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Abstract

We investigate the viability of collecting annotations for

face images while preserving privacy by using synthesized

images as surrogates. We compare two approaches: a state-

of-the-art 3-D face model based on deep neural networks

(Extreme3D [24]) to render a detailed 3-D reconstruction

of the face from an input image; and a novel generative ad-

versarial network architecture that we propose that extends

BEGAN-CS [5] to generate images conditioned on desired

low-level facial attributes. Using these two alternative mod-

els, we conduct experiments on Mechanical Turk to anno-

tate emotions (”joy” and ”anger”) on raw and synthesized

versions of face images. Across 60 workers each annotat-

ing 3 versions of 60 images in each experiment, we find that:

(1) The labeling accuracy when viewing surrogate images

can be very similar to the accuracy when viewing raw im-

ages, but depends significantly on the labeling task. (2) The

proposed extension to BEGAN-CS is effective in generat-

ing realistic images that correspond to the input vector of

low-level facial attributes. (3) Overall, the GAN-based ap-

proach to generating surrogate images gives comparable

accuracy as the 3-D face model, but is easier to train.

1. Introduction

Computer vision for automatic face analysis often re-

quires large-scale annotation of face images to provide la-

beled training and testing data. While crowdsourcing (e.g.,

on Mechanical Turk) can help to reduce the time and ex-

pense of annotation, it is not always practical for privacy

reasons: in many educational [20], medical [23], or mili-

tary settings, the face data that are collected might contain

images that are sensitive and show people in distressing or

potentially embarrassing situations, and it would be unac-

ceptable to post such images on the Web for public viewing.

For instance, in order to train an automatic facial expres-

sion recognition system to recognize pain, one might col-

laborate with a hospital to collect images of patients with

medical conditions that are known to be painful, and then

train a classifier designed to estimate the intensity of pain.

In another scenario, an educational researcher might want

to create an automatic student “engagement” detector and

would thus record videos of children in school classrooms.

In both these scenarios, the face images should likely be

kept private to only the research team.

One strategy to facilitate efficient labeling while main-

taining data privacy – which has been theoretically possible

for some time but rarely practiced – is to perform some form

of face de-identification [11] of the images while retaining

enough information for human workers to be able to accu-

rately assign labels. Naive face de-identification methods

such as blurring or distorting the image tend to remove too

much information for human labelers to label accurately.

However, deep learning provides new ways of preserving

the important facial attributes while removing identity in-

formation. In this paper we explore a de-identification ap-

proach based on automatic image synthesis whereby either

a Generative Adversarial Network (GANs) [10], or a 3-D

generative face model that uses a neural network to estimate

shape parameters [14], is used to render high-resolution,

realistic face images. Importantly, our approach synthe-

sizes new images that can be conditioned on specific at-

tributes such as gender, age, head pose, facial expression,

etc. Most existing approaches to face de-identification of-

fer k-anonymity guarantees [22] but may still contain some

information about the raw image. In contrast, the synthe-

sized images in our method contain zero information about

the original faces (other than the attributes themselves that

are to be labeled).

We focus on computer vision tasks in which the goal is

to train a classifier of a high-level facial state – e.g., pain,

anxiety, engagement – that may be expressed by low-level

facial features. For example, human facial expressions can

be characterized precisely by the intensity of 40+ different

facial action units (AUs) that correspond approximately to

different muscle groups ([9]). While basic emotions such as
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“joy” and “anger” are sometimes conceptualized as primi-

tive states, their facial expression can be decomposed into

the presence or absence of different AU combinations, e.g.,

AUs 6+12 for joy, and AUs 4+5+7+23 for anger.

The basic idea we propose is the following (see Figure

1): Suppose we want to train a face classifier to estimate

the intensity of a high-level state such as student engage-

ment. We first collect a large dataset of face images from

students. Then, from each image in our dataset, we use a

pre-trained, off-the-shelf automatic facial expression recog-

nition tool (e.g., OpenFace [1]) to extract low-level facial

attributes such as head pose, eye closure, facial action units,

etc. (These features were shown to be related to perceived

student engagement in [28].) These low-level attributes are

then fed to a GAN or 3-D face model to produce a new sur-

rogate image that resembles the raw input image in many

ways except facial identity. Then, the set of all surrogate im-

ages is posted to a crowdsourcing site such as Mechanical

Turk for annotation. Assuming the surrogate images pre-

serve the relevant attributes (the intensity of “engagement”

in our example), their labels can then be assigned to the raw

images and used to train an automatic student engagement

classifier.

Contributions: (1) We propose an approach to privacy-

preserving face image annotation based on synthesizing sur-

rogate images that contain zero information about the orig-

inal faces other than a specifiable set of attributes. (2) We

propose a novel enhancement to the BEGAN-CS [5] archi-

tecture whereby images can be conditioned on specified fa-

cial attributes (e.g., gender, head pose, AUs). (3) We con-

duct an experiment on Mechanical Turk (N = 60 partic-

ipants) to compare the annotation accuracy (for the emo-

tional states of “joy” and “anger”) of raw images, surrogate

images generated from a GAN, and surrogate images gen-

erated from a state-of-the-art 3-D face model. Our results

suggest that, while there is an accuracy loss when labeling

surrogate images, the approach is promising and will likely

improve with better trained GANs.

2. Related Work

2.1. Face De­Identification

Face de-identification algorithms [12, 15, 18, 29, 16, 2]

remove identity information from images. This can be

achieved using simplistic methods such as applying signifi-

cant blurs, pixelization, or black boxes on faces. However,

this leads to a significant loss of facial information, making

it impractical for our setting. Other approaches use the k-

same algorithm [18] to combine k different images of faces

that are very similar. This results in an image that is mostly

de-identified while retaining important low-level features;

however in practice this approach often still leaves signifi-

cant facial artifacts [12].

GANs for face de-identification: Similar to our work,

several researchers have also explored using GANs to de-

identify faces. Works such as [8, 19, 29] utilize auto-

encoder based GANs to modify input images with the ob-

jective of minimizing identity information while retaining

underlying features (e.g. structure, expression). [2, 16]

show GAN approaches to disentangle identity and facial at-

tributes of images, allowing the generator to synthesize new

faces using only the extracted attributes of an input face.

[21] demonstrates a method of generating images with less

direct input from the raw images, where facial landmarks

are used by the generator to synthesize faces. Our paper

primarily differs from these works in that our model uses

no information from the raw images (other than a speci-

fiable set of low-level attributes) to generate faces, and our

evaluation’s focus is on collecting high-level annotations on

synthesized images.

2.2. 3­D Face Models

Techniques for face image synthesis such as 3-D mor-

phable models (3DMM) [4] work by transforming and fit-

ting some base 3-D face model to a desired target shape.

In this paper, we look in particular at approaches that use

convolutional neural networks (CNNs) to fit 3-D face mod-

els. One notable example is 3-D Dense Face Alignment

(3DDFA) [31], which fits and aligns a 3DMM to the input

image using cascading CNNs. Another is Expression Net

(ExpNet) [7], which performs regression directly on 3DMM

expression coefficients rather than detecting and using fa-

cial landmarks.

For our crowdsourcing experiments involving the use of

3-D face models, we chose Extreme3D [24] which is pub-

licly available online 1. Extreme3D combines strong regu-

larization for the overall face shape with weak regulariza-

tion for more local details of the face. The Extreme3D

model separately computes a foundation shape, facial ex-

pression, and viewpoint of a face. It then estimates a bump

map to capture mid-level features. Finally, occluded details

of the face are added on to produce the final output 3-D face.

3. Proposed Solution

To collect annotations for face images while preserving

privacy, we propose the approach of generating new surro-

gate images that preserve the essential facial attributes that

we wish to label (Figure 1 illustrates the general workflow).

For face image synthesis, we consider two alternative mod-

ern approaches, both of which retain 0 information about

the raw images (except the attributes such as facial expres-

sion, gender, and head pose): (1) We can use a 3-D face

model such as Extreme3D [24] that takes a face image as

input, estimate 3-D face model parameters using a neural

1https://github.com/anhttran/extreme 3d faces
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Figure 1. Pipeline for proposed solution to produce surrogate face image to collect high-level labels.

network, and then be used to synthesize a 2-D face image

using these parameters. Extreme3D uses deep neural net-

works to detect how to modify the expressions and shapes

of the base 3-D face model, as well as what pose to position

the face in. It can also capture finer details in the face such

as wrinkles. (2) We can train a Conditional GANs [17] that

takes both a noise vector and specific face attributes as in-

put to generate surrogate face images that contain the same

low-level features (e.g. expression, gender, pose) as the raw

images.

4. Conditional BEGAN-CS Architecture

We use BEGAN-CS as the backbone of our GAN-based

approach because, in pilot experimentation, it resulted in

considerably less mode collapse in generated images than

the regular GAN [10]. We propose a novel enhancement to

the BEGAN-CS [5] architecture that enables the network to

synthesize new images from both a noise vector as well as

a specified vector of low-level facial attributes (head pose,

gender, and AUs). BEGAN-CS [5] is based on the BE-

GAN by [3], which in turn is based on EBGAN by [30].

In all these networks, the discriminator is an auto-encoder

that is trained on the reconstruction error of input images

(minimizing error for real images and maximizing it for

fake images). BEGAN expands upon EBGAN by introduc-

ing an equilibrium enforcing term to balance the weight-

ing of reconstructing real and generated images, which can

result in more stable training. BEGAN-CS expands upon

BEGAN by adding a constraint on the internal state of the

auto-encoder, limiting the difference between it and the in-

put noise for generated images. The addition of this con-

straint is shown to improve mode collapse in the BEGAN-

CS model. We further build upon BEGAN-CS’s architec-

ture to introduce conditional training.

4.1. BEGAN­CS Overview

Let D : RNx 7→ RNx be the discriminator (an auto-

encoder) and G : RNz 7→ RNx be the generator, where Nx

is the dimension of the real data x and Nz is the dimension

of our noise input z. G takes a random noise vector zG as

input and produces an image G(zG; θG) using parameters

θG. The discriminator is an auto-encoder; the encoder part

Enc produces a latent code zD. Finally, let L(v) = |v −
D(v)|2 for v ∈ RNx compute a reconstruction loss.

In the original BEGAN-CS, there are three loss func-

tions: LG for the generator, LD for the discriminator, and

also a constraint loss LC :

LD = L(x; θD)− kt · L(G(zG; θG); θD) + α · LC

LG = L(G(zG; θG); θD)

LC = ‖zD − Enc(G(zD))‖

kt+1 = kt + λ(γL(x; θD)− L(G(zG; θG); θD))

Here, x is a real image, and G(zG; θG) is a generated (fake)

image. The term kt helps to stabilize the training process

by maintaining a balance between the reconstruction loss of

real and generated data. BEGAN-CS introduces the con-

straint loss LC , which enforces that the internal state of the

encoder for generated data, Enc(G(z)), resembles the in-

put noise into the generator. γ and α are hyperparameters.

4.2. Conditional Image Generation

To enable conditional training on labels, we introduce an

auxiliary predictor for labels into the BEGAN-CS discrimi-

nator network. This auxiliary network is a simple fully con-

nected network that takes the internal state of the encoder

as input and outputs predictions of labels. Additionally, in

the generator, we concatenate the label information with the

input noise.

To accommodate this new predictor, the loss functions

for the generator and discriminator have a new loss added.

Since the labels for our dataset were continuous values, we

chose to use mean squared error (MSE) to measure the er-

ror of our predictor. Given input ground-truth labels y and

predicted labels ŷ, the loss functions are then updated with

an MSE loss term LMSE .

LD = L(x; θD)− kt · L(G(zG|y; θG); θD) +

α · LC + LMSE(y; ŷ)

LG = L(G(zG|y; θG); θD) + LMSE(y; ŷ)

Figures 2 and 3 – in particular the label vector y and aux-

iliary predictor network – illustrate our proposed enhance-

ment to BEGAN-CS. The generator concatenates a vector

of random noise z and labels y as input to generate an im-

age. The discriminator takes either a generated image xfake

or real image xreal as input, encodes the image into a vector

ẑ, and produces a reconstructed image D(x) and a predicted

label ŷ.

In the discriminator’s loss function, we only use the MSE

on label predictions over real images to allow the auxiliary



Figure 2. Overview of the final generator network.

Figure 3. Overview of the final discriminator network. Note that

only one of the inputs xreal and xfake are passed through the

network at a time.

network to learn to more accurately predict labels from the

internal state of the auto-encoder. The generator’s loss func-

tion is amended to include the MSE on labels predicted by

the auxiliary network on the generated images. Intuitively,

our discriminator’s training objectives are 1) minimize re-

construction error for real images, 2) maximize reconstruc-

tion error for fake images, 3) minimize difference between

generator input z and the encoding ẑ of the generated im-

age, and 4) minimize the difference between the real label y

and predicted label ŷ for real images. This setup encourages

the generator to produce images that reflect the input labels

in a similar fashion to traditional conditional GANs [17];

even if the generator is producing extremely realistic faces,

the discriminator will learn to penalize fake images because

the predicted labels will not match the ground truth.

Although it was not used for our final experiments, we

also explored an alternate model design for the discrimina-

tor without the auxiliary network to predict labels. Instead,

this alternate design used an encoder that produced a latent

vector of size |z| + |y|. This vector was then split into two

vectors (to act as ẑ and ŷ) to calculate LMSE and LC . Intu-

itively this design aimed to train the discriminator to encode

generated images directly into the input noise and label used

to generate the images, which we supposed would in turn

help train the generator to create images that more closely

reflected the desired features. However, empirical results of

image generation on the alternative design were generally

lower quality than those produced by our final model.

4.3. Model Hyper­parameters

We trained our final GAN model on approximately

18000 images from the GENKI1M dataset [25] (each im-

age was 64 x 64 grayscale) with 10-dimensional low-level

attribute vectors y that were estimated using the Emo-

tient SDK facial expression recognition software [13]: yaw,

pitch, roll, the intensity of 5 facial action units (AU 4, 5, 6,

7, 12, and 23), and gender (probability of male face). As

a preprocessing step, these real-valued labels were normal-

ized to values between 0 and 1.

Input into the generator network was a 64 dimensional

noise vector, sampled uniformly between -1 and 1. Con-

catenating this with input labels, the input was passed

through convolutional layers and upsampled to form the 64

x 64 image outputs. The Adam optimizer was used to train

the discriminator, with a learning rate of 0.0001.

In the discriminator network, we used convolutional lay-

ers in the encoder to encode the input 64 x 64 image into

a 64 dimensional vector. The decoder portion of the dis-

criminator had an identical shape to the generator network

(other than inputting labels). The auxiliary predictor was a

2 layer fully connected network, taking the image encoding

as input and producing label predictions. We set the values

of α and γ to 0.5 and 0.1, respectively, and we once again

used the Adam optimizer with a learning rate of 0.0001 for

the training process.

4.4. Generated Image Examples

Figure 4 shows a comparison of images from the

GENKI-4K dataset (in the top row), followed by images

generated by our GAN using the AU, gender, and pose la-

bels, and a rendering of the 3-D face model generated by

Extreme3D. The joy and gender features appear to be re-

flected fairly well in our examples of GAN images, but pose

information is not captured well by the GAN.

Figure 4. Examples comparing real images to images generated by

the GAN and Extreme3D.



5. Experiment

We conducted experiments on Amazon Mechanical Turk

to compare the labeling accuracy of surrogate images gen-

erated by our GAN and the Extreme3D face model, as well

as the raw images. We analyzed how labeling accuracy in-

creased with the number of assigned labelers (where major-

ity vote was used to aggregate votes for each image), as well

as the degree of uncertainty in labeling each image (what

fraction of the labelers agreed on each image) using each

approach. Finally, we examine failure modes of the GAN

and Extreme3D models.

As the target labeling tasks, we chose the emotional

states of “joy” and “anger”. Though often regarded as prim-

itive states, their expression in human faces actually con-

sist of a constellation of multiple facial muscles (AUs). We

chose this labeling task because it is simple for labelers to

understand and still enables us to assess our approach to

privacy-preserving large-scale annotation.

5.1. Data

Images for the experiment were selected from the

GENKI-4K [26] dataset, which contains many positive and

negative joy emotions as well as some images that contain

negative emotions (e.g., anger). We used the Emotient SDK

facial analysis software [13] to estimate the degree of “joy”

and “anger” in each image. With the goal of sampling im-

ages with a variety of hard-to-label and easy-to-label im-

ages, we selected images according to Emotient’s estimate

of the log-likelihood ratio (joy versus not joy, anger verus

not anger) of each emotion. Joy: We binned the images with

a bin width of 0.5 (where the majority of evidence scores

lied between -3 and 3). From each bin, we sampled 5 im-

ages (for a total of 60 images). Anger: Since relatively few

GENKI-4K images contained high levels of “anger”, we

randomly sampled 30 images for which the log-likelihood

ratio of anger was negative and 30 images for which it was

positive.

For each of the 60 selected images for each emotion la-

beling task, we generated two surrogate images using the

alternative approaches. For the 3-D face version, we gen-

erated and rendered 3-D meshes from the raw images using

the Extreme3D system. For our GAN-generated versions,

we collected low-level feature labels from Emotient for our

60 selected images. These features were passed into the

GAN to generate new faces conditioned on the feature la-

bels from the raw image set.

5.2. Experiment Setup

Two experiments (each with N = 60 participants) were

conducted on Mechanical Turk: one for “joy” labeling, and

one for “anger” labeling. All workers were shown a com-

plete set of images – the raw, 3-D face, and GAN-generated

versions, for a total of 180 images – for their task. Labeling

all images took roughly 10 minutes, and workers were paid

$1 for completing the task.

5.3. Evaluation

For each image and each task, we took the majority label

of the raw images over all 60 labelers as the ground-truth

label. We then compared the three image versions (raw,

GAN, or Extreme3D (E3D)) for labeling accuracy. For sta-

tistical significance testing, we used 1-sample t-tests on the

difference in number of labelers who labeled each image

correctly between each pair of image types (raw-GAN, raw-

E3D, and GAN-E3D).

6. Experimental Results

6.1. Average accuracy of individual labelers

In Table 1, the left-most column shows the average la-

beling accuracy over individual labelers compared to the

ground-truth for each image version and each task.

Accuracy of surrogate images: The results confirm that

labels of the surrogate images are highly predictive of the

labels that are assigned to the raw images, which provides

a basic validation of the proposed labeling pipeline (Figure

1). Moreover, the extension to the BEGAN-CS that are pro-

posed (Section 4.2), whereby images can be conditioned in

low-level attributes estimated from off-the-shelf automated

facial expression recognition software, were just as good as

for a state-of-the-art 3-D face model (Extreme3D). The ac-

curacy difference between the two surrogate image methods

(GAN, Extreme3D) was not stat. sig. (t = 0.48, p = 0.64
for joy, t = 1.51, p = 0.14 for anger).

Labeling surrogate versus raw images: While the sur-

rogate labeling approach shows some promise, the accuracy

was still lower than when labeling the raw images: For joy,

the accuracy loss is about 10% both for the GAN images

the Extreme3D images; both differences were stat. sig. (t =
4.37, p < 0.001 and t = 5.50, p < 0.001, respectively).

However, for anger, the drop in labeling accuracy, compared

to labeling the raw images, of either the GAN or Extreme3D

surrogates was less severe. In fact, the difference between

raw images and GAN was less than 5% and the difference

was not stat. sig. (t = 1.31, p = 0.20).

6.2. Accuracy for images with ≥ X% consensus

In Table 1, the vote (X%) columns show the labeling ac-

curacy on those images for which at least X% of the labelers

agreed on the label. Not surprisingly, by restricting our la-

beling process to those images with high agreement, we can

ensure higher accuracy of the labels. (Note that, since the

majority vote of each raw image was taken as the ground-

truth, the accuracies for these columns would be 100% by

definition and are not displayed.)



Type Avg Vote (50%) Vote (75%) Vote (90%)

Accuracy: Joy Labeling Task

RAW 89.0 - - -

GAN 71.2 76.7 82.2 84.4

E3D 73.5 81.7 83.7 90.0

Accuracy: Anger Labeling Task

RAW 79.9 - - -

GAN 75.5 76.7 88.4 96.9

E3D 71.6 75.0 78.7 96.5
Table 1. Accuracy of worker labels provided for each type of im-

age: raw images (RAW), generated by GAN (GAN), and rendered

by Extreme3D (E3D). Vote (%) gives majority vote accuracy for

images where over X% of workers gave the same label.

When we take the majority vote (≥ 50%), both the GAN

and Extreme3D versions show improvement in accuracy.

Moreover, if we require even higher consensus (75%, 90%),

the accuracy for anger labeling approaches 100%. For joy,

however, the accuracy is still substantially below 100%.

Naturally, only a subset of all images have such a high de-

gree of consensus

6.3. Label ambiguity of surrogate images

Figure 5 shows a histogram (over the 60 images for each

image version and each labeling task) of the fraction of la-

belers who agreed with each other (0.5 to 1.0) when la-

beling each image. For joy, the raw images show a much

higher degree of consensus (greater mass around 1.0), sug-

gesting that the surrogate images (for both GAN and Ex-

treme3D) are often hard to discern (ambiguous) in terms of

“joy”. However, for anger, the GAN surrogate images be-

have much better, with label consensus at least as high as

for raw images.

6.4. Majority vote over n labelers

Figure 6 shows the labeling accuracy when computing

the majority vote across a subset of n labelers for each im-

age, when n is varied from 3 to 60. Each point in each

line plot is computed by sampling n labels from our dataset

of 60 total labelers. The results suggest that accuracy of

the surrogate images can be increased by around 5-10% by

sampling labels for each image from about 10-15 labelers,

but larger n make little difference. (Note that the curve

for the raw images approaches 1.0 by definition of how we

computed ground-truth.)

6.5. Accuracy vs Emotion Intensity

We computed the labeling accuracy, for each image ver-

sion, as a function of the intensity of each emotion, as es-

timated using the output of the Emotient SDK software.

Though we used only low-level features (AUs, head pose,

etc.) when training the GAN and generating the surro-

gate images, Emotient can also estimate the intensity “joy”

0.5 0.6 0.7 0.8 0.9 1.0
Agreement of Image Labels

0

5

10

15

20

Nu
m

be
r o

f I
m

ag
es

Number of Images vs Worker Label Agreement: Joy
raw
gan
e3d

0.5 0.6 0.7 0.8 0.9 1.0
Agreement of Image Labels

0

5

10

15

20

Nu
m

be
r o

f I
m

ag
es

Number of Images vs Worker Label Agreement: Anger
raw
gan
e3d

Figure 5. Agreement of image labels (as the proportion of workers

who gave the same label) compared to the number of images with

that level of label agreement.

and “anger” directly. Though Emotient technically outputs

an “evidence” aka log-likelihood ratio rather than intensity,

prior work [27] has shown that these are often highly cor-

related. We then investigated whether the more ambiguous

images (i.e., evidence around 0) are more difficult to anno-

tate correctly.

Figure 7 and 8 plot the average annotation accuracy per-

image, grouping and averaging image accuracy together

based on the joy and anger evidence (as reported by Emo-

tient) of each image. Note that for the raw images, accuracy

will always be over 50% since we define the ground-truth

based on the majority label given to the raw images. In gen-

eral, we can see that the GAN images tend to have larger

differences in accuracy when the evidence is near 0. While

the Extreme3D images also somewhat show a similar pat-

tern of poor performance near 0 emotion evidence, it does

not appear to show improvements in accuracy for higher ev-

idences as clearly as the GAN images do (e.g. Extreme3D

accuracy for positive anger evidence in Figure 8 is decreas-

ing).
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two labeling tasks when sampling a subset of workers.
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Figure 7. Average worker accuracy for sets of images binned by

their joy evidence.

One possible explanation for these results is that the low-

level state estimates (AUs, head pose, etc.) themselves are

noisy, and this will necessarily degrade performance in the

downstream generation of surrogate images. Another is that
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Figure 8. Average worker accuracy for sets of images binned by

their anger evidence.

the raw images themselves become harder to label as the

intensity of the emotion (anger versus not anger, joy versus

not joy) is lower in magnitude.

Accuracy on unambiguous images: When we compute

the average accuracy of individual labelers on ambiguous

images, which we define as those for which the absolute

value of Emotient’s estimate of “joy” or “anger” evidence

is at least 1.0, we obtain slightly better results for all three

image versions: For joy, the raw images give an accuracy of

92.1%, the GAN images 78.8%, and the Extreme3D images

78.4% – these numbers are higher than the corresponding

numbers in the first column of Table 1, but the gap actually

widened. However, for anger, the gap narrows: the accuracy

for raw images is 86.8%, for GAN images it is 85%, and for

Extreme3D images it is 81.%.

6.6. Surrogate Images with Poor Accuracy

Figure 9 shows 10 pairs of images (raw and GAN ver-

sions) that had the lowest labeling accuracy for the GAN

versions on the joy labeling task. Labeling accuracy of

these GAN images ranged from 33% to 0%. There are sev-

eral aspects of the raw images shown here that may have

contributed to either collecting inaccurate low-level feature

labels (which were used to generate the GAN images) or

change how workers perceived the emotion displayed by

the face. Possible factors include faces with mustaches,

large head pose, poor lighting, and mouths that are open.

We also see an example of an image generated by our GAN

that is extremely blurry, which was found to occur in some

instances.

A similar set of 10 pairs of images that had the worst la-

beling accuracy for Extreme3D versions of images is shown

in Figure 10, with accuracy ranging from 43% to 3%. Here

we can once again see some instances of images with mus-

taches, which seem to make the 3-D face renderings become

quite bumpy around the mouth. We can also see some ar-



Figure 9. Joy task images with low label accuracy by workers on

the GAN versions of the images.

tifacts like strands of hair interfering with the face. The

openness of the mouth in some of the 3-D faces appears to

not match the raw images, which also likely contributed to

more incorrect labels.

Figure 10. Joy task images with low label accuracy by workers on

the Extreme3D versions of the images.

Similar patterns were observed in our anger labeling

task for the generated images with poor labeling accuracy.

Across the images we tested, we generally see a pattern

where images that display less intense joy evidence tended

to be harder to label using surrogate images. Comparing

the GAN to Extreme3D versions, we see that Extreme3D

captures head pose much better.

7. Conclusion

In this paper we explored the viability of using synthe-

sized face images to collect annotations while preserving

privacy. In contrast to most face de-identification methods

that offer k-anonymity guarantees, our method retains 0 in-

formation about the original images, except the low-level

attributes (facial action units, gender, pose) themselves. In

our experiments to crowdsource expression labels, we see

promising results especially for faces that display the ex-

pression strongly. On a “joy” labeling task, synthetic im-

ages generated by our GAN and Extreme3D an average

labeling accuracy of 71.2% and 73.5%, increasing up to

84.4% and 90.0% when only considering images with high

label consensus, compared to the 89.0% accuracy of work-

ers on the raw images. The results are even closer for the

“anger” labeling task, with labeling accuracy on raw im-

ages of 79.9% while GAN and Extreme3D images achieve

75.5% and 71.6%, increasing to 96.9% and 96.5% for high

label consensus images.

For the development of our GAN model, we successfully

demonstrate a method to introduce conditional image gen-

eration into the BEGAN-CS architecture. The addition of

our auxiliary prediction network shows to successfully mo-

tivate the generator to produce images that align with the

desired features used as input, allowing it to generate face

images that reflect features from raw images. Furthermore,

as the generated images are only exposed to low-level fea-

ture information about the raw images, privacy is ensured

when using the surrogate images.

Between the GAN and 3-D model (e.g., Extreme3D) ap-

proach, we tentatively conclude that the GANs hold more

promise: Compared to using Extreme3D, our GAN shows

approximately equal performance for our surrogate image

labeling approach. Additionally, our GAN is easier to train;

compared to the roughly 16,000 images used in our training,

Extreme3D uses multiple deep-learning models trained on

image sets as large as 2.6 million images [6]. With GANs

trained on larger datasets, the veracity of the resulting sur-

rogate images could easily increase.
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