
 

 

Abstract 
3D fluorescence microscopy of living organisms has 

increasingly become an essential and powerful tool in 

biomedical research and diagnosis. An exploding amount 

of imaging data has been collected, whereas efficient and 

effective computational tools to extract information from 

them are still lagging behind. This is largely due to the 

challenges in analyzing biological data. Interesting 

biological structures are not only small, but are often 

morphologically irregular and highly dynamic. Although 

tracking cells in live organisms has been studied for years, 

existing tracking methods for cells are not effective in 

tracking subcellular structures, such as protein complexes, 

which feature in continuous morphological changes 

including split and merge, in addition to fast migration 

and complex motion. In this paper, we first define the 

problem of multi-object portion tracking to model the 

protein object tracking process. A multi-object tracking 

method with portion matching is proposed based on 3D 

segmentation results. The proposed method distills deep 

feature maps from deep networks, then recognizes and 

matches objects’ portions using an extended search. 

Experimental results confirm that the proposed method 

achieves 2.96% higher on consistent tracking accuracy 

and 35.48% higher on event identification accuracy than 

the state-of-art methods. 

 

1. Introduction 

Fluorescence microscopy has undergone an evolution 
in the past decades. Using a variety of fluorescent 
indicators, specific targets such as proteins, lipids, or ions 
can be tailored and, therefore, visualized in live [1], [2]. 
Rather than relying on physical sections of chemically 
fixed tissues, technologies such as confocal and multi-
photon microscopy enable the acquisition of optical 
sections of thick biological objects. By excluding out-of-
focus light or specifically activating fluorophores in the 
focus plane, a 2D image can be obtained. This allows 
accurate reconstruction of the 3D structures of biological 
samples and continuous imaging of living cells or 

organisms. Time-lapse movies of 3D images result in 4D 
fluorescence microscopy data with temporal information 
as the additional dimension. 

The current bottleneck in biomedical research and 
diagnosis is to effectively extract the information from the 
increasingly large and complex biological image dataset in 
quantitative ways. In doing so, there are two types of 
challenges. One type is the physical limitations in image 
acquisition, including the number of pixels per image and 
signal-to-noise ratio (SNR) [3]. Besides physical size and 
imaging speeds of the equipment, the number of pixels per 
image also depends on the temporal resolution in live 
imaging, which in turn is decided by the time scale of the 
observed biological activities. Biological samples often 
suffer from a low SNR. There is always a limitation to 
how many fluorophores an object of interest can be 
labeled with. Besides, all fluorophores are subjected to 
photobleaching [4], a phenomenon where the fluorophore 
stops emitting fluorescence after repeated exposure to 
lasers. Fluorescent proteins used in live imaging are 
especially sensitive to photobleaching. Frequent and long-
term imaging lead to a severe reduction in fluorescent 
signals resulting in a low SNR.  

The other type of challenge comes from the 
intrinsically dynamic behaviors of the biological objects of 
interest. Living objects can often change their 
morphologies rapidly, which is especially true for protein 
machinery inside cells. Furthermore, many biological 
objects display constant movement and even interact with 
other objects of the same type. One well-studied example 
is tracking cells in living organisms [5]. Different from 
macro objects, e.g. cars or bicycles, cells may present 
deformations such as elongation, expansion, and shrinkage 
[6], as well as demonstrate complex motion patterns in a 
short time period [7]. However, compared to subcellular 
structures, which are often the machinery that perform 
tasks for cells, cells largely maintain constant volumes and 
have a nucleus that is often large and easily trackable. 
Subcellular structures, such as protein clusters, grow or 
shrink much more rapidly. They can also interact with 
each other through split and merge.  
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Conventional tracking methods used for biomedical 
image analysis employ either nearest neighbor linking or a 
motion detector, like a Kalman filter (KF) [5]. These 
methods can be limited in tracking fast migration and 
complex motions including split and merge. In recent 
years, deep learning methods have been applied to 
biomedical image analysis [8]. Due to the lack of 
remarkable features, object recognition in biomedical 
images is rather difficult compared with the detection of 
macro objects. It has been discovered that instead of using 
object position or motion path, like nearest neighbor 
linking and KF, tracking by object recognition is more 
reliable [9]. However, the physical scale and more 
dynamic properties of functional protein clusters make 
conventional cell tracking methods ineffective in 
producing reliable results. 

In this paper, to tackle the challenges faced by 
cell/protein tracking, we propose a multi-object portion 
tracking method with portion matching for 3D 
fluorescence microscopy images. Based on 3D 
segmentation results, the proposed deep feature map 
tracking method distills deep feature maps from deep 
learning networks, then recognizes and matches objects’ 
portions using an extended search. The proposed method 
conquers the challenges of rapid deformation, as well as 
object birth and death, and object split and merge. The 
method is evaluated by the 3D fluorescence images of E-
Cadherin fused with Green Fluorescent Protein (GFP) 
from developing Drosophila (fruit fly) embryos and 
compared with four tracking methods. 

The remainder of the paper is organized as follows: 
Section 2 reviews the related work in object segmentation 
and tracking. Section 3 defines the multi-object portion 
tracking problem and presents the deep feature map 
tracking method with portion matching. Section 4 presents 
the experimental results. Section five concludes the paper. 

2. Related Work 

A critical challenge in using fluorescence microscopy 
images is the presence of noise. Denoising filters, such as 
the Gaussian filter, average filter, etc., are widely 
employed to reduce such noises [10]–[12]. In the 
literature, diverse cell and nuclei segmentation methods 
have been studied, including active contour, watershed, 
and thresholding methods, as well as deep neural network 
methods. The active contour model, as known as snakes, 
delineates the outlines of an object. By means of energy 
minimization, active contour adapts to differences and 
noise, but requires a known approximation of the 
searching boundary [13], [14]. Via extending active 
contour to 3D active surface, cellular objects in sequences 
of microscopy images are identified [15]. The watershed 
method is advanced on separating touching objects [16]. 
By defining foreground and background locations, 

marker-controlled watershed segmentation acquires 
improved performance in nuclei segmentation [17]. 
Thresholding is another frequently applied segmentation 
method. In [18], Otsu thresholding [19] is modified to 
adapt with 2D microscopy image segmentation. 

Recently, convolutional neural networks (CNN) [20] 
lead the frontier in object classification and semantic 
segmentation. Since 2015, several 2D semantic 
segmentation architectures have been proposed, including 
Fully Connected Networks (FCN) [21], SegNet [22], U-
Net [23], and Fully Connected Dense Networks (FCDN) 
that adopt ResNet [24]–[26], etc. Among the 
aforementioned networks, U-Net demonstrates a capacity 
for biomedical image segmentation using a combined 
skip-connection that directly connects down-sampling and 
up-sampling layers [8]. However, stacking 2D 
segmentation results into 3D volume may cause a problem 
of misalignment in the depth. Extending to 3D data, a 3D 
U-Net [27] is built to learn volume information. 3D 
labeling is able to be generated using Generative 
Adversarial Networks (GAN) and used in training for 3D 
segmentation in terms of the labeling challenge for 
annotators [28].  

Tracking is a complex processing, following object 
detection and segmentation. The popular cell or particle 
tracking methods can be divided into three categories: 
Nearest neighbor [29]–[33], Kalman filter [34]–[36] data 
association [34], [35], and deep learning [7], [10]. The 
nearest neighbor method is the simplest approach, which 
links every segmented object to the nearest object in the 
next frame [37]. It has been applied to track label-free 
single cells in 3D matrices [29], as well as for particle and 
whole cell tracking [30]. However, as shown in [29], the 
nearest neighbor method fails when a cell migrates fast. A 
tumor cell tracking platform is developed in [31] to 
recreate a tightly interconnected system of cancer and 
immune cells with 3D environmental properties. As a 
method proposed for multiple object tracking (MOT) [32], 
[33], intersection-over-union that overlaps objects in two 
frames, is applied to a cell tracking benchmark [38] to 
perform multi-cell tracking in 2D and 3D space. A 
Kalman filter (KF) [39] tracks an object by projecting the 
current state forward (in time) and estimating error 
covariance to obtain the a priori estimates for the next 
frame [7]. KF is commonly employed with data 
association to improve performance, e.g., maximum 
likelihood, and acceptance gate associated with KF [34], 
[35]. To improve KF estimation, local graph matching is 
applied after KF in the case of plant cell tracking because 
only cell movement is relevant [36]. Further, deep learning 
architectures can be used to solve tracking problems. The 
common method is converting the tracking task into a 2D 
classification, which adopts the t-1 state of an object as 
input and predicts the t state [7], [10].  



 

 

Despite the aforementioned methods proposed for cell 
tracking, cell tracking or protein cluster tracking that 
support split and merge is rarely studied. According to [5], 
among 28 tracking methods reviewed, only two [40], [41] 
that use watershed segmentation and the nearest neighbor 
tracking method support split and merge. In [42], the split 
and merge measurements are represented by a sparse 
matrix and solved by a Markov chain Monte Carlo based 
auxiliary particle filter. However, the basic assumptions of 
this approach are: (1) objects are almost non-deformable; 
(2) the size and shape remain the same after cell events. 
The Markov chain Monte Carlo data association method is 
then proposed in [43], which adopts multiple GFP cluster 
split and merge tracking for 2D frames. By defining object 
events into five conditions, including object born, vanish, 
remain, merge, split, and edge, conditions of objects are 
measured as distance, which is then input to the method.  

3. Methods 

3.1. Multi-object portion tracking problem  

As discussed in Section 1, one important problem in 
cell/protein tracking is how to track split and merge 
behaviors. Via breaking the whole object tracking problem 
into object portion tracking, any type of object 
relationship, including one-to-many (split) and many-to-
one (merge), can be modeled as one-to-one mapping. That 
is, if a portion is selected as small as possible, there only 
exists in one or none object in a next time frame. The 
multi-object portion tracking problem can be modeled 
using a probabilistic model as follows: 

Assume Ω is the collection of all tracks in time period 
T;	ܻ is the total observation; a single track is defined as,  ω௝ = Ω(݆) 
where j is track ID, and a single track at time t is ௝߱(ݐ). 

Let ௧ܱ  be the observation set of objects at time t, 

assume that ݋௧௜  is an object in ௧ܱ , and ߜை೟೔௡  is a portion of ݋௧௜, where i is the object ID of time t and n is the portion 
ID. For the history observation ௧ܱିఛ, ߬ = 1,2, … ܶ − 1 ௧ିఛ௜ᇱ݋ ,  is an object in ௧ܱିఛ  and ߜை೟షഓ೔ᇲ௡ᇱ  is a portion of ݋௧ିఛ௜ᇱ , 

where τ is the frame gap; i′ is the object ID of time t-τ and 
n′ is the portion ID. 

Assuming that ݋௧ିఛ௜ᇱ 	 ∈ 	ω௝ , as ߜை೟షഓ೔ᇲ௡ᇱ 	 ∈ 	 ௧ିఛ௜ᇱ݋ , the 

probability of portion matching, i.e., portion ߜை೟೔௡  is 

matched with object ݋௧ିఛ௜ᇱ , is set as P(ߜை೟೔௡ ௧ିఛ௜ᇱ݋| ) = max௡` P(ߜை೟೔௡ ை೟షഓ೔ᇲ௡ᇱߜ| )          (1) 

Then for all τ, the probability that ߜை೟೔௡  is in the track of ݋௧ିఛ௜ᇱ , can be formulated as  P ቀߜை೟೔௡ ቚ ௝߱(ݐ)ቁ = ∑ P(ߜை೟೔௡ ௧ିఛ௜ᇱ݋| )ఛ           (2) 

For all ߜை೟೔௡ 	 ∈ 	  ௧௜ is in the݋ ௧௜, one can determine that݋

track of ݋௧ିఛ௜ᇱ  by 

P൫݋௧௜ห ௝߱(ݐ)൯ = max௡ P ቀߜை೟೔௡ ቚ ௝߱(ݐ)ቁ = max௡ ∑ P(ߜை೟೔௡ ௧ିఛ௜ᇱ݋| )ఛ           

 (3) 
which gives P൫݋௧௜ห ௝߱(ݐ)൯ = max௡ ∑ max௡` P(ߜை೟೔௡ ை೟షഓ೔ᇲ௡ᇱߜ| )ఛ          (4) 

Assuming that the object birth/death has no impact to 
the tracking of one existing object, the probability of one 
consistent tracking in T can be modeled as ܲ൫ω௝หܻ൯ = ∏ P൫݋௧௜ห ௝߱(ݐ)൯௧்ୀଵ   = ∏ max௡ ∑ max௡` P(ߜை೟೔௡ ை೟షഓ೔ᇲ௡ᇱߜ| )ఛ௧்ୀଵ  (5) 

The objective of the multi-object portion tracking 
problem is to maximize ܲ൫ω௝หܻ൯	∀ω௝ ∈ Ω . Hence, to 
optimize the multi-object portion tracking, one has to 
maximize the sum of the maximal portion matching 
probability among interval τ, i.e., ෍max௡` P(ߜை೟೔௡ ை೟షഓ೔ᇲ௡ᇱߜ| )ఛ  

The optimization can be achieved by (1) reliable 
segmentation because false segmentation disturbs portion 
matching results; (2) an efficient matching approach to 
improving the successful matching rate. 

In the proposed approach, segmentation and tracking 
are based on deep feature maps extracted by a deep 
learning architecture. The merits of deep feature maps are 
(1) Abundant: deep feature maps are extracted from deep 
learning architectures that allow multiple map layers. 
Taking U-Net as an example, 64 feature map layers are 
preserved as effective ones before pixel-wise 
classification, which is preferable to single contour or 
surface information. (2) Reliable: deep feature maps are 
weight matrices that are selected and optimized by deep 
learning architectures. Distilled by multiple encoders and 
decoders, weight matrices are optimized via a global 
training and loss function, which raises convergence of 
error. (3) Complex object events supportive: birth/death, 
split/merge are able to be identified by recognition through 
deep feature maps. Traditionally, nearby search and 
motion prediction accelerate tracking as well as improve 
tracking performance by error elimination. However, they 
are limited by high migrating speed, high object density, 
and complex motion models. Deep feature maps help a 
tracking mechanism achieve reliable object recognition. 
The abovementioned limitations are thus released. (4) 
Multidimensional: deep feature maps can associate with 
data of any dimension. For example, a 3D image will have 
a (X, Y, Z, D) size of feature map where X, Y, and Z are 
length, width, and height of the image respectively, and D 

is the depth of feature maps. (5) Calculation efficiency: 
although 64-layer deep feature maps are extracted by U-
Net, maps with fewer layers can be employed in tracking 
considering hardware and time efficiency. 



 

 

3.2. 3D Segmentation 

Since ResNets and DenseNets present efficiency in 
classification, semantic segmentation architectures that 
adopt Residual blocks and Dense blocks have 
demonstrated efficiency in pixel-wise classification in 
recent years. Fully Convolutional DenseNets [26] (FCDN) 
is one of the efficient semantic segmentation architectures. 
Here, the 103 layered FCDN-103 is expanded into a 3D 
architecture to perform segmentation for 3D fluorescence 
microscopy images. Figure 1 shows the architecture of 3D 
asymmetric FCDN-103. 

In [27] and [28], when building 3D deep networks, the 
authors employ a symmetric convolution filter and pooling 
filter (e.g. filter size [3, 3, 3] or [2, 2, 2]). Nevertheless, in 
this application, the image size ratio of the 3D 
fluorescence microscopy images is 280:512:13, which is 
asymmetric. With the resolution, image resizing may 
compromise the data. As such, the third dimension data is 
chosen to be fully preserved in the network. The layer 
arrangement and the other 2D parameter setting are 
identical as [26]. The parameter setting is shown in Table 
1. Figure 2 presents the segmentation results. 

 

Table 1 3D Asymmetric FCDN-103 Detail 
 Layer Transition 

Down 
Transition 
Up 

Sub-architecture Batch Norm. Batch Norm. 3x3x1 
Transposed 
Convolution  
stride=2 

ReLU ReLU 
3x3x1 
Convolution 

1x1x1 
Convolution 

Dropout p=0.2 Dropout p=0.2 
 2x2x1 Max 

Pooling 

3.3. Deep feature map tracking  

The proposed deep feature map tracking (DFMT) 
method distills deep feature maps from the 3D 
segmentation results, then recognizes and matches objects’ 
portions using an extended search. 

3.3.1 Portions of 4D deep feature maps 

After training with the Adam Optimizer and the 
softmax cross entropy loss function, the final parameter 
matrix of DB5 is ௧ܹ௠ 	, which is a 64-layer 4D feature map 
of time t , and m is the layer of the feature map. The 4D 
feature maps of all observations ௧ܱ  at time t can be 
defined as Θ௧ = ራ ௧ܹ௠଺ସ

௠ୀଵ  

Instead of using direct image information (e.g. 
intensity), here, the portion matching is realized by using 
deep feature maps. The deep feature map portions 
corresponding to the object portions ߜை೟೔௡ ∈ ை೟షഓ೔ᇲ௡ᇱߜ ௧௜ and݋ ∈ `௧ିఛ௜݋  

are denoted as ߠை೟೔௡ ∈ Θ௧(݋௧௜) and ߠை೟షഓ೔ᇲ௡ᇱ ∈ Θ௧ିఛ(݋௧ିఛ௜` ), 
respectively. 

(a.1) (b.1)

(a.2) (b.2)

 
Figure 2 Segmentation results of 3D fluorescence image: (a) 3D 
view; (b) 2D view 
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Figure 1 3D asymmetric FCDN-103: (a) network architecture; 
(b) Dense block 



 

 

3.3.2 Extended search and portion matching 

Rather than only matching between a pair of portions 
from two time frames, an extended search employs a set of 
portions to cover the surroundings in volume. It is applied 
to Θ௧ to accommodate motions and fluctuations. 

Taking a pixel p(ݔ௣ , ,௣ݕ (௣ݖ ∈  ௧௜ as the center point in݋

x, y, and z dimension of object ݋௧௜, the deep feature map 
portion is defined as ߠை೟೔௡ = {Θ௧൫ݔ௣ ± ௫ݎ , ௣ݔ ± ௬ݎ , ௣ݔ ± ௭ݎ , ݉൯, ∀݉} 
where 2ݎ௫ , ௬ݎ2 ௭ݎ2	݀݊ܽ	  are the lengths in dimensions x, y, 
and z of each portion, respectively. For the extended 
search in frame ݐ − ߬, a pixel group is obtained by ݌ఛ ∈ ൛൫ݔ௣ఛ, ௣ఛݕ , ௣ఛݔ	|	௣ఛ൯ݖ ∈ ൫ݔ௣ ± ,௫௘௫௧൯ݎ ∋௣ఛݕ ൫ݕ௣ ± ,௬௘௫௧൯ݎ ௣ఛݖ ∈ ௣ݖ) ±  ௭௘௫௧)ൟݎ
where ݎ௫௘௫௧ , ௬௘௫௧ݎ , ௭௘௫௧ݎ	݀݊ܽ 	are the extended range in x, y, 
and z dimension, respectively. Then an object’s deep 
feature map portion in frame ݐ − ߬  is defined as ∀	݌ఛ(ݔ௣ఛ, ௣ఛݕ , ை೟షഓ೔ᇲ௡ᇱߠ  ,(௣ఛݖ = {Θ௧ିఛ൫ݔ௣ఛ ± ௫ݎ , ௣ఛݔ ± ௬ݎ , ௣ఛݔ ± ௭ݎ , ݉൯, ∀݉} 

The portion matching between ߠை೟೔௡   and ߠை೟షഓ೔ᇲ௡ᇱ is defined 

by Pearson’s correlation coefficient as ρ ቀߠை೟೔௡ ቁ = ∑ (ఏೀ೟೔೙ (௫,௬,௭,௠)ିா(ఏೀ೟೔೙ ))(ఏೀ೟షഓ೔′೙′ (௫,௬,௭,௠)ିா(ఏೀ೟షഓ೔′೙′ ))ೣ,೤,೥,೙ට∑ (ఏೀ೟೔೙ (௫,௬,௭,௠)ିா(ఏೀ೟೔೙ ))మ(ఏೀ೟షഓ೔′೙′ (௫,௬,௭,௠)ିா(ఏೀ೟షഓ೔′೙′ ))మೣ,೤,೥,೙  (6) 

where ߠ)ܧை೟೔௡ )  is the expectation of the portion ߠை೟೔௡ . If a 

portion ߠை೟೔௡  is associated with ݈  objects in the extended 

search space among τ time frames { ௧ܱ௜భ , ௧ܱ௜మ , … ௧ܱିఛ௜೗ }, it has 

an array of coefficient ૉ ቀ࢔࢏࢚ࡻࣂ ቁ describing its correlation 

with all ݈  objects. The best matched object portion is 
selected by Mቀߠை೟೔௡ ቁ = ൜݇| ρ ቀߠை೟ೖ௡ ቁ = max௜ୀ௜భ→௜೗ ૉ ቀ࢔࢏࢚ࡻࣂ ቁ ≥  ൠ     (7)ߛ

where ߛ  is a lower bound of acceptance for portion 

matching. Mቀߠை೟೔௡ ቁ is a set of matched object ID. Figure 3 

shows a 3D view of the 4D extended search and portion 
matching. 

3.3.3 Object events identification 

Besides one-to-one object mapping, the object events 
of cells and protein clusters include four types: birth, 
death, split, and merge, as shown in Figure 4.  

Birth: An object ௧ܱ௜ is newborn if none of its portions 
are matched with any object portion in τ former time 
frames, i.e.,  ⋃ Mቀߠை೟೔௡ ቁ௡ = ∅, ∀݊.   (8) 

New IDs are assigned to newborn objects. 
Death: Observations for dead objects at time point t are 

not available. These objects’ IDs will be held and never 
assigned to other objects in case of reappearance. 

Split: Two or more objects are considered split from 
one parent if the intersection of unions of the matched 
object ID set is not empty. New object IDs are assigned to 
child objects but parents’ IDs are recorded for tracking. ⋃ Mቀߠை೟೔௡ ቁ୬ ∩ ⋃ Mቀߠை೟೔ᇲ௡ᇱ ቁ୬ᇱ ∩ … ≠ ∅, ∀n, n′, … (9) 

Merge: An object is considered merged if the matched 
object union contains multiple elements as ⋃ Mቀߠை೟೔௡ ቁ = {݅ଵ, ݅ଶ, … }௡ .   (10) 

The object ID of the merged object is inherited from 
the major (larger size) parent object, though all parents’ 
IDs are recorded. 

Via DFMT, the matching relationships between 
portions and corresponding objects are identified. The 
collection of all matched objects at time t is defined as ⋃ ⋃ Mቀߠை೟೔௡ ቁ௡௜                 (11) 

Figure 5 plots the sample correlation map of protein 
objects in the time interval [t, t-τ]. Through portion 
matching with extended search in τ time frames, DFMT 
successfully identifies the split and merge relations among 
multiple objects. Object IDs are inherited from the parents 
following the matching relationships. 

 
Figure 4 Object events (a) birth (b) death (c) split (d) 
merge 

(a) (b)

(c) (d)

DFM of an object
DFM of a portion

Extended search
Portion matching
Portion matching

Figure 3 3D view of the 4D extended search and 
portion matching using deep feature map (DFM)



 

 

4. Experimental Results 

4.1. Dataset 

The 4D dataset used for evaluating the proposed 
method is a time-lapse movie taken from developing 
Drosophila (fruit fly) embryos. The surface of each 
embryo is covered by a single layer of columnar-shaped 
epithelial cells, with the top of the cells on the surface of 
the embryo. The dimension of the columnar cell is 
proximately 6.5 micron wide and 30 microns tall. E-
Cadherin fused with Green Fluorescent Protein (GFP) is 
expressed in the entire embryo to visualize adherent 
junctions, the major cell-to-cell junctions that physically 
connect neighbor cells. E-Cadherin is the membrane 
component of adherent junctions and therefore localize 
exclusively on the cell membrane. At this point of 
development, E-Cadherin molecules are organized into 
small clusters of various sizes on the lateral membrane of 
the columnar cells.  

Images were taken on a Leica SP5 laser scanning 
confocal microscope. The 488 µm laser was used to excite 
the GFP. At each time point, a 60-micron by 30-micron 
area was imaged and a z-stack of optical sections were 
taken from the top of the cell to six microns below, 
creating a 3-D data set. The developing embryo was 

imaged this way every five seconds, generating a 4-D data 
set. 

4.2. Evaluation 

Based on the same segmentation result generated by the 
asymmetric 3D FDCN in Section 3.1, seven tracking 
methods, including the proposed DFMT method, are 
tested and compared with the ground truth. For the 
comparing methods, Method1 (M1) [32] employs 
intersection-over-union (IOU), which scores the cell 
relations by Eq.12 ܷܱܫ(ܽ, ܾ) = ஺௥௘௔(௔)∩஺௥௘௔(௕)஺௥௘௔(௔)∪஺௥௘௔(௕)       (12) 

where a and b are two objects. Based on the performance, 
the threshold ߪூை௎  is set to 0 to maximize the tracking 
result. Method2 (M2) [43] uses object linking and expands 
linking (10 pixels) when objects move. Besides, overtime 
tracking is applied in Method2. For object events, a split is 
determined if two objects a and b in frame t are linked to 
one object c in frame t-1, and merge is determined if 
object a in frame t has two sources b and c in frame t-1 

when ݁ݖ݅ݏ(ܽ) ≥ 1.5 × ,ܾ)݁ݖ݅ݏ	݁݃ܽݎ݁ݒܽ ܿ) . Since 
Method1 does not support object event identification, 
Method1 is evaluated one more time with the object event 
identification approach of Method2, shown as M1+M2. 
Method3 (M3) [44] is applied through Fiji [45] and 
ImageJ [46]. It supports tracking with (M3 (S&M)) or 
without (M3) split and merge detection. Both versions are 
tested.  
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As Figure 6 shows, the evaluation is based on the 
tracking of 12 objects through 69 time points. Due to the 
difficulty of determining a single time point of object 
events by the naked eye, a time range is set for each object 
event. Figure 7 presents the ground truth of split and 
merge events in the time range. For evaluation purposes, if 
a method detects a respond object event within the time 
range, the detection is positive. Any missed detection is 
determined as false negative (FN), and any false detection 
is counted as false positive (FP). The evaluation metrics 
include accuracy, sensitivity, and precision, as defined by 
the following equations. Precision = TP/(TP + FP)	                  (13) Sensitivity = TP/(TP + FN)                 (14) Accuracy = (TP + TN)/(TP + FP + TN + FN)     (15) 

Figure 7 demonstrates the tracking of six example 
objects. In Table 2, tracking accuracy describes the 
capacity of consistent tracking in time period T. The 
split/merge accuracy represents the accuracy of 
split/merge event identification. Split and merge event 
accuracy, sensitivity, and precision show the 
comprehensive performance for both split and merge 

events. From Figure 7 and Table 2, one can see that 
without split and merge detection, M1 and M3 lose 
tracking with higher frequency. The proposed DFMT 
method achieves long-term tracking at a highly successful 
rate, among all methods. Besides, it significantly improves 
the performance of object event identification. Both the 
split and merge of protein clusters are accurately detected 
with low FN and FP. The proposed method achieves 
2.96% higher on consistent tracking accuracy than 
Method2 and 35.48% higher on event identification 
accuracy than Method3, respectively. The efficiency of 
DFMT is delivered by the valid recognition of objects 
based on the accuracy and reliability of the deep feature 
maps. It is confirmed that the deep feature map tracking 
method is powerful in cases including fast migration, 
dense distribution, and complex motion models. Figure 8 
shows the 3D tracking result by the proposed method. 

5. Conclusion 

In this paper, we proposed the deep feature map 
tracking method for tracking objects in 4D fluorescence 
imagery. The DFMT method targets to complex motion 
objects, such as protein clusters, which may demonstrate 

Table 2 Object tracking and event identification results 
Methods Tracking 

Accuracy 
Split 

Accuracy 
Merge 

Accuracy 
S&M 

Accuracy 
S&M 

Sensitivity 
S&M 

Precision 
DFMT (proposed) 98.52% 81.82% 85.00% 83.87% 83.87% 96.30% 

M1 [32] 43.28% - - - - - 
M1+M2 [32], [41] 77.31% 63.64% 40.00% 48.39% 50.00% 83.33% 

M2 [41] 95.56% 54.55% 40.00% 45.16% 53.85% 82.35% 
M3 [44] 65.84% - - - - - 

M3 (S&M) [44] 93.09% 63.64% 40.00% 48.39% 51.72% 88.24% 
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Figure 7 Object tracking and event identification results 



 

 

dense distribution, fast migration, rapid volume 
alternation, split, and merge. The proposed method works 
in two main steps. First, based on the 3D segmentation 
result, the 4D deep feature map is extracted from the last 
dense block for each 3D fluorescence frame. Next, portion 
matching between objects in two frames is performed by 
finding the highest correlation within the extended search 
space. Consequently, partial or whole object tracking, 
covering object events like birth, death, split, and merge is 
realized by the proposed method. The experiment results 
demonstrate that the DFMT method achieves a high 
success rate on long-term tracking and object event 
identification.  
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