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Abstract

An essential component of an automated digital mi-
croscopy system is auto focusing, which involves moving the
microscope stage along the vertical axis to find the position
where the underlying image is the sharpest. Auto focus-
ing algorithms deployed in current commercially available
digital microscopes often cannot match the efficiency of a
trained human operator. Traditionally, auto focusing has
been achieved by acquiring multiple images in the vertical
direction and maximising a measure of image sharpness.
This paper presents a method for auto focusing based on
deep convolutional neural networks (CNN). Given two im-
ages in the vertical focus stack, the CNN predicts the opti-
mal distance the stage needs to be moved to achieve best fo-
cus, relative to the current position. The method was trained
and results are demonstrated on a publicly available data
set. It is shown to outperform previously published work
on this data set. The compute and memory requirements of
the model are shown to be ideal for deployment in an edge
device with limited computing resources.

1. Introduction

Manual microscopic review of biological samples re-
mains the gold standard for diagnosis of diseases in sev-
eral types of sample. This includes analysis of tissues
(histopathology), blood (haematology), study of micro or-
ganisms (microbiology), and many more. Automated digi-
tal microscopes, also known as whole slide scanner (WSI)
systems, aim to partially automate this process [1]. They
scan and digitise the physical sample to create what is com-
monly known as a “virtual slide”. This virtual slide can
then be viewed on a computer screen and analysed remotely.
Multiple medical experts can collaboratively analyse them.
They can be preserved well beyond the shelf life of the
physical sample. The virtual slide images can be further
screened or analysed by artificial intelligence (AI) based

systems, such as [5, 13], to detect various abnormalities.
Recently, a WSI system has also been approved for primary
diagnostic use by the US FDA [1].

An essential component of any automated microscope is
the auto focus system, which brings the sample at the opti-
mal position in the vertical axis for it to be imaged without
defocus artefacts. Auto focusing for digital microscopy has
been an active area of research for more than 4 decades [3].
However, in spite of advances in image capture speed and
digital compute speed, automated microscopes still cannot
match the performance of a skilled human operator while
focusing on a given field of view, or keeping the sample in
focus during observation [20, 9]. Consequently, digital slide
scanning is time consuming. Though it is gaining popularity
in the field of histopathology, digital slide scanning is yet to
find its use for high volume laboratory tests such as periph-
eral blood smear analysis or urine microscopy. Thus, an in-
telligent and efficient automated microscopy system which
can match or exceed human efficiency can greatly further
the cause of digital pathology. It can enable telepathology,
which till now is yet to see widespread adoption. It will also
help enable rapid data creation for developing downstream
Al based analysis of microscopy images.

This paper presents a novel approach for auto focusing
a digital microscope, which utilises the recent advances in
convolutional neural networks [10]. It can be implemented
on any standard digital microscope with automated 3-axis
control of the microscope stage. The method was trained
on and results demonstrated using an open data set [9]. It
is shown to achieve superior accuracy of focus distance es-
timation compared to the existing results [9] on the same
data set across multiple types of staining protocols. It is also
shown to be less sensitive to sample type and stain quality
variation. Further, the method is shown to achieve superior
performance with incoherent white light images, and does
not require coherent or narrow band illumination. Thus, it
can be potentially implemented on cost effective digital mi-
croscopes.

The paper is organised as follows: Section 2 analyses



related work in the field of digital microscopy. Section 3
presents the details of the proposed method. Experimental
results are presented in Section 4. Finally, Section 5 con-
cludes the paper.

2. Related work

A typical WSI system uses a 20X objective lens
(0.75NA) to capture images of the sample [!]. These im-
ages are aligned as tiles and stitched to produce the virtual
slide image. The depth of field of such lenses are usually
less than 1m. Both the topography of the biological sam-
ple, and the glass slide underneath can have depth varia-
tions. Thus, the microscope needs to be continuously fo-
cused as it moves from one field of view to another.

Auto focusing systems can be broadly divided into two
categories — reflection based and image based [20]. In the
reflection based method, an additional light source (often
a laser diode) is introduced. The reflection of this source
from the sample or the glass slide is used to estimate the fo-
cus distance. This method can perform rapid auto focusing.
However, often a single reference depth is not sufficient to
bring the entire field of view into focus. Presence of multi-
ple reflections can also cause confusion.

The image based auto focusing method involves captur-
ing an image of the sample with a camera, through the ob-
jective lens, and then calculating a figure of merit (FOM)
to judge the quality of focus. Multiple images are captured
along the vertical axis, and the image with the best FOM
value is taken as the “in focus” image.

Different FOM measures have been used in the literature,
starting with [3]. Commonly used ones include norm of So-
bel operator, variance of Laplacian, norm of Boddeke’s op-
erator, etc. A detailed description of these commonly used
figures of merit can be found in [15, 4]. Figure 1 shows
different figures of merit plotted across the focus stack for
a single field of view in the data set provided by [9], along
with a sample of images from the focus stack. It is evident
from the figure that most FOMs peak at approximately the
same position in the focus stack. However, the shape of
the curve varies from one field of view to another. Primar-
ily, it depends on the opacity of the objects, the number of
objects, background illumination intensity, etc. Thus, fig-
ures of merit obtained from different fields of view are not
comparable. The other disadvantage of FOM curves is that
they can sometimes show local maxima, or multiple false
peaks. This is especially true for unstained biological sam-
ples, which are more transparent in nature. See Figure 2 for
an example of such false peaks. The image stack is cap-
tured on from a wet mount slide containing whole blood
sample diluted with isotonic saline solution (0.85% NaCl).
In this case, all the FOMs, except for variance of Laplacian,
show two peaks, both of which are false (in the sense that
the image does not visually appear “well focused” at these

positions). The images corresponding to the two peaks are
shown in Figure 2. Both false peaks occur due to the pres-
ence of high contrast optical artefacts around boundaries of
cells. In some other cases, the variance of Laplacian FOM
is also observed to exhibit multiple peaks across the focus
stack, and often the highest peak is not the true one.

Sobel-x
Sobel-Y
Sobel
Laplacian
Boddeke

05 %

FOM values
° °
W kY
L]
L]
°
® L]
°
°
eesecce

°
Y]

L]

@
®

o ee 0% ege.
° )
® ®,
ogq 83“.

o
=
°
(]

°
o

10000 —7500 —5000 —2500 O 2500 5000 7500 10000
=

D = —4.5um D = -2.5um

D =4.5um
Figure 1. The figure on the top plots FOM values for different dis-
tances, for a field of view taken from data set [9]. Sample images
from the focus stack are shown, with the distance to the optimal
focus position denoted as D.
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Figure 2. A wet mount slide of blood mixed with saline. The FOM
curves show false peaks.
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Image based auto focusing systems typically employ one
or more FOM, and tries to find the peak of the FOM. This
is achieved through several methods:



e Uniformly sampling across the focus stack with fixed
step sizes and then selecting the image with the peak
FOM as the “in focus” image. This is a time consum-
ing process.

e Using an adaptive step size while moving. A larger
step size is taken when the FOM has a low magni-
tude. Step size is reduced as the system moves closer
to the peak. Though faster than the uniform sampling
approach, this method also requires multiple images
to be captured. It also requires back tracking in case
the selected step size causes the system to “jump over”
the FOM peak position. The mechanical backlash [2],
present in all microscope stages, complicates the back-
tracking process as positions are not exactly repro-
ducible.

e A curve fitting based approach as in [20]. The shape
of the FOM curve is estimated based on only a small
set of samples. The system is moved directly to the
estimated peak of the FOM curve. [20] shows the ro-
bustness of the proposed algorithm for various types of
biological samples.

Liao et al. [11] use a novel approach to estimate the fo-
cus plane of a whole slide in an efficient manner. They use
two green LEDs at a known spatial distance for illumina-
tion. When the sample is at a suboptimal focus distance
and is illuminated with the two LEDs, the camera essen-
tially captures two spatially separated copies of the image.
The autocorrelation distance between the two copies is di-
rectly related to the defocus distance, and thus the defocus
distance can be estimated without moving the sample ver-
tically. They show good results on various sample types.
While this approach is fast and accurate, it requires addi-
tional hardware in the form of extra LEDs which need to be
aligned carefully.

In the recent past, convolutional neural networks
(CNNs)[10] have been shown to be effective for several
types of computer vision applications. This includes ob-
ject recognition (e.g. [19, 18]), object localisation [14] and
segmentation [7]. They have been successfully applied for
classification [5, 13] and segmentation [ 7] of microscopic
images as well.

Jiang et al. [9] explore the use of CNNs for the purpose
of microscope auto focusing. The expectation is that given a
sample image anywhere in the focus stack, the trained CNN
should be able to estimate the optimal distance to be moved
vertically (either up or down) to reach the optimal focus po-
sition. They train a deep CNN as a regression network. The
training and test data set are publicly available. The test data
consists of two different types of samples, prepared with
different protocols at different sites. This tests the general-
isation ability of the trained models in the face of sample
type and stain colour variation.

It was observed in [9] that the trained CNN has relatively
poor performance on the test set, when trained with only
the RGB images. This is more evident on the test set with
different protocol of preparation. To counter this, they pro-
pose the usage of spectral domain and multi domain inputs.
In one of the experiments, the green channel of the cap-
tured image, along with its Fourier spectrum and phase, are
used as the input to the network. The underlying idea is
that the Fourier spectrum captures the frequency content of
an image, and the frequency content is inversely related to
the focusing distance. This approach is shown to produce
superior results.

The use of the Fourier domain in CNNs have been ex-
plored earlier [12, 16]. Convolution in the spatial domain
is equivalent to pixel-wise multiplication in the Fourier do-
main. Most of these approaches primarily use the Fourier
domain to speed up the computationally expensive convo-
lution step and replace it with the cheaper multiplication
step. However, the absence of a meaningful non-linearity
or activation function in the spectral domain necessitates
conversion back into the spatial domain after each convo-
lution layer [16]. The cost of repeated conversions between
the Fourier and spatial domains partially negates the perfor-
mance gain achieved by replacing the convolution step.

In [9], on the other hand, spatial convolution is used on
the Fourier domain signal, which is theoretically unsound,
even though practical results may be promising. Pixels in
the Fourier spectrum have positional significance. CNNSs,
with shared weights in the convolution layers, are good at
learning spatial patterns irrespective of their position. The
same pattern appearing in different positions in the Fourier
spectrum have different meanings.

3. Methods

This paper presents a deep regression convolutional neu-
ral network structure for auto focusing using spatial domain
only inputs. Results are shown to be superior to those re-
ported in [9] on the public data set.

3.1. Data set

The data set [9] consists of three different types of im-
ages:

e Images captured with a white light emitting diode

(LED) illumination (termed as incoherent RGB input).

e Images captured with two green LEDs with a known
spatial separation.

e Images captured with a single green LED.

In addition, the multi domain inputs for the above images
are also provided. For each field of view (FOV), approxi-
mately 40 images are captured with defocus distance vary-
ing from —10um to +10um in steps of 0.5um. A total of
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Figure 3. Pictorial representation of the proposed method

128,699 patches of size 224 x 224 are available for train-
ing. For this work, the data is split into a 102,960 training
set and a 25,739 validation set, ensuring that the two sets
contain images from different samples.

The test set consists of two types of samples — one pre-
pared with the same staining protocol as the training set,
and the other prepared using a different staining protocol
at a different site. As in [9], the test images are split into
smaller patches of 224 x 224. The median of the predicted
focusing distance across all patches from an image is taken
as the prediction for that image. The median helps in avoid-
ing outliers (which primarily come from the empty regions
of an FOV, or regions with little or no contrast).

3.2. Proposed method

Jiang et al. [9] uses a single image, from anywhere in
the focus stack, to estimate the distance to the optimal focus
position, using a deep convolutional neural network. It was
shown that using only a spatial domain RGB image yields
suboptimal results when tested with a new test set having
different staining properties.

This work proposes a method which uses the difference
between two images in the focus stack to predict the dis-
tance to the optimal focus position. The flow of the pro-
posed method is shown in Figure 3. The steps of the method
can be described as follows:

1. At every new field of view, the process starts with a
known vertical position. Let us call this position 2.
An image I; is captured at this position z;. Note that
the distance to the optimal focus position is not known
at this time.

2. The stage is then moved upwards by a known distance
A to a new position zo = 27 + A. Again, an image
(I2) is captured at position 2o.

3. The distance A should be greater than the depth-of-
field of the microscope, yet not large enough to cause a

significant difference in image properties between the
two positions.

4. A difference image I is computed as [ = I, — I;.

5. The difference image [ is fed as input to a deep CNN to
predict the optimal focus position. [ is pre-processed
as described in Section 3.4 before being fed to the
model.

The above method is easy to implement in a practical sys-
tem. It has the overhead of one extra physical movement (by
A) and one extra image capture. However, the improvement
in prediction accuracy outweighs the overhead. The advan-
tages of using this difference image I to predict the distance
to the optimal focus position are described next.

3.3. Properties of the difference image

Using the difference of two images has several advan-
tages:

e It eliminates, to a large extent, the coarse colour in-
formation in the image, which is known to be a major
source of over fitting [13].

e It emphasises local variations, which are important to
gauge the defocus distance, and suppresses global fea-
tures.

e The defocus direction is encoded in the difference im-
age, if z; and 29 are on the same side of the optimal
focus position. To see how this happens, suppose both
z1 and 29 are below the optimal focus position. Since
z1 1s at a greater distance from optimal focus, the ob-
ject features in I; will be more spatially dispersed. On
the other hand, if both are above the optimal focus po-
sition, then /5 will be more defocused and thus have
more dispersed spatial features. The distinction be-
tween the two scenarios above will be evident in the
difference image as the object edges will have differ-
ent signs in the two cases.

e If z; and A are chosen such that z; and 25 are always
below the focus plane of the microscope, this elimi-
nates backlash, as the stage does not need to change
direction to get to the optimal position from zo. Alter-
natively, if z, is predicted to be above the focal plane,
the system could take a large step downwards, so as to
bring it below the focal plane. Recomputing /; and I
from this new position will also eliminate backlash.

The primary disadvantage of the difference step is that
it also amplifies the local noise in an image. The overall
dynamic range of the image is reduced significantly due to
the difference operation between two similar images. How-
ever, the random noise amplitude is not necessarily reduced.
The noise thus becomes more prominent as compared to the
single image input scenario.
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3.4. Image pre-processing

The image [ is pre-processed as follows before being fed
to the CNN:

1. The images I; and I5 are smoothed with a median filter
of size 3 x 3 to reduce local noise prior to the difference
operation. Multiple filter sizes were tried. The 3 x 3
size produced best results.

2. The difference image I is again smoothed with the
same filter.

3. A channel-wise local contrast normalisation is done on
the smoothed difference image. Each channel in the
image is centred to O (by subtracting the mean of the
channel), and divided by the corresponding standard
deviation. It is observed that the two test sets differed
significantly — the variances of the 3 channels is very
different in the two sets. The normalisation step above
helps counter this difference. Our observation is that
it also helps in better prediction on images where the
dynamic range is very less — for example on smooth
regions of the tissue.

3.5. Model architecture

A deep CNN based on the MobileNetV2 [18] architec-
ture is used in this work. Recently, many “light weight”
CNN architectures have been proposed [18, 8]. They have
low computational cost and memory footprint. This makes
them suitable for inferencing tasks on edge devices with
low compute power. The proposed auto focusing system is
likely to be deployed on an edge device (an automated mi-
croscope). Hence the choice of the base architecture. This

I (z2 = 4.5um)
Figure 4. Two examples of the difference image. The top row shows two images with defocus —4.5 and —2.5um, and the difference of
the two. Similarly, the second row shows images with defocus 2.5 and 4.5pm, and their difference. Notice the distinct difference in the
properties of the edges between the two difference images.
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work uses the MobileNetV2 network, except the topmost
classification layer.

The model is a linear regression network. The output of
the last feature map of MobileNetV2 is flattened and fed
into a dense layer with a single output and no activation
function. This model is trained with the mean squared error
loss. An L2 regularisation term is added to the cost function
for the last regression layer.

For the purpose of this work using the above data set, A
was chosen as 2um. 2um is greater than the depth-of-field
in the microscope used for generating the data set (approxi-
mately 1um) and yet it is not big enough to cause significant
change in image properties. For an image I; in the training
set, with defocus distance z;, we choose Is as the image
at defocus distance z; + 2um (if it exists in the data set).
The image I is then computed as I = I — I; and the cor-
responding defocus distance is taken as z5. If I does not
exist in the data set, I; is not used for training. The same
convention is used for test images as well.

4. Experimental results

The results on the incoherent white light images from the
data set [9] are presented.

4.1. Model training

Two versions of the base MobileNetV2 network were
used — a pre-trained network (with weights initialised by
training on the ImageNet [6] dataset), and a “fresh” network
with the same architecture but randomly initialised weights.
All models were trained with stochastic gradient descent,
with learning rate 0.001. No learning rate annealing was
used. Both versions of the base network were observed to



have similar training time and performance. All results are
reported on the “fresh” version of the network. The net-
works with difference image as input trained 2X faster and
had significantly lower validation error than the ones trained
on the raw RGB images.

4.2. Infrastructure

A machine with 6-core Intel Xeon 2.6GHz processor,
60GB RAM, and a single NVIDIA Tesla K80 GPU with
12GB memory was used for this work. Software included
the Linux operating system (Ubuntu 16.04), NVIDIA Cuda
9.0, CUDNN 7.7. The Keras deep learning package (ver-
sion 2.2.4) was used with Tensorflow (version 1.11.0) back-
end.

4.3. Single image input

For fair comparison with [9], in addition to the proposed
difference method, the results of the regression network
trained with a single input are presented in Table 1. The im-
ages were preprocessed with a channel-wise normalisation
operation as described in Section 3.4, before being used for
training or test. The results are expressed in terms of focus-
ing error, i.e. the absolute difference between the predicted
focusing distance and the ground truth. The test images are
larger in size (1224 x 1024). They are split into tiles of size
224 x 224 pixels. The median of the predicted focus dis-
tance for these tiles is taken as the focusing distance of the
overall image.

The network performs significantly better on the RGB
only versions compared to [9]. The conjecture is that this
is attributable to the greater depth of the network used and
the normalisation operation. However, the results fall short
of the best overall figures reported in [9] on the test set pre-
pared with different protocol. The image-wise comparison
is presented in Tables 3 and 4.

4.4. Difference image input

The results of the network trained with the difference im-
age input are presented in Table 2. The current approach is
found to outperform the best overall performance reported
in [9]. The performance on the test images prepared with
the same protocol is nearly the same as the network trained
with single input only. However, there is a significant im-
provement in the performance on the test images prepared
with different protocol. This shows the ability of the differ-
ence image to suppress non-essential features of the image
while learning and thereby improving generalisation ability.

For the test images prepared with same protocol, the 98"
percentile error is 0.97pm. The maximum error is 1.23um.
For the test images prepared with different protocol, the
90" percentile error is 0.96m whereas the 95" percentile
error is 1.16um. The maximum error is 2.98um.

The image-wise comparison is presented in Tables 5 and
6.

4.5. Model optimisation

Since the target application for this system is an edge de-
vice, attempt is made to reduce the resource requirement of
the model without affecting its performance to a great ex-
tent. The « (width multiplier) parameter of MobileNetV2
is fine tuned to arrive at an optimal balance between predic-
tion accuracy and model size. In addition, the input image
size is also varied.

A grid search is conducted over « =
(0.25, 0.4, 0.5, 0.6, 0.75) to find the smallest «
which gives a prediction accuracy on the test set prepared
with different protocol, which is no worse than the best
overall results in [9]. For o = 0.4 the prediction accuracy
is 0.31 &+ 0.24um for the test set with same protocol, and
0.5 £ 0.44m for the test set with different protocol. Both
values are below the ones in [9]. For smaller a (0.25), the
performance on the second test set (0.61 + 0.53um) is
slightly worse than the set limit. Higher values of « yielded
little incremental benefit. The model size with o = 0.4 has
approximately 500, 000 parameters. This is a 4X decrease
from the full MobileNetV2 model with the regression layer,
which has approximately 2.2 million parameters.

To further reduce the compute requirements of the
model, three different input sizes were also used — 56 x 56,
112x112 and 168 x 168 — and a model trained for each input
size, with a = 0.4. The selection criterion for the optimal
size is the same as above. It is observed that the model with
input size 56 x 56 is significantly faster, and its performance
on the first test set is acceptable. However, the performance
(0.65 4 0.81pum) on the second test set fell below the limit.
The model trained with input size 112 x 112 met the perfor-
mance criteria. Use of 112 input size causes a 4X decrease
in feature map size over the original 224 x 224 input. The
execution performance of the original model compared with
the model with o = 0.4 and input size 112 x 112 is shown
in Table 7. It can be seen that there is a significant reduc-
tion in GPU memory usage and execution time. Input size
of 168 x 168 didn’t yield any incremental benefit.

5. Conclusion and future work

This paper presented a new method for applying deep
learning for focus distance estimation in automated digital
microscopy. The method is shown to be superior to results
in existing literature in terms of generalisation error over
multiple staining protocols. The method is also easy to
practically implement on any automated microscope. The
compute resource requirement of the proposed model is
shown to be low, making it possible to be deployed on an
edge device with limited resources.



Test set Current work | Jiang et al. [9] | Jiang et al. [9]
(RGB only) | (Single domain) | (best overall)
(pm) (pm) (pm)
Same protocol 0.25 +0.23 0.50 £0.32 0.46 £0.34
Different protocol | 0.62 4+ 0.79 1.944+1.91 0.53 £ 0.59

Table 1. Focusing errors (absolute difference between predicted and ground truth focusing distance for an image) obtained using RGB only
images for training, compared with those presented in [9]. The best overall figures for [9] refer to results on incoherent illumination images
only, whether RGB only or multi domain. Figures represented as mean error =+ standard deviation of error.

Test set Current work

(difference image)

Jiang et al. [9]
(Single domain)

Jiang et al. [9]
(best overall)

(um) (nm) (pm)
Same protocol 0.22 +0.25 0.50 £ 0.32 0.46 £0.34
Different protocol 0.36 +0.37 1.94+191 0.53 £0.59

Table 2. Focusing errors (absolute difference between predicted and ground truth focusing distance for an image) obtained using difference
images images for training, compared with those presented in [9]. The best overall figures for [9] refer to results on incoherent illumination
images only, whether RGB only or multi domain. Figures represented as mean error + standard deviation of error.

Tissue Num. | Current work | Jiang et al. [9]
sample images | (RGB only) | (Single domain)
(ppm) (ppm)

Sample 1 164 0.25+0.23 0.33 +0.25
Sample 2 82 0.33+£0.20 0.33 +0.26
Sample 3 41 0.26 £0.14 0.37 +0.22
Sample 4 246 0.21 £0.19 0.53 £ 0.28
Sample 5 82 0.25 +0.28 0.58 +0.31
Sample 6 82 0.38 £0.31 0.87 + 0.57

Tissue Num. Current Jiang et al. [9]
sample images work (best overall)
(pm) (pm)
Sample 1 164 0.20+0.22 | 0.27+£0.18
Sample 2 82 0.21+0.30 | 0.70£0.83
Sample 3 41 0.28 +£0.23 | 0.31£0.22
Sample 4 246 0.194+0.19 0.424+0.24
Sample 5 82 0.29+0.25 | 0.36£0.29
Sample 6 82 0.42 +0.32 0.45+0.24

Table 3. Comparison of focusing error for each individual sample
in the test set prepared with the same protocol. As in Table 1, the
figures are expressed as p & o of the focusing error.

Table 5. Comparison of focusing error for each individual sample
in the test set prepared with the same protocol. The figures for [9]
are the best overall across all approaches explored for incoherent
illumination images. Thus, all figures do not refer to the same
methodology. As in Table 2, the figures are expressed as p & o of
the focusing error.

Tissue Num. | Current work | Jiang et al. [9]
sample images | (RGB only) | (Single domain)
(ppm) (pm)

Sample 7 41 0.63 +0.44 0.48 £0.32
Sample 8 123 0.65 = 1.80 1.324+1.29
Sample 9 205 0.46 +£0.40 2.69 £ 2.41
Sample 10 246 0.98 +0.75 2.194+2.15
Sample 11 246 0.46 +0.33 2.83 + 3.25
Sample 12 205 0.72 £ 0.68 1.00 £0.77
Sample 13 246 0.55 +0.48 2.02 +2.48

Table 4. Comparison of focusing error for each individual sample
in the test set prepared with the different protocol. As in Table 1,
the figures are expressed as p £ o of the focusing error.

Future work will involve extending this method to other
types of biological samples, especially to liquid samples,
which have multiple sharpness peaks and focusing is known
to be more challenging.

One of the observed drawbacks of the proposed method
is its sensitivity to local noise. It was noticed that compres-
sion artefacts have a significant influence on the prediction

Tissue Num. Current Jiang et al. [9]
sample images work (best overall)
(um) (pm)
Sample 7 41 0.28+0.24 | 0.48+£0.32
Sample 8 123 0.68+0.38 | 0.99+1.51
Sample 9 205 0.25+0.27 | 0.28£0.28
Sample 10 246 0.35+048 | 0.38£0.38
Sample 11 246 0.37+0.29 | 0.43£0.69
Sample 12 205 0.55+0.39 | 0.524+0.29
Sample 13 246 0.33£0.33 | 0.29 +0.22

Table 6. Comparison of focusing error for each individual sample
in the test set prepared with the different protocol. The figures
for [9] are the best overall across all approaches explored for in-
coherent illumination images. Thus, all figures do not refer to the
same methodology. As in Table 1, the figures are expressed as
w =+ o of the focusing error.

accuracy. A lower quality of JPEG compression causes the



Model # Params | CPU time | GPU memory | Focusing error | Focusing error
(seconds) (GB) Set 1 (um) Set 2 (um)

Original model | 2,200,000 270 2.17 0.22 +0.25 0.36 +0.37

Reduced model | 500,000 100 0.98 0.32+£0.27 0.43 +0.36

Table 7. Comparison of performance of the original model with the reduced version (o« = 0.4 and input size 112 x 112). The execution
time is measured over model evaluation for 26,240 patches from the second test set. Batch size used is 8. The time reported includes the
time required for reading the image from disk, resizing, and splitting the larger images into patches on the fly. Details of the hardware and
software specs are mentioned in Section 4.1.

prediction accuracy to deteriorate drastically. On the other
hand, the models trained with single image input were ob-
served to be more robust to JPEG compression artefacts.
This issue will also be addressed in future.
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