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Abstract

Deep learning techniques involving image processing

and data analysis are constantly evolving. Many domains

adapt these techniques for object segmentation, instanti-

ation and classification. Recently, agricultural industries

adopted those techniques in order to bring automation to

farmers around the globe. One analysis procedure required

for automatic visual inspection in this domain is leaf count

and segmentation. Collecting labeled data from field crops

and greenhouses is a complicated task due to the large va-

riety of crops, growth seasons, climate changes, phenotype

diversity, and more, especially, when specific learning tasks

require a large amount of labeled data for training. Data

augmentation for training deep neural networks is well es-

tablished, examples include data synthesis, using genera-

tive semi-synthetic models, and applying various kinds of

transformations. In this paper we propose a data augmen-

tation method that preserves the geometric structure of the

data objects, thus keeping the physical appearance of the

data-set as close as possible to imaged plants in real agri-

cultural scenes. The proposed method provides state of

the art results when applied to the standard benchmark in

the field, namely, the ongoing Leaf Segmentation Challenge

hosted by Computer Vision Problems in Plant Phenotyping.

1. Introduction

Visual context, scene understanding, and object location

seem to be key factors in image augmentation for deep neu-

ral networks. There are many ways to augment data in im-

ages. One of the most prominent ways is cutting objects

from the original image, and pasting the objects, exercising

geometrical transformations, into a synthetic image. Of-

ten these operations lead to non-realistic or even non-logical

output. Gould et al. overcome this problem by understand-

ing the image scene [18]. Dvornik et al. find the importance

of object locations in the original images and use these char-

acteristics when deploying the object onto the synthetic im-

age [10, 11].

Several papers dealing with plant phenotyping convey

the importance of data augmentation. One reason is that

training deep neural networks requires a large ground-truth

data-set, which is not always available. Even if such a data-

set exists, augmentation serves to vary the training set, thus

improving the learning procedure and performance. Recent

surveys on plant phenotyping emphasize the need for data

augmentation, and transfer learning in the sense that syn-

thetic data can and should be used for training networks,

later tested on real data [21]. Main considerations include

sufficient amount of balanced data, annotation and normal-

ization of data, and outlier rejection [41]. Synthetic data

modeling, graphical rendering, and transfer learning in con-

text of using pre-trained deep networks (or at least their first

layers) play a key role in plant genotyping and phenotyping

[9].

Data augmentation and synthesizing images is gaining

acceptance and practice. The KITTI and Cityscapes datasets

are used extensively for semantic understanding of urban

scenes [12]. Basic practices include rotations, cropping,

color transforms; advanced methods are usually applied to

specific domains. For example, Richardson et al. synthe-

sized human facial models by learning parametric geomet-

ric and texture features. [34, 35, 40]. Integrating parametric

surface modeling with a Generative Adversarial Network

for generation of realistic human face textures is suggested

by [42].

Although applied deep learning is common in analysis

of plant structure, and computational and heuristic graphi-

cal modeling techniques exist, few attempts have been sug-

gested to combine them. Leaf counting and instance seg-

mentation remain a challenge, due to diverse leaf shapes,

size and variability during their life cycles in the growth

stage, and also due to overlapping and occlusions, abundant

number of different crops, and diverse real-world environ-

ments (laboratory, greenhouse, field).

Here, we propose a method integrating both approaches,

by presenting a method of data augmentation preserving

the photorealistic appearance of plant leaves, and using the

augmented data as training set for a network architecture

known to achieve high quality results in instance counting

and segmentation, Mask R-CNN [19]. We focus on aug-

menting a plant image training set with photorealistic syn-
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thetic images. Using a limited amount of images of real

leaves and accurate manual segmentation, we use geomet-

ric transformations and image processing tools to create a

practically infinite amount of synthetic images simulating

real-life environments. Among these, some manipulations

can be considered global, like rotations and scaling, while

some are tailored specifically for a particular dataset, for

example, number of leaves and their orientations in a plant,

following a set of formal rules supplemented by random pa-

rameter distribution in a reasonable range.

The Computer Vision Problems in Plant Phenotyping

(CVPPP) dataset was created specifically for expected con-

tributions in image based learning related to plant phenotyp-

ing [38, 4, 26]. The rosette image dataset is complemented

by two ongoing competitions, the Leaf Segmentation Chal-

lenge and Leaf Counting Challenge (LSC, LCC respec-

tively), hosted and maintained by CVPPP [25]. Arabidop-

sis was selected as it is the plant with best known genetics,

has a short life span, and a dataset was created in a con-

trolled environment with manual annotations of leaf masks

as ground truth. Several approaches tackling this dataset are

described in [39]. Introduced in 2014, the dataset and on-

going challenge already gained considerable impact in plant

phenotyping research [45]. We also tested our methods on

another plant image dataset, collected by Rahan-Meristem

[32], as part of a pilot phenotyping project, for future re-

search into early detection of plant stress and prediction of

growth stages. This set consists of 50 images of mature av-

ocado in a plantation, with accurate manual segmentation

of all leaves. Each of these images contain between 20 and

80 leaves.

We propose two methods for augmenting an image set

by generation of photorealistic synthetic images, preserv-

ing geometry and texture as appearing in complex real

world agricultural scenes. We demonstrate the applicabil-

ity of these methods to boost a deep neural network per-

formance in accurately counting and segmenting leaves in

diverse photographing conditions. Our main contribution

is simulation of data to enlarge the existing data-set with

a novel method of synthesizing realistic plant images. In

the next section we review several papers concerned with

data augmentation aimed specifically for identifying plant

parts, especially rosette leaves. The Methods section de-

scribes our approach and strategy for collaging leaf images

as means for data augmentation, and the Results section

presents qualitative and quantitative results.

2. Related Efforts

Taking a deeper inspection at recent efforts focusing on

data augmentation by synthesizing leaf images, most draw

their ideas from three main approaches: Graphical Mod-

eling, Domain Randomization and Generative Adversarial

Networks. Other attempts addressing leaf segmentation and

counting rely heavily on neural networks (aimed at im-

age processing tasks), but use a limited augmentation, or

train on other datasets, or apply pre-processing, such as

color transform, brightness and contrast adjustments, but

not specifically designed for fine contouring of leaf shape

nor refined realistic texture. Ubbens & Stavness [47] intro-

duce an open source platform for plant phenotyping, pro-

vide pre-trained networks for common plant phenotyping

tasks.

Graphical Modeling. Formalizing plant structure by

mathematical models was introduced by Lindenmayer,

known as L-systems. Formal grammars with a set of rules

(functions) are utilized to produce chains of elements rep-

resenting plant parts - stems, leaves, roots. These models

originated in an attempt to assist biological understanding

of cell structure and development by formal mathematical

models [23]. Later, these ideas were applied in graphical

simulation of plants [31], for rendering synthetic images,

and for creating augmented datasets required to train deep

neural networks. Mundermann et al. empirically model

3D graphical representations of arabidopsis [27]. After

collecting thousands of measurements of real plants from

seedlings to maturity, they infer growth curves of shape,

size and position of leaves and stems, and their development

over time. Ubbens et al. introduced a parametric version of

L-systems for generating synthetic rosettes [46]. Simulat-

ing growth stages by parametrizing plant components, they

argue that images of real/synthetic plants are significantly

interchangeable when training a neural network.

Domain Randomization. The main purpose of Do-

main Randomization is to tackle the task of object local-

ization, instance detection and possibly object segmenta-

tion. A few works demonstrate the capability of training

entirely on synthesized images, intended for testing on real

world scenes. This approach intentionally abandons photo-

realism by random perturbations of the environment, such

as random textures, thus attempting to force the neural net-

work to learn the essential features of the objects [44]. In

practice, this is implemented by developing a simulator pro-

ducing randomized rendered images. The reasoning is that

with enough variability in the simulator, images from the

real world should appear to the model as just another vari-

ation [43]. Applying Domain Randomization to arabidop-

sis images is described by Ward et al. [48]. Their method

synthesizes random textures of leaves and background, and

constructs separate leaves by deforming a canonical tem-

plate of a leaf. Leaf positions are randomized in a unit

sphere, and random camera positions and lighting are ap-

plied to produce the images. The main drawbacks of this

approach are that leaves are assumed to be planar, textures

have a cartoon-like appearance, and it does not handle back-

ground.

Generative Adversarial Networks. Recently achieved



popularity for creating realistic image sets, Generative Ad-

versarial Networks (GAN), first introduced by Goodfel-

low et al. [17], are intended for training neural networks.

Two recent papers apply conditional Generative Adversar-

ial Networks (cGAN) to generate artificial images of ara-

bidopsis plants, targeting the Leaf Counting/Segmentation

challenge. The condition serves as restriction on the train-

ing process, is supplemented to the input, and fed to one

or more of the networks’ layers. Giuffrida et al. propose a

process starting with random noise, taking number of leaves

as the condition concatenated through the networks’ layers,

ending up with 128×128 pixel RGB images of simulated

arabidopsis [16]. Zhu et al. first produce masks in a struc-

tured manner, used as input to a GAN [50]. Individual leaf

masks are selected from the ground truth masks, split into 5
folders by size, and arranged in a logical order by rotations

and zooming with small randomization, and placing smaller

leaves on top. These synthesized mask images serve as con-

dition to the generator, which outputs pseudo-real images,

replacing leaf masks and mask background with RGB tex-

ture.

Limited Augmentation. In addition to the previously

mentioned articles, all incorporating data augmentation and

synthetic image generation, several other approaches have

been applied for segmentation and counting tasks, in par-

ticular dealing with the arabidopsis dataset. Pape & Klukas

used image processing tools - colorspace transform, Gaus-

sian blur, morphological operators and Euclidean distance

maps to distinguish between individual leaves, and trained

a random forest classifier for leaf border detection [29, 30].

De Brabandere et al. propose a discriminative loss function

for clustering pixels belonging to the same instance and use

flipping, rotations and scaling for augmenting the training

set [7].

Several attempts using Recurrent Neural Networks

(RNN) have been proposed: Romera-Paredes & Torr [36]

suggested an architecture starting with a CNN to extract

image features. Ren & Zemmel performed dynamic Non

Maximal Suppression to handle occlusions [33]. Salvador

et al. added a encoder-decoder model [37]. A recent RNN

based article also reports on collection of a new arabidop-

sis dataset, time-series image sequences of four accessions

under controlled acquisition, in hope and expectation of fur-

ther research [28].

Other efforts tackle only the counting problem, and treat

counting as a direct regression problem, without attempting

to segment individual leafs. Dobrescu et al. use a modi-

fied version of Resnet50, applying limited augmentation -

rotations, zooming, and flipping of the original images [8].

Aich & Stavness apply intensity saturation, Gaussian blur

and corresponding sharpening, in addition to rotations and

flipping, and use a modified version of SegNet [1]. Count-

ing leaves by learning features in a non-supervised dictio-

nary learning fashion, without neural networks, was con-

sidered by [15]. Giuffrida et al. designed a deep learning

architecture for leaf counting, using augmentation during

training [14]. A note should be made that efforts aimed

at counting, even if best at predicting number of objects

in a snapshot, do not directly address leaf texture nor ge-

ometry. Other attempts, while performing fine positioning

of leaves [46, 48, 50] generate or rely on exaggerated syn-

thetic leaves, lack real-world textures and diverse geome-

try, especially leaf contours and their appearance in digital

images. The reader interested in works concerned with im-

age analysis of rosette plants, which do not mention data

augmentation nor synthetic generation, is also referred to

[20, 2, 49, 22, 3, 5]. In the next section, we discuss data

augmentation for the specific task at hand, by image synthe-

sis using a model in which leaves are extracted from images

of real plants.

3. Methods

Presented here is a method for generation of synthetic

images, a technique we term collage. The basic idea is cre-

ating a set of segmented leaf images on a transparent back-

ground, a single leaf per image, using manual annotations or

an automatic procedure. In the basic scheme, single leaves

undergo geometric transformations with random parame-

ters in a fixed range, and pasted in random locations over

selected backgrounds. The advanced scheme takes into ac-

count the logical-semantic relationships among objects, in

this case structuring and positioning of leaves as part of the

whole plant. We apply an algorithm specifically tailored for

generating images that seem highly realistic, as if actually

taken from the target dataset. In case of plants, especially if

photoed during a controlled environment, the structuring of

leaves as part of the whole plant is important, as well as col-

laging a photorealistic image in terms of geometry, texture,

occlusions, and background.

The basic and advanced schemes are termed naı̈ve col-

lage and structured collage, respectively. The naı̈ve collage

is intended for “in the wild conditions”, when minimal col-

lection of data and annotations are available, and still ex-

pecting to do some predictions. The structured collage ex-

ploits certain plant structural attributes assumed or known

to be correlated to measurable phenomena. We address

the following issues, and elaborate on them in the follow-

ing paragraphs: leaf (object) shape, size, location, ordering

and positioning of leaves (object parts) as part of the whole

plant, and image background.

3.1. Naı̈ve Collage

The naı̈ve collage is composed of previously segmented

objects on a transparent background. The objects are then

positioned on selected background images, AS IS, without

any logical-semantic relationships among objects. At first,



this technique was tried on a relatively basic scenario: The

raw data consisted of 50 high resolution RGB images of av-

ocado leaves (3000×4000 pixels), supplemented with high

quality manual annotations (mask per object) of most visi-

ble leaves, see Figure 1.

Figure 1: Mature avocado leaves: Left – original image,

Center – original with manual annotations, Right – anno-

tation detail. Marked leaves are alpha blended for display

purposes.

From the original set of annotated avocado images we

extract a set of “suitable” leaves, by three criteria: (1) Size

(2) Not occluded by other objects (3) Clear and focused ap-

pearance. The resulting set consists of ∼200 leaves (out of

∼3000 original leaves), a sample displayed in Figure 2. The

reasoning behind discarding occluded leaves is so the gen-

erated image will be as realistic as possible; in the wild it

is uncommon to see cut leaves, and the appearance of par-

tial objects is a side effect of the collage algorithm. Small

and blurry looking leaves are removed due to our deliberate

intention of detecting only leaves having a clear and sharp

appearance in the image. These masked leaves were scaled

to 600 pixels in the largest dimension, preserving the aspect

ratio, thus enabling to collage a few dozen leaves in a single

1024×1024 image such that each leaf can be seen clearly.

Figure 2: Examples of segmented avocado leaves used for

naı̈ve collages.

As background for the synthesized images we used

cropped images of size 1024×1024 from a set of 24 high

resolution agricultural images, not including clearly seen

avocado leaves (see Figure 3). The rationale for background

selection is based on the intention of accurately detecting

fine looking objects, (i.e., leaves of a certain crop), and

distinguish them from other botanical objects (stems, fruit,

ground), mostly appearing in images as a composition of

green shades.

Figure 3: Examples of agricultural scenes used as back-

ground for naı̈ve collages.

The collage is created by positioning 10 to 40 segmented

leaves (random number in arbitrary but fixed range) in ran-

dom locations, scale and rotations on top of a background

image. The location of each leaf is randomly selected, the

only restriction is that the leaf center remains inside the

background image (1024×1024). Horizontal and vertical

scaling are independent, with random values between 0.4
and 1.1. The rotation angle of each leaf (with respect to

its original orientation) is randomly selected in the range

0−359 degrees. We did not apply affine or projective trans-

formations, in order to preserve the original point of view,

although it can be done as well. Parallel to image creation,

we generate corresponding masks fitting the created image;

examples are displayed in Figure 4.

Figure 4: Generated images and corresponding masks from

the avocado training set.

3.2. Structured Collage

The extended collage version takes into account the logi-

cal order, structure, and hierarchical relationship among ob-

jects placed in the image, specifically the location, size and

shape of individual leaves as part of the whole plant. This is

especially important in case of specific datasets such as the

arabidopsis and tobacco images, all photoed from above,

capturing plant structure at progressive development stages.

It should be noted that although we present a description for

synthesizing images with appearance akin to this specific

dataset, similar steps, with fine tuning of parameters, can

be employed for datasets based on different plant species

or other image acquisition systems. In short, the process



for collage generation consists of selecting an appropriate

background, creating a set of aligned leaves in canonical

form, and logical insertion of leaves from this set onto the

image. The workflow is depicted in Figure 5; details and

considerations of this collaging process are described in the

following paragraphs.

Background images. As a first step we created 112
background images, using original images from the dataset

and applying a semi-manual segmentation of the plant from

the background by activation of a heal-selection filter [13].

In total, 16, 26, 26 and 44 background images were created,

matching the A1, A2, A3 and A4 subsets, respectively. Ex-

amples are displayed in Figure 6.

Leaves in canonical form. In the next step all leaves

were cut from the training set images according to their

masks, and rotated to align them in canonical form. The

rotation angle was determined as the angle between the hor-

izontal axis and the leaf’s principal axis, defined as a seg-

ment connecting the plant center (as manually marked) and

the farthest mask pixel from the center. In all the aligned

images the central pixel in the bottom row corresponds to

the plant center. An example of original leaf image, princi-

pal axis and aligned form are depicted in Figure 7.

As a result 11096 aligned leaf images were created:

2088, 287, 146, and 8575 in the A1, A2, A3 and A4 sub-

sets, respectively. However, many of these leaves are not

suitable for generation of realistic images; the main criteria

for retaining leaves are: (1) the leaf mask contains no more

than one component, (2) the leaf base is not too far from the

plant center, and (3) the leaf appears fully (or almost) in the

image, with minimal occlusion.

Examples of discarded leaves are shown in Figure 8. Af-

ter removal, 5883 (∼50%) were left: 1363, 219, 102 and

4199 in the A1, A2, A3 and A4 categories, respectively.

Note that although these leaves are discarded from the

aligned set used in the generation procedure, similar look-

ing partial and occluded leaves are expected to be detected

and masked. The generation procedure, described in the

next section, produces just this kind of occlusions, as well

as full leaves.

Synthetic image generation. Following our intention to

create realistic images, we heuristically attempt to imitate

the plant’s structure, using visual observations as rules of

thumb: (1) The plant spawns from a point near the pot’s

center. (2) All the leaves grow from this point towards the

periphery. (3) Leaf size and distance from the center are

correlated. (4) Angles between leaves follow a certain dis-

tribution.

The main idea of image generation is the same for all

datasets although each of the four subsets (A1-A4) should

have its set of parameters fine-tuned. These include plant

center, leaf size distribution and inter-leaves angle random-

ization. We define a Length Mapping Vector for each image

in the training set, comprised of leaf lengths, sorted in de-

scending order. These vectors induce the number of leaves

to be inserted in the synthesized images, their ordering in

the plant and their approximate sizes. The synthesized im-

ages are generated according to the following steps:

1. Randomly select a background image from the back-

ground image list of the specified set.

2. Randomly select the plant center coordinates, up to a

maximal value from the image center.

3. Randomly select a length mapping vector.

4. Add first leaf (from the aligned set) with a random

rotation angle. The leaf is selected from a subset of

leaves with length in a range close (±3 pixels) to the

first value in the length mapping vector.

5. For each additional leaf:

(a) Select leaf from the aligned set, with length

approximating the corresponding length in the

length mapping vector.

(b) Select leaf angle based on previously added

leaves. (last added leaf on top.)

In a formalized manner, let us define:

lj as leaf j in a n-leaf dataset L = {lj}
n
j=1

,

Ik as background image k from the background set,

Iik as background image k with i added leaves, (note Ik =
I0k , by definition),

and Ti(I, l) as an operator adding leaf l to image I as ith

leaf in the image. (note i ≥ 1).

The synthesized image is initialized as I0k . Adding leaf

j to background image k containing i− 1 previously added

leaves results in image Iik, specified by

Iik ← Ti(I
i−1

k , lj). (1)

Since the process is iterative, it follows that,

Iik ← Ti(Ti−1(I
i−2

k , lj′), lj) (2)

Iik ← Ti(· · ·T1(I
0

k , lj1) · · · , lj). (3)

The operator Ti is dependant on a few parameters,

namely leaf location and rotation. T1 is initialized with

a plant center location (x, y), a first leaf angle α1, and a

length mapping vector ~v. Values of x, y, α1 are randomly

chosen from a fixed range; ~v is selected from the mapping

vectors of the dataset. These values remain constant till the

end of a single image creation,

T1 ⇐ ((x, y), α1, ~v). (4)



Figure 5: Structured collage generation pipeline.

Figure 6: Clean background images, extracted from the A1-

A4 rosette subsets.

Figure 7: Arabidopsis leaf: Left – original, Center – with

principal axis originating in plant center, Right – aligned in

canonical form.

Figure 8: Examples of arabidopsis leaves discarded from

the generation procedure.

Obviously, while trying to simulate plant structure by ob-

ject collaging, Ti’s angle αi is a function of number of ob-

jects and all angles of previously added objects, and can be

defined iteratively by

αi = f(αi−1, i). (5)

Taking a look at the rosette dataset [25], we notice ap-

proximately 120◦ between consecutive leaves, and similar

to [46], a basic formulation of αi can be stated as

αi = αi−1 + 125◦ ± 10◦ (6)

Observing that rosette leaves grow in triads, with slight

modification, first triad as before αi = αi−1 + 125◦ ± 10◦,

and first leaf (only) of each new triad 60◦ ± 10◦, 30◦ ± 5◦,

etc.

Parameters chosen for each dataset are presented in Ta-

ble 1. The size of the training images is restricted to multi-

ples of 64 due to memory alignment. Plant center locations

are from a threshold range surrounding the image center.

Examples of synthesized images of rosette plants simulat-

ing the A1-A3 subsets are displayed in Figure 9.

Table 1: Datasets train parameters

Data- Original Train Image Plant center

set image size image size center delta

A1 530×500 512×512 (256, 256) 40×40

A2 530×565 512×512 (256, 256) 40×40

A3 2448×2048 2048×2048 (1024, 1024) 160×160

A4 441×441 448×448 (224, 224) 35×35

4. Results

Segmentation and counting tasks were jointly performed

with the publicly available Matterport implementation [24]



Figure 9: Examples of generated images and masks simu-

lating the A1, A2 (arabidopsis) and A3 (tobacco) subsets.

of Mask-R-CNN [19], pre-trained on the COCO dataset.

The naı̈ve collage is used in the avocado case, more suit-

able for ”in the wild” circumstances, containing images

from various camera positions and include a variety of light

conditions. The structured collage is aimed at the CVPPP

dataset, acquired under controlled, consistent conditions,

and exhibiting coherent plant structure.

4.1. Naı̈ve Collage

To test the networks performance we use a single image

from the manually annotated dataset, leaves of which were

separated from the training set. These leaves are expected

to be segmented by the network, after training on collaged

images. We decided to evaluate correct segmentation by

comparing leaf area for all leaves in the test image having

mask areas over a fixed threshold (700 pixels). For correct

segmentation we assume at least 0.8 IoU (Intersection over

Union) of leaf area with respect to its manually annotated

counterpart - mask area of the ground truth. Instance seg-

mentation is visualized in Figure 10. Figure 11 shows num-

ber of leaves detected and misdetected, by training epochs.

4.2. Structured Collage

As detailed in the Methods part, the network was trained

on structured collage images. Although the collages are

generated from extracted leaves and corresponding masks,

we did not use the original images, nor transformations of

the originals, in the training process. For validation we used

the original training data of the four subsets A1 - A4, con-

taining ground truth instance segmentations per leaf. We

did not use the leaf centers, nor the foreground/background

masks of the whole plant, also supplied as part of the ground

truth training data.

Figure 10: Avocado test image: original and segmentation

result. Detected leaves are alpha blended for visualization;

gray color indicates less than 0.8 IoU of leaf area with re-

spect to the ground truth.

Figure 11: Detection vs misdetection rates on avocado

leaves, by training epochs.

Performance in the Leaf Segmentation and Counting

Challenges is evaluated by several criteria, fully described

in [6]. Since our main goal is accurate leaf contouring, deci-

sion was to focus the BestDice score, measuring degree of

overlap between leaf segmentation results and the ground

truth. First we validate the network’s performance with the

evaluation script supplied by the challenge, training each

subset separately. This allows us to choose the best epoch

for each subset and run the test with this epoch’s weights.

Visualization of a training example from the arabidopsis A1

category, its ground-truth leaf masks and the network’s seg-

mentation results are presented in Figure 12.

Table 2: Evaluation scores

A1 A2 A3 A4 A5 Mean

BestDice 88.7 84.8 83.3 88.6 85.9 86.7

FgBgDice 89.1 87.9 82.3 88.4 87.0 87.1

AbsDiffFG 5.30 1.89 2.01 4.81 4.01 4.11

DiffFG -5.30 -1.67 -1.69 -4.81 -3.88 -4.01

The network’s performance, by training epochs, is pre-

sented in Figure 13 (BestDice evaluation) and Figure 14



Figure 12: Structured collage result example: Left – train-

ing image, Center – training mask, Right – network seg-

mentation of the image.

Table 3: Segmentation performance comparison (BestDice)

A1 A2 A3 A4 A5 Mean

Romera [36] 66.6 - - - - -

Pape [29] 74.4 76.9 53.3 - - 62.6

Pape [30] 80.9 78.6 64.5 - - 71.3

Salvador [37] 74.7 - - - - -

De Brabandere [7] 84.2 - - - - -

Ren [33] 84.9 - - - - -

Zhu [50] - - - 87.9 - -

Ward [48] 90 81 59 88 82 81

Ours 88.7 84.8 83.3 88.6 85.9 86.7

(absolute difference in count). Although we expect to see

some over-fitting in the evaluation graph (recalling that

training and validation data are different), the network’s per-

formance remains stable from epoch 400, as can be seen in

both figures. Evidently, scores on the A2 and A3 subsets

are poorer in segmentation accuracy and better at count-

ing, compared to A1 and A4. A possible explanation is the

smaller sets of extracted leaves from the A2,A3 categories

that the network was trained on. Since the optimization loss

is a combination of five functions, this scenario leads the

network learning, while struggling to improve segmentation

loss, to direct its efforts on count loss. Table 2 presents our

results on all the A1-A5 datasets and mean over all subsets.

Table 3 compares BestDice evaluation of segmentation per-

formance. Note that most works report results on the A1

subset only, and that the A4,A5 subsets were added at a

later date. Few other features were tried for improving the

obtained results, most notable alpha blending of leaf bound-

aries and blurring the boundaries using mean or Gaussian

filter. Although some of these attempts enhance image real-

ism and especially boundaries between the objects, they did

not lead to improved results. In spite of this fact, our recom-

mendation is to continue research in this direction since the

weakest point of the current state is separation between two

(or more) overlapping leaves. Specifically, we suspect that

fine tuning of leaf boundary adjustment will lead to closer

correlation between the synthesized and real images.

Figure 13: BestDice evaluation on training data on the four

categories of the dataset.

Figure 14: Absolute difference of counting error on the four

categories of the dataset.

5. Conclusions

We have shown that data augmentation preserving geo-

metric features and sophisticated positioning of objects en-

hances network performance in the tasks of object instance

detection and segmentation. The suggested method was

tested on the publicly available dataset of rosette plants, and

achieved high scores on the leaf segmentation and counting

tasks. We hope this modest contribution will serve to moti-

vate further investigation of integrating synthetic data aug-

mentation with real world botanical scenes for various plant

phenotyping tasks. Similar structured collaging techniques

may well be adapted to other domains, such as autonomous

navigation, urban modeling, satellite and medical imagery.
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