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Abstract

Semantic segmentation can be regarded as a useful tool

for global scene understanding in many areas, includ-

ing sports, but has inherent difficulties, such as the need

for pixel-wise annotated training data and the absence of

well-performing real-time universal algorithms. To alle-

viate these issues, we sacrifice universality by developing

a general method, named ARTHuS, that produces adap-

tive real-time match-specific networks for human segmen-

tation in sports videos, without requiring any manual an-

notation. This is done by an online knowledge distilla-

tion process, in which a fast student network is trained to

mimic the output of an existing slow but effective univer-

sal teacher network, while being periodically updated to

adjust to the latest play conditions. As a result, ARTHuS

allows to build highly effective real-time human segmenta-

tion networks that evolve through the match and that some-

times outperform their teacher. The usefulness of producing

adaptive match-specific networks and their excellent perfor-

mances are demonstrated quantitatively and qualitatively

for soccer and basketball matches.

Code and video available in supplementary material.

1. Introduction

In computer vision, the task of semantic image segmen-

tation, which consists in assigning a label to each pixel of

an image, provides rich information upon which an edu-

cated understanding of the whole content of the image can

be drawn [8, 14]. Regarding sports videos, semantic seg-

mentation could be on the basis of automatic systems for

e.g. tactics analysis, players interaction, event classifica-

tion [5, 9], among numerous applications of computer vi-

sion in sports [15, 24]. However, despite being a valuable

tool, semantic segmentation comes with various difficulties,

which makes it an unsolved problem in the literature.

Annotation. The first challenge is the annotation issue.

Semantic segmentation is generally learned as a supervised

task, hence requiring ground-truth pixel-wise annotations, a

process that is too time-consuming to be handled manually

in every new specific context, as evidenced by the absence

of any such annotated dataset in sports. To counterbalance

the lack of annotated data, some authors generate synthetic

training images, as in [16, 20, 22], but the quality of the

data generated is often difficult to assess [12]. Another pos-

sibility to circumvent the problem of annotations is to use

transfer learning strategies, that is, models that have been

trained on annotated datasets are reused in a novel environ-

ment, in which no (or few) annotation is performed [17, 26].

Nevertheless, current benchmark datasets do not cover ev-

ery situation where semantic segmentation might be useful,

which makes transfer learning effective only when the target

domain is close to the source domain; the performances can

rapidly decrease otherwise. A compromise can be found by

using the transfer learning procedure on a subset of selected

classes as in [1], such as humans in sports scenes, in order

to have a partial semantic segmentation of the image.

Speed vs performance. Then comes the trade-off be-

tween speed and performance. For instance, on the

Cityscapes dataset [6], the current best algorithms [4, 32]

are rather slow, while the real-time ones [19, 27, 30, 31]

are not as good. Given that this dataset is meant to serve

for the autonomous vehicles industry, it is essential that

both performance-based and speed-based criteria are met

simultaneously, which is not the case at the moment. These

two aspects can also be required in sports video analysis

to provide real-time accurate information about the ongo-

ing match. A solution to benefit from the performances of

a slow model (which can be designed as an ensemble of

other models) and from the speed of a fast model is to per-

form a knowledge distillation from the slow one into the fast

one [3, 11, 21, 28]. The slow accurate network has the role

of a teacher, which is used as is to facilitate the training of

the fast network, which has the role of a student that has to

imitate its teacher’s behavior on a same input dataset. After

the training process, the student is supposed to be capable
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of real-time inference while showing good performances.

In the case of semantic segmentation, this can alleviate the

annotation problem for training the student if the teacher

is considered reliable enough to provide approximations of

unavailable ground-truth segmentation masks.

Generalization. A last problem can be the lack of gen-

eralizability of the models, whose origin is at least twofold

in sports video analysis: inter-sport variability, and intra-

sport variability. It is currently too ambitious to hope for

a universal system that can perform accurate semantic seg-

mentation on any sports video, which underlines the need

for developing sports-specific models. Besides, even within

videos from a similar view of a single sport, some play con-

ditions may change from one match to the next, such as the

teams and the color of their outfits, the advertisements, the

field, and some may even change during a match, such as

weather conditions in the case of outdoor events. Fast al-

gorithms can be less robust to such variations, which might

make them non-reusable from one match to the next. Rather

than trying to unify all these conditions within a same net-

work, it might be more appropriate to (re)train a scene-

specific network for every match in order to adjust to the

conditions of that match, in the same spirit as [2, 18]. This

is the motivation behind online learning (e.g. [23] and refer-

ences therein), in which the model is continuously updated

thanks to the availability of new information.

Our contributions. In this work, we propose a novel

method, named ARTHuS, to resolve at once the three is-

sues presented above for human segmentation during live

sports events. For a given match, ARTHuS produces an

excellent adaptive real-time human segmentation network

that evolves during the match, without having to manu-

ally annotate a single frame. This is achieved through an

online distillation of a slow well-performing teacher net-

work into a fast student network capable of real-time infer-

ence, which thus becomes match-specific. After describing

the method, we evaluate the performances of the networks

produced by ARTHuS quantitatively and qualitatively. We

demonstrate the superiority of adaptive match-specific net-

works over fixed sports-specific ones. Finally, we show that

the students may outperform their teacher, and we compare

the performances obtained with two student architectures.

2. Method

The core problem addressed in this paper is the issue of

performing an excellent real-time human segmentation in

sports videos. The ideal solution would be to develop an

algorithm which is well-performing, fast, and universal so

that it can be used to analyze every new match, regardless

of the sport. However, this last aspect is out of reach at

the moment. Consequently, in order to ensure performance

and speed, we sacrifice the generalizability requirement. In

fact, we target the opposite: we design a method that pro-

duces match-specific networks running accurately and in

real-time on the match that they are meant to analyze. This

is achieved by our novel online distillation process.

Elements borrowed from usual knowledge distillation.

The first step consists in choosing a “universal” trained

teacher network T and a student network S , possibly un-

trained. The teacher T has to be as efficient as possible for

our segmentation task, even if it means that its speed has

been sacrificed for the sake of performance and universal-

ity. The student S has to be capable to segment at least 25
frames per second to ensure real-time inference. Given an

unlabeled set of images X , the (offline) knowledge distilla-

tion from T into S on X can be divided into two parts:

1. Compute T (X ) by feeding every image of X into T

to obtain approximations of ground-truth segmentation

masks.

2. Learn S by supervised training with the dataset D =
(X , T (X )).

At the end of the training process, the student network S has

learned to mimic the behavior of T on X and hopefully has

become good enough to serve as a real-time segmentation

network for new unseen images.

Our online knowledge distillation method, ARTHuS.

In the case of sports events, many factors may change from

one match to the next or even within a match. Therefore,

there is no guarantee that S , obtained by offline distillation,

is able to generalize properly in novel circumstances, which

motivates the idea to train a new student adaptively during

every match. This leads us to propose the online distillation

strategy described hereafter.

Our approach involves the following components:

1. A trained teacher T which remains fixed through-

out the process and produces new approximations of

ground-truth segmentation masks on the fly.

2. A student Sseg that performs a real-time segmentation

of all the frames of the video stream. It adapts to the

match as its weights are periodically updated; its k-th

instance is noted S
seg

k
, where S

seg
0 is its initial instance,

used to segment the first frames of the stream.

3. A training dataset D that is updated during the match

and whose k-th instance is Dk = (Xk, T (Xk)).

4. A duplicate of S
seg
0 , denoted S train, which is trained

continuously during the match with the successive in-

stances Dk of D.

Our online distillation process can be explained in two re-

cursive steps. Firstly, S train starts training with Dk (i.e. T is



distilled into S train on Dk) while S
seg

k − 1
is used to segment

all the incoming frames and T (I) is computed for some

subset I of these incoming frames. Secondly, after a prede-

fined number of training epochs of S train on Dk, the weights

of S train are copied into S
seg

k − 1
, which is thus updated into

S
seg

k
, and Dk is updated into Dk+1 as the newly available

pairs (I, T (I)) replace as many existing pairs of Dk. Af-

ter these updates, Dk+1 is available, and S train resumes its

training but with Dk+1, while the rest of the process fol-

lows. This way, Sseg is a real-time segmentation network

which is constantly adjusted with respect to the latest play

conditions and thus becomes match-specific. The method is

summarized in Algorithm 1.

Algorithm 1 The proposed online distillation algorithm.

Choose T , initialize S
seg
0 and S

train, collect D1

while incoming video stream do

while S
train trains with Dk do

Segment all incoming frames with S
seg

k−1

Compute T (I) for some incoming frames I

end

S
seg

k−1
becomes S

seg

k
by copying weights of S train into S

seg

k

Dk becomes Dk+1 by replacing some data with (I, T (I))
Increment k by 1

end

As we focus on humans, through its successive instances

S
seg

k
(k = 0, 1, . . .), Sseg can be seen as an adaptive

real-time human segmentation network produced by our

method, which we name ARTHuS, illustrated in Figure 1.

ARTHuS depends on several choices, such as the net-

works and the update strategies. In this work, some partic-

ular choices have been made and are described below, but

it is important to underline that our method is not limited

to these choices. Many variants can be derived from the

founding principle described above.

Specific settings for this work. Data and hardware. The

sports videos used in this work are composed of frames with

dimensions 1920 × 1080 pixels from the main camera (see

supplementary material for details). The framerates pro-

vided for the algorithms are reported for images of these

dimensions on one NVIDIA Tesla V100 GPU.

Teacher network. Our choice of a fixed well-performing

universal teacher network T is Mask R-CNN [10], which

runs at ≈ 2 fps on our images and has 33.8 million param-

eters. We only use its segmentation masks related to hu-

mans as we aim to segment humans in sports videos. Mask

R-CNN operates in two steps: a detection of regions of in-

terest followed by a segmentation within these regions. In

order to focus on humans present on the field, after the de-

tection step of Mask R-CNN, only the regions that intersect

the field are kept. This filtering is performed using the seg-

mentation mask of the field, which we compute as in [5] for

our soccer experiments, and which is provided in a calibra-

tion file with the data for our basketball experiments. The

whole process of collecting the results of Mask R-CNN and

refining them to keep humans on the field produces training

images for the instances of D at the speed of ≈ 1 fps.

Student network. We choose the architecture presented

in [5], named TinyNet, for the fast student network Sseg. Its

inference speed is about 0.0165 seconds per image (≈ 60
fps) and the training time of its duplicate S train is ≈ 0.08
second per image. It is a lightweight variant of PSPNet [32]

with only 0.6 million parameters, which is about 100 times

less than the original PSPNet.

Initialization. At the beginning of a new video stream,

D0 is empty and the first minutes are used to collect and

annotate data with T in order to build D1, the first non-

empty instance of D. During that time, S train is on stand-by

until D1 contains enough images to start its training. We

consider that D1 is complete when it is composed of 200
annotated frames. Regarding S

seg
0 (the first instance of Sseg)

that segments all the frames of the video stream during the

building of D1, two approaches are tested: a random initial-

ization, and a copy of a network pre-trained by usual offline

distillation of T on six other matches of the same sport (see

supplementary material), which is noted Spretrained.

Training. In our setting, each Dk is composed of 200
frames but S train is actually trained on a subset of Dk cov-

ering the same game duration, built by selecting one frame

every three frames. This subsampling is performed to speed

up the training process of S train and thus increases the fre-

quency of the updates of Sseg, which strengthens its adapt-

ability during the match. We choose to train S train during 1
epoch with the subsampled version of Dk before updating

S
seg

k − 1
into S

seg

k
and Dk into Dk+1. It is trained one im-

age at a time (no batches) using the Adam optimizer [13],

and takes approximately 200/3 × 0.08 = 5.3 seconds per

epoch. The weighted cross-entropy loss is used to handle

the imbalance between human pixels and background pix-

els, whose ratio ranges from 1/50 to 1/20 in our images.

The weighting factor of the loss is recomputed for each Dk.

Updating Dk. For each k ≥ 1, the update strategy of

Dk follows the “first in, first out” rule, that is, the oldest

training images are replaced by the new ones. We choose to

replace the oldest frames instead of just adding the new ones

in order to ensure that S
seg

k
is adapted to the latest match

conditions and to keep the size of Dk constant, which allows

to have an almost constant training time per epoch for S train

and thus regular updates for Sseg.

3. Experiments

Our experiments are conducted on soccer and basket-

ball videos. The performances of the networks produced

by ARTHuS are assessed quantitatively as described below
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Figure 1. Illustration of our method, named ARTHuS. A real-time student segmentation network S
seg segments each frame of the video

stream while its duplicate S
train continuously trains to mimic a slow but effective teacher segmentation network T . The weights of S train

are periodically copied into S
seg, which is thus consistently adapted to the latest match conditions and becomes match-specific.

and qualitatively through visual inspection of the results.

3.1. Quantitative evaluation method

As each instance S
seg

k
(k = 0, 1, . . .) of Sseg produces bi-

nary masks indicating whether the pixels belong to a human

(output = 1) or not (output = 0), performance metrics de-

rived from confusion matrices can be used to represent its

performances, provided that ground-truth masks are avail-

able. In such a case, the F1 score of S
seg

k
is a well-suited

metric; it is computed as

F1 =
2TP

2TP + FP + FN

where TP denotes the number of true positives (pixels cor-

rectly predicted as humans), FP the number of false posi-

tives (pixels erroneously predicted as humans), and FN the

number of false negatives (pixels erroneously predicted as

non-humans). However, in our case, it is difficult to ob-

tain a large amount of ground-truth masks. For this reason,

we perform the evaluation of S
seg

k
in two steps. First, in

Section 3.2, the evaluation is computed on frames that are

annotated by T , which we consider as sufficiently good ap-

proximations of the unavailable ground-truth masks that can

be used as references. A large number of these annotated

frames is available and this evaluation is meant to provide

a first overview of the performances of S
seg

k
. Then, in Sec-

tion 3.3, we manually correct the annotations of a subset

of these frames to build a cleaner test dataset. This help

us show that S
seg

k
is mostly correct when T is not. It also

allows to support the previous results and it attests to the re-

liability of that evaluation technique in our context. Finally,

we use the evaluation based on T to compare the perfor-

mances achieved by another student network in Section 3.4.

As S
seg

k
can be regarded as a network trained on the

frames annotated by T that compose D1, ...,Dk, its eval-

uation has to be conducted a posteriori (not in real-time) on

frames recorded after those present in Dk. We choose to

constitute the test set of S
seg

k
with the N frames annotated

by T following those of Dk and used to build the next in-

stances of D. In this work, we set N = 300, which spans

the next five minutes of video given the framerate of T . This

way, computing the F1 score of each S
seg

k
on its test set gives

the temporal evolution of the performances of Sseg.

In order to handle the possible uncertainty of T at the

borders of the humans to segment, which represents the in-

trinsic difficulty to perform pixel-wise annotations, some

margins are drawn outside and inside these borders, whose

pixels are excluded from the computation of F1 scores.

Technically speaking, these margins are computed as the

Beucher gradient of the masks with a centered 7 × 7 struc-

turing element, and correspond to the set difference between

the morphological dilation and erosion. This practice is

common in domains such as background subtraction [25],

which is close to our problem in terms of evaluation of per-

formances. This is illustrated in Figure 2.

3.2. Results

We assess the performances of the networks produced

by ARTHuS on two test matches: one for soccer, one for

basketball. The soccer match is the 2013 Belgian Jupiler

Pro League match between FC Bruges and Anderlecht.

The basketball match is the 2019 French Jeep Elite League

match between Cholet and Boulazac. We chose these two

matches because they both contain one unusual event out of

actual game time (involving mascots), to demonstrate that



Figure 2. The Beucher gradients of the masks produced by T de-

fine thin margins (in red) whose pixels are excluded from the quan-

titative evaluation process in order to reduce the impact of the lack

of accuracy of T at the borders of the masks on the evaluation.

our method can quickly recover from perturbations (more

details are provided in supplementary material).

For each of them, we test the two strategies mentioned

in Section 2 for the initialization of S
seg
0 : random initializa-

tion for training it online from scratch, and training it online

from a sports-specific version that has been pre-trained by

regular offline distillation of T on six other matches of the

same sport, which we note Spretrained. We also compare these

two approaches with the performances of Spretrained when it

is kept as is throughout the test, in order to assess its gener-

alization capabilities and to illustrate the interest of produc-

ing adaptive match-specific networks.

The evolution of the F1 score (with respect to the masks

provided by T ) of each experiment can be found in Fig-

ure 3, where the unusual game event is marked out. It

can be inferred that ARTHuS works well in practice, as in-

dicated by the high level of performance achieved by the

networks produced, regardless of the initialization strat-

egy or the sport. In particular, even though the networks

Spretrained already have good generalization skills, the net-

works that are trained adaptively to become match-specific

always achieve better performances after a few minutes of

match. Even the networks trained from scratch with S
seg
0

randomly initialized, hence without any prior knowledge on

what a human on a soccer or basketball field is, eventually

outperform Spretrained and come close to those that are re-

trained from Spretrained. Furthermore, the networks trained

online quickly recover to excellent performances after the

unusual game event. Overall, the best performances are

obtained with the adaptive networks that are initialized as

Spretrained. These observations validate the effectiveness of

the method and strengthen our point that producing adap-

tive match-specific networks leads to better results than us-

ing fixed sports-specific networks.

The need for match-specific networks is reinforced by

the following elements. Regarding the soccer experiment,

Spretrained has been trained on matches from the UEFA Euro

2016. When we tested Spretrained on another match from

that competition, a smaller gain in performance was noted

when retraining it online. This was presumably because

the advertisements, camera views, stadiums, and lighting

conditions, were similar to those already seen by Spretrained.

However, the test match evaluated in Figure 3 is taken

from another competition, the Belgian Jupiler Pro League.

This match is thus rather different from those used to train

Spretrained, which explains the large gap in performances be-

tween Spretrained and Sseg on that match. Regarding the bas-

ketball experiment, the matches used to train Spretrained be-

long to the same competition, but the stadiums are very dif-

ferent from one match to another. Therefore, there is no

guarantee that Spretrained is able to generalize correctly, and

our experiment confirm that it is again beneficial to re-train

it online to produce a match-specific network.

From a visual perspective, some results are displayed in

Figure 4 for Spretrained and for the networks that have been re-

trained online with our method with Spretrained as initializa-

tion. The differences in the performances reported in Fig-

ure 3 are backed up by Figure 4. As Spretrained is not specific

to the test match, it cannot handle some of its peculiarities.

As a result, it produces more false positives, such as the

lines of the new soccer field or elements of the new bas-

ketball stadium, and more false negatives, such as partially

unsegmented players, which are correctly classified by the

instances of Sseg in use when these frames were recorded.

3.3. Does the student outperform its teacher?

A question that arises with knowledge distillation is

whether the student network outperforms its teacher, which

may occur in practice [7, 21, 29]. In our case, this question

is further motivated by the observation that T sometimes

makes mistakes while Sseg does not, as illustrated in Fig-

ure 5. This qualitative inspection suggests that Sseg may

indeed outperform T , depending on the viewer’s subjective

expectations to consider that Sseg surpasses T .

From a quantitative point of view, the evaluation method

presented above cannot help answering that question since

the output of T is considered to be the ground truth with

respect to which the performances of the instances S
seg

k

(k = 0, 1, . . .) of Sseg are necessarily inferior or, at most,

equal. Besides, the curves presented in Figure 3 are slightly

flawed by the mistakes of T and require a manual inves-

tigation to be corrected. Manually annotating all the test

frames would be too time-consuming. Also, it can be noted

that T already segments almost perfectly most of the hu-

mans present in the test videos and that manual annotations

would not be better in many cases. Therefore, we propose

to build a semi-manually annotated test set, in which we

manually correct the segmentation masks provided by T by

either removing non-human pixels from the masks or by

adding missed human pixels in the masks. This procedure

is performed for a subset of the test frames because of lim-



Figure 3. Evolution of the performances of several variants of our

distilled models through their F1 score computed with respect to

the masks provided by T for the soccer (top) and basketball (bot-

tom) test matches.

ited annotation resources. In the soccer (resp. basketball)

case, 3.5% (resp. 2.5%) of the annotations have been mod-

ified, which indicates that T is reliable most of the time.

Considering that these corrected frames constitute the

real ground truth, we can re-evaluate the performances of

S
seg

k
(k = 0, 1, . . .) through the match. As it can be seen

in Figure 6, the F1 score increases by a comfortable mar-

gin compared with the previous evaluation, which confirms

the intuition that, when T is wrong, Sseg is actually mostly

right. To further support this claim, we also compute the

performances that Sseg would achieve if we assume that it

makes no mistakes on the corrected pixels (those where T

was considered to be wrong). This curve is also represented

in Figure 6. This way, we can better quantify how good Sseg

is on these new annotations, and it turns out that it is almost

perfect since its adjusted performance curves are close to

their upper bounds. Given that most of the annotations are

still those from T , the performance curves of T are unfairly

higher and hence are not plotted for the sake of clarity. Let

us note that the similarity between the shapes of the ini-

tial curves and the corrected curves indicates that the first

approach gives a valid overview of the evolution of the per-

formances of the networks.

Even though it is difficult to decide whether Sseg outper-

forms T or not, several qualitative and quantitative experi-

ments show that the gap between the two is negligible and

that Sseg is at least nearly as good as T , if not slightly better.

3.4. Comparison with another student network

In order to demonstrate that the use of ARTHuS does

not depend on our particular choice of student network, i.e.

TinyNet from [5], we carry out similar experiments with an-

other student network. For that purpose, we choose ICNet

from [31], which is currently one of the best real-time seg-

mentation networks on the Cityscapes dataset. It has been

designed by some of the authors of PSPNet as a lightweight

version of this architecture. ICNet has 6.7 million parame-

ters, hence about 10 times more than TinyNet and 10 times

less than PSPNet. We re-design the last layer of ICNet so

that it considers only two classes, human or not human. On

our hardware, its inference time is about 0.033 seconds per

image (≈ 30 fps) and its training time is 0.12 seconds per

image.

The performances of ICNet as student network are com-

pared with TinyNet in Figure 7 for the soccer and basketball

test matches. On the one hand, when ICNet is trained on-

line from scratch, its performances are inferior to those of

TinyNet also trained online from scratch. The performance

curves of ICNet increase slower than those of TinyNet,

which suggests that TinyNet adapts faster to the play con-

ditions of the ongoing match, presumably because of its

reduced training time. On the other hand, when ICNet is

pretrained offline through usual knowledge distillation on

the same six matches as TinyNet and then retrained online,

its performances are comparable to those obtained for the

same experiment with TinyNet on the soccer match and are

slightly higher on the basketball match, possibly because of

the higher capacity of ICNet.

Consequently, ARTHuS can be used with other student

architectures such as ICNet, in which case satisfying results

are also obtained. Our experiments suggest that TinyNet

adapts faster and better than ICNet when trained online

from scratch, while ICNet shows equivalent or better per-

formances than TinyNet when they are retrained online

from a pre-trained network. However, the inference time of

TinyNet is about half ICNet’s, which implies that TinyNet

leaves a more comfortable amount of time for potential ex-

tra real-time analyses.

4. Conclusion

We propose a novel method, named ARTHuS, that pro-

duces adative real-time human segmentation networks with-

out requiring manual annotations. It is based on an on-

line knowledge distillation, in which a fast student network

is trained adaptively with data annotated by a slow pre-

trained teacher. We demonstrate the effectiveness of our

method quantitatively and qualitatively on soccer and bas-



Figure 4. Human segmentation results produced by Spretrained (left column) and by our adaptive match-specific network S
seg produced by

ARTHuS (right column) initialized with Spretrained. The effectiveness and usefulness of the adaptive network S
seg can be observed. A video

showing more results is provided at https://drive.google.com/drive/folders/1FFdZYel3s8tL5YgLc6EQyZObRg2AMpDo?usp=sharing.



Figure 5. Example of a case where the teacher (top) does not pro-

vide a reliable output, while the instance S
seg

k
(bottom) of the stu-

dent network S
seg in use for this frame is actually almost flawless.

Figure 6. The previous curves (orange) are adjusted (green) by

evaluating the instances S
seg

k
(k = 0, 1, . . .) of Sseg on the manu-

ally corrected test frames for the soccer (top) and basketball (bot-

tom) matches. The green curves are higher, which suggests that

S
seg is right when T is wrong. The maximum performances that

S
seg would achieve if we suppose that Sseg is correct when T is

wrong are plotted in purple. Since the green and the purple curves

are close, Sseg is almost perfect on the pixels mislabeled by T .

Figure 7. Comparison of the performance curves obtained with dif-

ferent student architectures: TinyNet [5] (i.e. the curves displayed

previously) and ICNet [31], for the soccer (top) and basketball

(bottom) test matches. Spretrained refers to a pretrained version of

the corresponding architecture, on the same set of six matches.

ketball matches. We show that match-specific networks out-

perform fixed pre-trained sports-specific networks, and that

they eventually outperform their teacher on some occasions.

We also show that ARTHuS works well with two choices of

student networks, and that the architecture of TinyNet [5]

might provide a better compromise than ICNet [31] be-

tween inference time, performances and adaptability.

Although ARTHuS provides promising results, there is

still room for improvement, which will be investigated in

future works. For instance, the update strategy of D can be

revised in order to keep the possibility to use older frames if

they are more informative than the new ones. We could also

use an extra dataset that remains fixed and that would be

composed of annotated frames of other matches, in order

to ensure minimal generalization capabilities and enhance

the robustness to possible anomalous events in the ongoing

match. Besides, we can leverage the segmentation skills of

our method to perform further analyses in order to develop

real-time scene understanding techniques.
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