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Abstract

Lodging, the permanent bending over of food crops,

leads to poor plant growth and development. Consequently,

lodging results in reduced crop quality, lowers crop yield,

and makes harvesting difficult. Plant breeders routinely

evaluate several thousand breeding lines, and therefore, au-

tomatic lodging detection and prediction is of great value

aid in selection. In this paper, we propose a deep convo-

lutional neural network (DCNN) architecture for lodging

classification using five spectral channel orthomosaic im-

ages from canola and wheat breeding trials. Also, using

transfer learning, we trained 10 lodging detection models

using well-established deep convolutional neural network

architectures. Our proposed model outperforms the state-

of-the-art lodging detection methods in the literature that

use only handcrafted features. In comparison to 10 DCNN

lodging detection models, our proposed model achieves

comparable results while having a substantially lower num-

ber of parameters. This makes the proposed model suit-

able for applications such as real-time classification us-

ing inexpensive hardware for high-throughput phenotyping

pipelines. The GitHub repository at https://github.

com/FarhadMaleki/LodgedNet contains code and

models.

⋆ Co-first authors.

1. Introduction

Lodging occurs when plant stems break or bend over so

that plants are permanently displaced from their optimal up-

right position. It is a common problem for many crops, in-

cluding wheat and canola, and can be caused by external

forces, including wind, rain, or hail [23], and morphologi-

cal factors, such as thin or weak stem structures.

Multiple studies on rice, wheat, and oats have shown that

lodging can cause grain yield loss and deterioration in seed

quality [10]. In addition, lodging can cause problems for

harvest operations often resulting in increasing the demand

for grain drying, which raises production costs. In most

crops, severe lodging results in as much as a 50% yield re-

duction [2]. For plant breeders, it is important to identify

lodging-resistant varieties from thousands of experimental

plots. Therefore, automatic lodging detection methods from

overhead images are valuable. In addition, crop insurance

claims following wind/hail storms currently require manual

assessment of crop damage. Lodging detection from aerial

drone-acquired images could provide a faster and more ac-

curate assessment of the area and severity of lodging within

a field.

Researchers have developed some field methods to cope

with lodging and determine the best way to obtain the max-

imum harvestable product. However, manual in-the-field

assessment requires estimating the part of the field that is

lodged and the degree of lodging plants relative to their ver-

tical axis. These manual measurements are time-consuming



and costly [1], as well as quite subjective. To monitor

crop lodging within an entire field, unmanned aerial ve-

hicles (UAVs) may automatically collect high-resolution

aerial images to detect the lodging in a simple, flexible,

cost-effective way [25]. Then image analysis techniques

can be used for automatic lodging detection.

We propose a deep convolutional neural network archi-

tecture that couples handcrafted and learned features to de-

tect lodging. Previously in the literature, only methods

based on handcrafted features have been used for lodging

detection from images [14, 22, 24, 25]. Deep convolutional

neural networks (DCNNs) have been successfully applied

to a wide range of image classification tasks [4, 6, 7, 9, 15,

19]. However, to the best of our knowledge, they have not

been used for lodging detection. In general, methods that

only rely on handcrafted features often achieve lower ac-

curacy in comparison to deep CNN models. They are also

sensitive to noise. DCNN-based models, on the other hand,

often disregard research on problem-specific handcrafted

features. Furthermore, they need a substantial amount of

training data to achieve high accuracy.

To avoid the shortcomings of both approaches and to

benefit from their strengths, in this paper, we propose

LodgedNet, an architecture that uses a DCNN-based model

together with two texture feature descriptors: local bi-

nary patterns (LBP) and gray-level co-occurrence matrix

(GLCM) for crop lodging classification. We also devel-

oped 10 DCNN-based models using well-established ar-

chitectures. LodgedNet is designed to offer rapid training

and prediction time while achieving accuracy comparable

to that of the 10 DCNN-based models. To the best of our

knowledge, there is no DCNN-based model in the literature

applied to lodging detection. This work offers a compre-

hensive study of CNN architectures (including LodgedNet)

for lodging detection.

The rest of the paper is organized as follows. Section 2

presents the related work on lodging detection. In Section 3,

we describe the lodging datasets for wheat and canola and

present the proposed architecture. Section 4 presents ex-

perimental results. Section 5 discusses the results and the

utility of the proposed architecture for similar applications

in agriculture. Finally, Section 6 ends the paper with a short

summary and conclusion.

2. Related Works

Rajapaksa et al. [14] used handcrafted features and a sup-

port vector machine (SVM) for lodging classification using

data obtained from drone imagery. They extracted features

using a gray level co-occurrence matrix (GLCM), local bi-

nary patterns (LBP), and Gabor filters. Then they used an

SVM to classify the feature vectors extracted from images

of lodged and non-lodged plots. Their method was designed

for grayscale images and they used information only from a

single image channel to predict lodging.

Wang et al.[22] proposed a method for lodging detec-

tion using pixel information obtained from wheat plot im-

ages taken by drones. They calculated nine colour features

based on pixel values. In addition, they obtained 13 fea-

tures from the nine colour features using the ENvironment

for Visualizing Images (ENVI) software. They then used a

thresholding approach to discriminate lodged pixels. Their

approach solely relies on thresholding and pixel values and

disregards spatial information and high correlation among

pixel neighbourhoods. This makes the result sensitive to

noise.

Yang et al. [25] proposed a spectral and spatial hybrid

image classification method to detect rice lodging using im-

ages taken by drones. They obtained spatial information,

including height data, using the IBM 3D construction algo-

rithm and texture features. In addition to spatial information

of the field, they extracted spectral information of each pixel

using single feature probability (SFP). Then the extracted

features were used by a decision tree classifier and a max-

imum likelihood classifier to detect lodging. Using RGB

images and texture features, they achieved an accuracy of

88.14%. Incorporating pixel-wise spatial information, they

achieved the accuracy values of 90.76% and 96.17% us-

ing the maximum likelihood classifier and the decision tree

classifier, respectively. However, extracting spatial features

requires using extra equipment that makes this approach ex-

pensive and time-consuming.

Yang et al. [24] (a different group of researchers) used

satellite data (RADARSAT-2) to detect lodging in wheat

fields. They extracted a set of sensitive polarimetric fea-

tures and backscattering intensity features from five consec-

utive RADARSAT-2 images throughout the entire growing

season to detect lodging. Using this approach they were

able to identify lodged fields. However, plant breeders re-

quire lodging detection on the much smaller scale of their

breeding plots which typically rectangular plots measuring

a few meters on each side. Satellite imagery cannot provide

the required resolution for assessment of individual breeder

plots of this size.

In this research, we design an architecture based on

handcrafted and DCNN features. Combining these types

of features have been proposed previously [5, 12, 21]. Us-

ing an image along with Gabor filters extracted from that

image as input to the network, Hosseini et al. [5] achieved a

higher accuracy compared to several traditional and CNN-

based models. Wang et al. [21], using a cascaded approach

based on combining a CNN model and handcrafted fea-

tures, proposed a computationally efficient model for count-

ing the number of cells undergoing mitosis. Nguyen et

al. [12] used a CNN model and multi-level local binary

pattern (MLBP) for presentation attack detection (PAD) in

face recognition. They combined features extracted from a



CNN-based model and the multi-level local binary pattern

(MLBP) method to build a support vector machine classi-

fier. Their model achieved a higher accuracy compared to

previous PAD methods.

To the best of our knowledge, all of the published work

on crop lodging detection have been developed using hand-

crafted features tailored to one or a few specific types of

crops. Although models based on handcrafted features are

often computationally efficient and applicable even in sit-

uations where we do not have access to a large number of

training examples, these models often have been designed

for a specific crop type and might not achieve a compa-

rable accuracy when applied to other crop types. Further-

more, adjusting a handcrafted feature to a different task

often is not straightforward and requires further research.

Deep convolutional neural networks (DCNN), on the other

hand, have proven to be an effective approach in machine

vision. However, DCNN-based models often require a large

amount of training data. In this paper, we propose a model

that benefits from the strengths of both handcrafted features

and also DCNNs, and avoids the shortcomings of these ap-

proaches.

3. Materials and Methods

3.1. Data Set Description

The wheat and canola datasets used in this study were

obtained from two breeding field trials. Plot images were

taken with a Draganfly X4P quad-copter (Draganfly Inno-

vations Inc., Saskatoon, SK, Canada) carrying a MicaS-

ense RedEdge camera (Micasense Inc. Seattle, WA, USA)

in the summer of 2016. This camera captures images with

five spectral channels: red, blue, green, near infrared, and

red-edge. Agisoft Photoscan (Agisoft LLC, St. Peters-

burg, Russia) was used to stitch images and obtain a high-

resolution orthomosaic image of each field. The ground res-

olution of the obtained images is approximately 15 to 26

mm/pixel for each band. Images were taken at a height of

20 meters for canola and 30 meters for wheat. Figure 1

shows the orthomosaic image extracted from the red, green,

and blue channels.

3.2. Data

Two orthomosaic images for wheat (9492 × 8340 pix-

els) and seven orthomosaic images for canola (9492× 8340

pixels) are used in this study. Each field is organized into

several columns, and each column is divided into several

small plots (see Figure 1). Table 1 represents the number of

extracted plots for wheat and canola categorized as lodged

and non-lodged.

We extracted image samples with dimensions 60 × 100

and 118 × 348 pixels from wheat and canola plots, respec-

tively (the different sample sizes are due to the wheat and

Figure 1: An RGB orthomosaic image for a wheat trial.

Samples Non-lodged Lodged Total

Wheat 285 180 465

Canola 1170 468 1638

Table 1: Number of samples for wheat and canola datasets

for each class.

canola plots being of different physical size). Ground truth

labels of “lodged” or ”not lodged’ were provided by a crop

agronomist and a plant scientist. Figure 2 illustrates lodged

and non-lodged samples from wheat and canola plots.

We randomly split each dataset into training and test sets.

We used about 80% of the images for training and the re-

maining 20% for the test set. Training data were split ran-

domly with 80% of training samples used for a training set

and the remaining 20% for a validation set. Table 2 shows

the number of samples in the training, validation, and test

sets.

Data
Wheat Canola

NL L NL L

Train 187 113 754 300

Validation 48 28 188 75

Test 50 39 228 93

Table 2: The number of non-lodged (NL) and lodged (L)

samples in the training, validation, and test sets.

3.3. The proposed architecture

Convolutional neural networks are a well-established ap-

proach in computer vision contributing to the success of

applications in image segmentation, object detection, and
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Figure 2: RGB images for wheat and canola: a) a non-

lodged wheat plot; b) a lodged wheat plot; c) a non-lodged

canola plot; and d) a lodged canola plot.

image classification [11, 16, 18]. In this section, we pro-

pose LodgedNet, which is a DCNN-based architecture for

lodging detection. LodgedNet, as illustrated in Figure 3,

consists of three main components: a CNN backbone, a

texture feature extraction module, and a classification mod-

ule. The CNN backbone consists of seven convolutional

layers, with 16, 16, 32, 32, 32, 32, and 64 filters respec-

tively. We used filters of size three, paddings of size one,

and Rectified Linear Unit (ReLU) activation functions. A

SpatialDropout [20] layer with a dropout rate of 0.5 was

used after each convolutional layer, except for the first and

third layers, to prevent overfitting. Max-pooling layers are

used before the third, fifth, and seventh convolutional lay-

ers, and after the seventh convolutional layer (See Figure

3). The texture extraction module extracts LBP and GLCM

features from each channel of the input images. These fea-

tures are image properties related to second-order statistics

that account for the spatial inter-dependencies of pixels at

specific relative positions. The extracted texture features

and the features generated from the last layer of the CNN

module are flattened and concatenated to be used as input

to the classification module. The classification module con-

sists of two fully connected layers, respectively of 128 and

two neurons, followed by a final softmax layer. To further

prevent overfitting one dropout layer [17] was applied be-

fore, and another after, the first fully connected layer. A

dropout rate of 0.5 was used for these layers. This archi-

tecture has been designed to achieve high accuracy while

having a small number of parameters to facilitate training

and deployment on low-cost hardware.

4. Experimental Results

4.1. Feature Extraction Module

In this section, we describe the model specification for

LodgedNet as well as the implementation details. The LBP

[13] and GLCM [3] texture extractor methods used in the

proposed architecture were applied with the following pa-

rameters. They are the same as those selected by Rajapaksa

et al. [14] in their work which uses only GLCM and LBP

for lodging classification. We extracted 16 contrast texture

features with GLCM using the normalized and asymmet-

ric 2D co-occurrence matrices for each channel of an in-

put image using four orientations (0◦, 90◦, 135◦, 180◦) and

four distances (1px, 2px, 4px, 5px). For LBP, we used 8-

bit rotationally-invariant uniform local binary patterns and

constructed 10-bin LBP histograms to be used as features.

In addition, we extracted 16-bin LBP variance histograms

and concatenated them with the 10 LBP features as recom-

mended by Ojala et al. [13]. For each image channel, 16

GLCM features and 26 LBP features were extracted. Then

these features were concatenated to be used as an input to

the classification module. The LBP and GLCM features

obtained using the “greycomatrix”, “greycoprops”, and “lo-

cal binary pattern” functions from “scikit-image” library.

4.2. Data Augmentation and Training

It is common practice to perform data augmentation to

further increase the generalizability of trained models. We

employed a number of transformations for data augmen-

tation. We resized the original images while preserving

their aspect ratios and then center-cropped the resized im-

ages to achieve fixed-size inputs of 64×128 for LodgedNet

and fixed-size inputs of 224 × 224 for all well-established

models except Inception-V3, where a fixed-size input of

299×299 is required. A cropped image undergoes a vertical

and a horizontal flipping each independently with a proba-

bility of 0.5. Each image was normalized by subtracting the

mean and dividing by the standard deviation, where mean

and standard deviation were calculated as the per-channel

mean and standard deviation of the training and validation

data.

All DCNN architectures were implemented in Python

using the PyTorch package Version 1.0 on a Intel Core i7-

5930K 3.5 GHz processor and NVIDIA GTX 1080 Ti with

11 GB graphical processing unit (GPU) and 32 GB RAM.

LodgedNet was trained on both wheat and canola sam-

ples from scratch, while for the 10 well-established models,

a version of the models pretrained with ImageNet data [9]

were used. To make a fair comparison, for the 10 well-

established models we redefined the classifier component

of each model to match that of LodgedNet’s classification



Figure 3: A schematic diagram of LodgedNet, the proposed architecture. All convolutional and fully connected layers are

followed by a dropout layer with a ratio of 0.5 except convolutional layers one and three; C represents the number of image

channels.

module. The pretrained models were further trained us-

ing two approaches. In the first approach, we let all pa-

rameters of the models be further trained using the lodg-

ing datasets. In the second approach, we froze all parame-

ters other than the parameters of the classifier component,

which were learned using the lodging datasets. In all exper-

iments, an Adam optimizer with a learning rate of 0.001,

and β1 = 0.9, and β2 = 0.999 were used. Also, we used a

batch size of 16 and number of epochs equal to 50.

Table 3 shows the results of LodgedNet and the 10 well-

established models for wheat and canola datasets, respec-

tively. Also, Table 4 illustrates the results of two state-of-

the-art methods using handcrafted features. These results

represent the first applications of DCNNs to the problem of

lodging detection.

5. Discussion

As can be observed from Table 3 and 4, LodgedNet

achieved comparable results to the 10 DCNN-based classi-

fiers and outperformed Rajapaksa et al.’s [14] state-of-the-

art model for both crops.

Table 3 shows the number of parameters for the archi-

tectures used in this study. LodgedNet has a substantially

lower number of parameters compared to all of the other

DCNN-based classifiers. For example, the number of pa-

rameters in VGG19 is about 432 times more than that of

LodgedNet. Among the DCCN-based models, SqueezeNet

has the smallest number of parameters, which is almost 3.7

times more than that of LodgedNet. Despite the substan-

tially smaller number of parameters, LodgedNet was among

the top three methods with the highest test accuracy for the

canola dataset and only misclassified two test samples from

the wheat dataset.

Furthermore, the small number of parameters makes de-

ploying LodgedNet on low-cost hardware possible, leading

to near real-time inference. Using drone imagery along

with mobile or low-cost portable computers, models such

as LodgedNet that are computationally less demanding will

be accessible to a wide range of agricultural applications.

However, a sound comparison of the inference time for

LodgedNet and the 10 DCNN-based models is difficult to

achieve due to several factors: LodgedNet works with both

three- and five-channel images, the input image dimensions

of the tested networks differ, and the DCNN backbones of

the 10 lodging detection models are highly-optimized im-

plementations from the torchvision package of PyTorch. As

a coarse comparison of these models, we used three-channel

(RGB) images to estimate the inference time as the aver-

age of inference times for test samples. As depicted in Ta-

ble 3, LodgedNet comes second to AlexNet in prediction

time while achieving comparable accuracy for wheat and a

substantially higher accuracy for canola (about 10% higher)

when compared to AlexNet.

In this paper, we focused on proposing an architecture

that is not computationally demanding and makes using

handcrafted features possible. We used handcrafted texture



Architecture Wheat
Wheat

(FW)
Canola

Canola

(FW)

Number of

Parameters

Prediction Time

Canola (ms)

µ ± σ

Prediction Time

Wheat (ms)

µ ± σ

VGG19 [15] 98.68% 97.75% 98.75% 99.06% 143,667,240 5.75 ± 0.92 9.99 ± 0.00

VGG16 [15] 98.68% 96.62% 97.19% 98.44% 138,357,544 4.99 ± 0.75 4.99 ± 0.00

AlexNet [9] 98.85% 97.75% 89.09% 90.65/% 61,100,840 2.95 ± 0.65 2.83 ± 0.37

ResNet101 [4] 100% 95.50% 98.44% 98.44% 44,549,160 34.94 ± 4.67 41.66 ± 6.87

Inception-V3 [19] 100% 97.75% 99.68% 100% 27,161,264 36.66 ± 6.42 33.13 ± 4.52

ResNet50 [4] 97.70% 100% 99.06% 99.06% 25,557,032 18.88 ± 3.77 21.66 ± 3.73

DensNet201 [6] 98.85% 100% 98.75% 99.06% 20,013,928 81.39 ± 7.21 88.33 ± 14.62

DensNet169 [6] 100% 100% 98.75% 99.37% 14,149,480 67.12 ± 7.08 71.66 ± 10.67

ResNet18 [4] 100% 100% 99.37% 98.44% 11,689,512 7.18 ± 1.05 7.49 ± 0.5

SqueezeNet [7] 97.70% 98.87% 98.75% 98.75% 1,235,496 10.46 ± 1.73 9.99 ± 5.77

LodgedNet 97.70% - 99.06% - 332,306 2.99 ± 0.31 3.49 ± 0.49

Table 3: Comparison between the proposed model and the 10 lodging detection models developed based on well-established

architectures. Red, green, and blue channels were used as input images for wheat and canola; FW denotes the case of training

with frozen weights; µ and σ denote average and standard deviation of the prediction time in milliseconds. The models are

presented in descending order of number of parameters.

Case Wheat Canola

Methods RGB Five Channel Rededge RGB Five Channel Rededge

GLCM-based [14] - - 84.94% - - 72.86%

LBP-based [14] - - 96.77% - - 90.54%

LodgedNet 97.70% 97.33% - 99.06% 99.38% -

Table 4: Comparison between our method and Rajapaksa’s method [14] (state-of-the-art in the literature for lodging classifi-

cation) which used two handcrafted features for wheat and canola datasets on only one image channel.

feature extractors for lodging detection. However, the use

of handcrafted features is not limited to lodging detection

and such features are available for various application do-

mains. Using these features can help to increase model ac-

curacy, more specifically in domains where there is not a

large amount of training data available.

In this study, we used five-channel images taken by

drones for lodging detection. The results of our experi-

ments showed that even in the absence of red edge and near-

infrared channels, lodging detection can be performed with

high accuracy. However, red-edge and near-infrared chan-

nels might contribute to achieving higher accuracy in other

agricultural applications. We suggest using these channel

data, which are supported by LodgedNet, for other agricul-

tural applications.

5.1. Future Work and Limitations

LodgedNet used two handcrafted feature extraction ap-

proaches, namely GLCM and LBP. However, LodgedNet is

not limited to using these two feature extractors. Extending

LodgedNet to use other handcrafted features is suggested

as future research. Because lodging tends to make the tex-

ture of the overhead plot views more directional, we expect

that using Gabor filters [8] alongside GLCM and LBP might

lead to higher accuracy.

In this paper, we used LodgedNet for lodging classifi-

cation. However, the proposed architecture can be used to

tackle other image classification problems where there are

handcrafted features available from previous research. Al-

though models that only rely on handcrafted features often

lead to lower accuracy and higher sensitivity to noise, in

comparison to their DCNN-based counterparts, incorporat-

ing these handcrafted features in an architecture similar to

LodgedNet could potentially help with improving accuracy.

This approach could be of more value where there are rela-

tively few training samples available.

A limitation of our assessment of prediction time is that

it did not take into account the time to compute the LBP

and GLCM features. This took about 30ms on average

for a plot image input to LodgedNet because they were

computed with a single-threaded CPU algorithm but this is

not directly comparable to the DCNN forward pass predic-

tion times since those computations were performed on a

GPU. A parallelized implementation would greatly reduce

the LBP and GLCM feature computation time. Regardless

of this cost, the lower forward pass computation time of



LodgedNet should reduce training time because the LBP

and GLCM features can be pre-computed and do not need

to be extracted repeatedly for each training epoch or during

the tuning of hyper-parameters.

One limitation of the transfer learning used for the 10

DCNN-based models is that they have been trained using

RGB images and therefore the transfer learning using im-

ages that use extra channels such as red edge and near in-

frared cannot be used if we choose to use transfer learn-

ing. Considering the number of parameters for these mod-

els, training them from scratch requires a substantially large

number of training samples; otherwise, considering their

large capacity, they tend to overfit and the trained mod-

els are less likely to be generalizable to unseen samples.

LodgedNet, however, can be used with a variable num-

ber of input image channels because the number of chan-

nels, C, is a hyper-parameter. Our extensive use of Spa-

tialDropout [20] and regular dropout layers [17] provides

resilience to overfitting.

6. Conclusion

In this paper, we used DCNNs to address crop lodg-

ing classification. We trained 10 models based on well-

established DCNN architectures pre-trained on ImageNet

data. We then proposed a new architecture, LodgedNet,

that utilizes both DCNN and handcrafted feature extractors

to build a lodging prediction network. Our comprehensive

study of lodging prediction compared 11 DCNN architec-

tures, including LodgedNet. LodgedNet, as well as all of

the other DCNN architectures tested, outperformed current

state-of-the-art lodging detection models using only hand-

crafted features. LodgedNet’s prediction accuracy com-

pares favourably with the 10 other architectures tested while

having about one quarter of the number of trainable param-

eters compared to SqueezeNet, which is the next smallest

network. The fewer number of parameters in LodgedNet

accelerates training and inference time. It also facilitates

deploying LodgedNet on low cost hardware.

LodgedNet can be used for lodging detection in high-

throughput plant phenotyping scenarios. Such pipelines

will be critical in the future search for higher yield crops

varieties needed to feed a growing population.
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