comparison of training time per epoch of models

trained on MNIST and CIFAR-10 datasets respectively, ob-

tained for different training methods. For PGD adversarial

training, steps=40 is used for MNIST dataset and steps=7

is used for CIFAR-10 dataset. † For EAT, training time of

pre-trained source models are not considered.

Method
Training time per epoch (sec.)

MNIST CIFAR-10

Normal Training ∼ 2.7 ∼ 31
FGSM Adv. Training ∼ 4.1 ∼ 53
EAT† ∼ 5.5 ∼ 59
PGD Adv. Training ∼ 53.0 ∼ 238
Proposed ∼ 8.8 ∼ 108

6. Conclusion

In this work, we have demonstrated that models trained
using single-step adversarial training method can be made
robust against adversarial attacks, if gradient masking ef-
fect is penalized. We achieved this by introducing reg-
ularization term in the training loss, which causes train-
ing loss to increase when Euclidean distance between log-
its of FGSM and R-FGSM adversaries of a clean sam-
ple is high. Unlike models trained using existing single-
step adversarial training methods, models trained using the
proposed adversarial training method are robust to both
single-step and multi-step attacks in white-box and black-
box settings. Proposed method is faster than state-of-the-art
PGD adversarial training method and achieves on par re-
sults.
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