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Abstract

Adversarial attacks on machine learning models have

seen increasing interest in the past years. By making only

subtle changes to the input of a convolutional neural net-

work, the output of the network can be swayed to output

a completely different result. The first attacks did this by

changing pixel values of an input image slightly to fool a

classifier to output the wrong class. Other approaches have

tried to learn “patches” that can be applied to an object

to fool detectors and classifiers. Some of these approaches

have also shown that these attacks are feasible in the real-

world, i.e. by modifying an object and filming it with a video

camera. However, all of these approaches target classes

that contain almost no intra-class variety (e.g. stop signs).

The known structure of the object is then used to generate

an adversarial patch on top of it.

In this paper, we present an approach to generate ad-

versarial patches to targets with lots of intra-class variety,

namely persons. The goal is to generate a patch that is

able successfully hide a person from a person detector. An

attack that could for instance be used maliciously to cir-

cumvent surveillance systems, intruders can sneak around

undetected by holding a small cardboard plate in front of

their body aimed towards the surveilance camera.

From our results we can see that our system is able sig-

nificantly lower the accuracy of a person detector. Our ap-

proach also functions well in real-life scenarios where the

patch is filmed by a camera. To the best of our knowledge

we are the first to attempt this kind of attack on targets with

a high level of intra-class variety like persons.

Figure 1: We create an adversarial patch that is successfully

able to hide persons from a person detector. Left: The per-

son without a patch is successfully detected. Right: The

person holding the patch is ignored.

1. Introduction

The rise of Convolutional Neural Networks (CNNs) has

seen huge successes in the field of computer vision. The

data-driven end-to-end pipeline in which CNNs learn on

images has proven to get the best results in a wide range

of computer vision tasks. Due to the depth of these archi-

tectures, neural networks are able to learn very basic fil-

ters at the bottom of the network (where the data comes

in) to very abstract high level features at the top. To do

this, a typical CNN contains millions of learned parame-

ters. While this approach results in very accurate models,

the interpretability decreases dramatically. Understanding

exactly why a network classifies an image of a person as a



person is very hard. The network has learned what a person

looks likes by looking at many pictures of other persons. By

evaluating the model we can determine how well the model

work for person detection by comparing it to human anno-

tated images. Evaluating the model in such a way however

only tells us how well a detector performs on a certain test

set. This test set does not typically contain examples that

are designed to steer the model in the wrong way, nor does

it contains examples that are especially targeted to fool the

model. This is fine for applications where attacks are un-

likely such as for instance fall detection for elderly people,

but can pose a real issue in for instance security systems.

A vulnerability in the person detection model of a security

system might be used to circumvent a surveillance camera

that is used for break in prevention in a building.

In this paper we highlight the risks of such an attack

on person detection systems. We create a small (around

40cm×40cm) “adverserial patch” that is used as a cloaking

device to hide people from object detectors. A demonstra-

tion of this is shown in Figure 1.

The rest of this paper is structured as follows: Section 2

goes over the related work on adversarial attacks. Sec-

tion 3 discusses how we generate these patches. In Sec-

tion 4 we evaluate our patch both quantitatively on the Inria

dataset, and qualitatively on real-life video footage taken

while holding a patch. We reach a conclusion in Section 5.

Source code is available at: https://gitlab.com/

EAVISE/adversarial-yolo

2. Related work

With the rise in popularity of CNNs, adversarial attacks

on CNNs have seen an increase in popularity in the past

years. In this section we go over the history of these kind

of attacks. We first talk about digital attacks on classifiers,

then talk about real-world attacks both for face recognition

and object detection. Then we briefly discuss the object de-

tector, YOLOv2 that in this work is the target of our attacks.

Adversarial attacks on classification tasks Back in

2014 Bigio et at. [2] showed the existence of adversarial

attacks. After that, Szegedy et al. [19] succeeded in gener-

ating adversarial attacks for classification models. They use

a method that is able to fool the network to miss-classify

an image, while only changing the pixel values of the im-

age slightly so that the change is not visible to the human

eye. Following that, Goodfellow et al. [9] create a faster

gradient sign method that made it more practical (faster) to

generate adversarial attacks on images. Instead of finding

the most optimal image as in [19], they find a single image

in a larger set of images that is able to do an attack on the

network. In [14], Moosavi-Dezfooli et al. present an algo-

rithm that is able generate an attack by changing the image

less and is also faster than the previous. They use hyper-

planes to model the border between different output classes

to the input image. Carlini et al. [4] present another adver-

sarial attack, again, using optimisation methods, they im-

prove in both accuracy and difference in images (using dif-

ferent norms) compared to the already mentioned attacks.

In [3] Brown et al. create a method that, instead of changing

pixel values, generates patches that can be digitally placed

on the image to fool a classifier. Instead of using one im-

age, they use a variety of images to build in intra-class ro-

bustness. In [8] Evtimov et al. present a real-world attack

for classification. They target the task of stop sign classi-

fication which proves to be challenging due to the differ-

ent poses in which stop signs can occur. They generate a

sticker than can be applied to a stop sign to make it unrec-

ognizable. Athalye et al. [1] present an approach in which

the texture of a 3D model is optimized. Images of different

poses are shown to the optimizer to build in robustness to

different poses and lighting changes. The resulting object

was then printed using a 3D printer. The work of Moosavi-

Dezfooli [13] presents an approach to generate a single uni-

versal image that can be used as an adverserial perturbation

on different images. The universal adversarial image is also

shown to be robust to different detectors.

Real-world adversarial attack for face recognition An

example of real-world adversarial attack is presented

in [17]. Sharif et al. demonstrate the use of printed eye-

glasses that can be used to fool facial recognition systems.

To guarantee robustness the glasses need to work on a wide

variety of different poses. To do this, they optimize the print

on the glasses in such a way that they work on a large set

of images instead of just a single image. They also include

a Non Printability Score (NPS) which makes sure that the

colors used in the image can be represented by a printer.

Real-world adversarial attacks for object detection

Chen et al. [5] present a real-world attack for object de-

tection. They target the detection of stop signs in the Faster

R-CNN detector [16]. Like [1], they use the concept of Ex-

pectation over Transformation (EOT) (doing various trans-

formation on the image) to build in robustness against dif-

ferent poses. The most recent work we found to fool object

detectors in the real-world is the work of Eykholt et al [18].

In it, they again target stop signs and use the YOLOv2 [15]

detector to do a white box attack, where they fill in a pattern

in the entire red area of the stop sign. They also evaluate on

Faster-RCNN where they found that their attack also trans-

fers to other detectors.

Compared to this work all attacks against object detec-

tors focus on objects with fixed visual patterns like traffic

signs and do not take into account intra-class variety. To

the best of our knowledge no previous work has proposed



Figure 2: Overview of the YOLOv2 architecture. The

detector outputs an objectness score (how likely it is that

this detection contains an object), shown in the middle top

figure, and a class score (which class is in the bounding

box), shown in the middle bottom figure. Image source:

https://github.com/pjreddie/darknet/

wiki/YOLO:-Real-Time-Object-Detection

a detection method that worked on a diverse class such as

persons.

Object detection In this paper we target the popular

YOLOv2 [15] object detector. YOLO fits in a bigger

class of single shot object detectors (together with detec-

tors like SSD [12]) where the bounding box, object score

and class score is directly predicted by doing a single pass

over the network. YOLOv2 is fully convolutional, an in-

put image is passed to the network in which the vari-

ous layers reduce it to an output grid with a resolution

that is 32 times smaller than the original input resolu-

tion. Each cell in this output grid contains five predictions

(called “anchor points”) with bounding boxes containing

different aspect ratios. Each anchor point contains a vec-

tor [xoffset, yoffset, w, h, pobj, pcls1, pcls2, ..., pclsn]. xoffset and

yoffset is the position of the center of the bounding box com-

pared to the current anchor point, w and h are the width

and height of the bounding box, pobj is the probability that

this anchor point contains an object, and pcls1 through pclsn

is the class score of the object learned using cross entropy

loss. Figure 2 shows an overview of this architecture.

3. Generating adversarial patches against per-

son detectors

The goal of this work is create a system that is able to

generate printable adversarial patches that can be used to

fool person detectors. As discussed earlier, Chen et al. [5]

and Eykholt et al. [18] already showed that adversarial at-

tacks on object detectors in the real-world are possible. In

their work they target stop signs, in this work we focus on

persons which, unlike the uniform appearance of stop signs

can vary a lot more. Using an optimisation process (on the

image pixels) we try to find a patch that, on a large dataset,

effectively lowers the accuracy of person detection.In this

section, we explain our process of generating these adver-

sarial patches in depth.

Our optimisation goal consists of three parts:

• Lnps The non-printability score [17], a factor that rep-

resents how well the colours in our patch can be repre-

sented by a common printer. Given by:

Lnps =
∑

ppatch∈p

min
cprint∈C

|ppatch − cprint|

Where ppatch is a pixel in of our patch P and cprint is a

colour in a set of printable colours C. This loss favours

colors in our image that lie closely to colours in our set

of printable colours.

• Ltv The total variation in the image as described

in [17]. This loss makes sure that our optimiser favours

an image with smooth colour transitions and prevents

noisy images. We can calculate Ltv from a patch P as

follows:

Ltv =
∑

i,j

√

((pi,j − pi+1,j)2 + (pi,j − pi,j+1)2

The score is low if neighbouring pixels are similar, and

high if neighbouring pixel are different.

• Lobj The maximum objectness score in the image. The

goal of our patch is to hide persons in the image. To do

this, the goal of our training is to minimize the object

or class score outputted by the detector. This score will

be discussed in depth later in this section.

Out of these three parts follows our total loss function:

L = αLnps + βLtv + Lobj

We take the sum of the three losses scaled by factors α and

β which are determined empirically, and optimise using the

Adam [10] algorithm.

The goal of our optimizer is to minimise the total loss

L. During the optimisation process we freeze all weights in

the network, and change only the values in the patch. The

patch is initialised on random values at the beginning of the

process.

Figure 3 gives an overview of how the object loss is cal-

culated. The same procedure is followed to calculate the

class probability. In the remaining parts of this section we

will explain how this is done in depth.
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Figure 3: Overview of the pipeline to get the object loss.

(a) The resulting learned patch

with an optimisation process

that minimises classification

and objectness score.

(b) Another patch generated by

minimising classification and

detection score with slightly

different parameters.

(c) Patch generated by minimis-

ing the objectness score.

(d) Minimising classification

score only.

Figure 4: Examples of patches using different approaches.

3.1. Minimizing probability in the output of the de
tector

As was explained in Section 2, the YOLOv2 object de-

tector outputs a grid of cells each containing a series of an-

chor points (five by default). Each anchor point contains the

position of the bounding box, an object probability and a

class score. To get the detector to ignore persons we exper-

iment with three different approaches: We can either min-

imize the classification probability of class person (exam-

ple patch in Figure 4d, minimize the objectness score (Fig-

ure 4c), or a combination of both (Figures 4b and 4a). We

tried out all approaches. Minimizing the class score has a

tendency to switch the class person over to a different class.

In our experiments with the YOLO detector trained on the

MS COCO dataset [11], we found that the generated patch

is detected as another class in the COCO dataset. Figure 4a

and 4b is an example of taking the procuct of class and ob-

ject probability, in the case of Figure 4a, the learned patch

ended up resembling a teddy bear, which it visually also re-

sembles. The class “’teddy bear’ seemed to overpower the

class “person”. Because the patch starts to resemble another

class however, the patch is less transferable to other models

trained on datasets which do not contain the class.

The other approach we propose of minimising the ob-

jectness score does not have this issue. Although we only

put it on top of people during the optimisation process, the

resulting patch is less specific for a certain class than the

other approach. Figure 4c shows an example of such a

patch.

3.2. Preparing training data

Compared to previous work done on stop signs [5, 18],

creating adversarial patches for the class persons is much

more challenging:

• The appearance of people varies much more: clothes,

skin color, sizes, poses... Compared to stop signs

which always have the same octagonal shape, and are

usually red.

• People can appear in many different contexts. Stop

signs mostly appear in the same context at the side of

a street.

• The appearance of a person will be different depend-



ing on whether a person is facing away or towards the

camera.

• There is no consistent spot on a person where we can

put our patch. On a stop sign it’s easy to calculate the

exact position of a patch.

In this section we will explain how we deal with these

challenges. Firstly, instead of artificially modifying a single

image of the target object and doing different transforma-

tions as was done in [5, 18], we use real images of different

people. Our workflow is as follows: We first run the tar-

get person detector over our dataset of images. This yields

bounding boxes that show where people occur in the im-

age according to the detector. On a fixed position relative

to these bounding boxes, we then apply the current version

of our patch to the image under different transformations

(which are explained in Section 3.3). The resulting image

is then fed (in a batch together with other images) into the

detector. We measure the score of the persons that are still

detected, which we use to calculate a loss function. Using

back propagation over the entire network, the optimiser then

changes the pixels in the patch further in order to fool the

detector even more.

An interesting side effect of this approach is that we are

not limited to annotated datasets. Any video or image col-

lection can be fed into the target detector to generate bound-

ing boxes. This allows our system to also do more targeted

attacks. When we have data available from the environment

we are targeting we can simply use that footage to gener-

ate a patch specific to that scene. Which will presumably

preform better than a generic dataset.

In our tests we use the images of the Inria [6] dataset.

These images are targeted more towards full body pedestri-

ans which are better suited for our surveillance camera ap-

plication. We acknowledge that more challenging datasets

like MS COCO [11] and Pascal VOC [7] are available, but

they contain too much variety in which people occur (a hand

is for instance annotated as person), making it hard to put

our patch in a consistent position.

3.3. Making patches more robust

In this paper we target patches that have to be used in the

real-world. This means that they are first printed out, and

then filmed by a video camera. A lot of factors influence

the appearance of the patch when you do this: The lighting

can change, the patch may be rotated slightly, the size of the

patch with respect to the person can change, the camera may

add noise or blur the patch slightly, viewing angles might be

different. . . To take this into account as much as possible,

we do some transformations on the patch before applying it

to the image. We do the following random transformations:

• The patch is rotated up to 20 degrees each way.
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Figure 5: PR-curve of our different approaches (OBJ-CLS,

OBJ and CLS), compared to a random patch (NOISE) and

the original images (CLEAN).

• The patch is scaled up and down randomly

• Random noise is put on top of the patch.

• The brightness and contrast of the patch is changed

randomly

Through this entire process it is important to note that it

has to remain possible to calculate a backwards gradient on

all operations all the way towards the patch.

4. Results

In this section we evaluate the effectiveness of our

patches. We evaluate our patches by applying them to the

Inria test set using the same process we used during train-

ing, including random transformations. In our experiments

we tried to minimise a few different parameters that have the

potential to hide persons. As a control, we also compare our

results to a patch containing random noise that was evalu-

ated in the exact same way as our random patches. Figure 5

shows the result of our different patches. The objective in

OBJ-CLS was to minimise the product of the object score

and the class score, in OBJ only the object score, and in

CLS only the class score. NOISE is our control patch of

random noise, and CLEAN is the baseline with no patch ap-

plied. (Because the bounding boxes where generated by

running the same detector over the dataset we get a perfect

result.) From this PR-curve we can clearly see the impact a

generated patch (OBJ-CLS, OBJ and CLS) has compared

to a random patch which acts as a control. We can also see

that minimising the object score (OBJ) has the biggest im-

pact (lowest Average Precision (AP)) compared to using the

class score.

A typical way to determine a good working point on a

PR-curve to use for detecton is to draw a diagonal line on



Figure 6: Examples of our output on the Inria testset.

Approach Recall (%)

CLEAN 100

NOISE 87.14

OBJ-CLS 39.31

OBJ 26.46

CLS 77.58

Table 1: Comparison of different approaches in recall. How

well do different approaches circumvent alarms?

the PR-curve (dashed line in Figure 5), and look where it

intersects with the PR-curve. If we do this for the CLEAN

PR-curve, we can use the resulting threshold at that work-

ing point (0.4 in our case) as a reference to see how much

our approach would lower the recall of the detector. In other

words we ask the question: How many of the alarms gen-

erated by a surveillance system are circumvented by using

our patches? Table 1 shows the result of this analysis us-

ing abbreviations from Figure 5. From this we can clearly

see that using our patch (OBJ-CLS, OBJ and CLS) signifi-

cantly lowers the amount of generated alarms.

Figure 6 shows examples of the patch applied to some

images in the Inria test set. We apply the YOLOv2 detec-

tor first on images without a patch (row 1), with a random

patch (row 2) and with our best generated patch which is

OBJ (row 3). In most cases our patch is able to success-

fully hide the person from the detector. Where this is not

the case, the patch is not aligned to the center of the person.

Which can be explained by the fact that, during optimisa-

tion, the patch is also only positioned in the center of the

person determined by the bounding box.

In Figure 7 we test how well a printed version of our

patch works in the real world. In general the patch seems

to work quite well. Due to the fact that the patch is trained

on a fixed position relative to the bounding box holding the

patch on the correct position seems to be quite important.

A demo video can be found at: https://youtu.be/

MIbFvK2S9g8.

5. Conclusion

In this paper, we presented a system to generate adversar-

ial patches for person detectors that can be printed out and

used in the real-world. We did this by optimising an image

to minimise different probabilities related to the appearance

of a person in the output of the detector. In our experiments

we compared different approaches and found that minimis-

ing object loss created the most effective patches.

From our real-world test with printed out patches we can

also see that our patches work quite well in hiding persons

from object detectors, suggesting that security systems us-

ing similar detectors might be vulnerable to this kind of at-

tack.

We believe that, if we combine this technique with a

sophisticated clothing simulation, we can design a T-shirt

print that can make a person virtually invisible for automatic

surveillance cameras (using the YOLO detector).

6. Future work

In the future we would like to extend this work by mak-

ing it more robust. One way to do this is by doing more

(affine) transformation on the input data or using simulated

data (i.e. apply the patch as a texture on a 3D-model of

a person). Another area where more work can be done is

transferability. Our current patches do not transfer well to



Figure 7: Real-world footage using a printed version of our patch.

completely different architectures like Faster R-CNN [16],

optimising for different architectures at the same time might

improve upon this.
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