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Abstract

The golf swing is a complex movement requiring con-

siderable full-body coordination to execute proficiently. As

such, it is the subject of frequent scrutiny and extensive

biomechanical analyses. In this paper, we introduce the

notion of golf swing sequencing for detecting key events

in the golf swing and facilitating golf swing analysis.

To enable consistent evaluation of golf swing sequencing

performance, we also introduce the benchmark database

GolfDB,1 consisting of 1400 high-quality golf swing videos,

each labeled with event frames, bounding box, player name

and sex, club type, and view type. Furthermore, to act as

a reference baseline for evaluating golf swing sequencing

performance on GolfDB, we propose a lightweight deep

neural network called SwingNet, which possesses a hybrid

deep convolutional and recurrent neural network architec-

ture. SwingNet correctly detects eight golf swing events at

an average rate of 76.1%, and six out of eight events at a

rate of 91.8%. In line with the proposed baseline SwingNet,

we advocate the use of computationally efficient models in

future research to promote in-the-field analysis via deploy-

ment on readily-available mobile devices.

1. Introduction

It is estimated that golf is played by 80 million people

worldwide [19]. The sport is most popular in North Amer-

ica, where 54% of the world’s golf facilities reside [30]. In

the United States, the total economic impact of the golf in-

dustry is estimated to be $191.9 billion [13]. In Canada,

golf has had the highest participation rate of any sport since

1998 [36]. It would be reasonably contended that many

golfers are drawn to the sport through the gratification of

continuous improvement. The golf swing is a complex full-

body movement requiring considerable coordination. As

such, it can take years of practice and instruction to develop

a repeatable and reliable golf swing. For this reason, golfers

routinely scrutinize their golf swing and make frequent ad-

justments to their golf swing mechanics.

1Available at https://github.com/wmcnally/GolfDB

Figure 1: Eight events in a golf swing sequence. Top: face-on

view. Bottom: down-the-line view. The names of the events

from left to right are Address, Toe-up, Mid-backswing, Top, Mid-

downswing, Impact, Mid-follow-through, and Finish. Images used

with kind permission from Golf Digest [14].

Several methods exist for analyzing golf swings. In sci-

entific studies, researchers distill golf swing insights using

optical cameras to track reflective markers placed on the

golfer [25, 24, 28, 4]. Often, these insights relate to kine-

matic variables at various events in the golf swing. For ex-

ample, in [28] it was found that torso–pelvic separation at

the top of the swing, referred to as the X-factor in the golf

community, is strongly correlated with ball speed. Simi-

larly, in [4] it was found that positive lateral bending of the

trunk at impact (away from the target) was also correlated

with ball speed, as it potentially promotes the upward an-

gle of the clubhead path and more efficient impact dynam-

ics [26]. Yet, examining a golf swing using motion cap-

ture requires special equipment and is very time consuming,

making it impractical for the everyday golfer.

Traditionally, professional golf instructors provide in-

stant feedback to amateurs using the naked eye. Still, the

underlying problem is not always immediately apparent due

to the speedy nature of the golf swing. Consequently, slow-

motion video has become a popular medium for dissect-



ing the intricacies of the golf swing [15]. Moreover, slow-

motion video is readily available to the common golfer us-

ing the advanced optical cameras in today’s mobile devices,

which are capable of recording high-definition (HD) video

at upwards of 240 frames per second (fps). Given a slow-

motion recording of a golf swing, a golfer or golf instructor

may scrub through the video to analyze the subject’s biome-

chanics at various key events. These events comprise a golf

swing sequence [14]. For example, in the golf swing se-

quence of Tiger Woods depicted in Fig. 1, the X-Factor

at the top of the swing and lateral bending of the trunk

at impact, two strong indicators of a powerful golf swing,

are easily identifiable in the face-on view. Still, scrubbing

through a video to identify these events is time consuming

and impractical because only one event can be viewed at a

time.

In computer vision, deep convolutional neural networks

(CNNs) have recently been shown to be highly proficient

at video recognition tasks such as video representation [3],

action recognition [27], temporal action detection [42], and

spatio-temporal action localization [7]. Following this line

of research, CNNs adapted for video may be leveraged to

facilitate golf swing analysis through the autonomous ex-

traction of event frames in golf swing videos. To this

end, we introduce GolfDB, a benchmark video database

for the novel task of golf swing sequencing. A total of

1400 HD golf swing videos of male and female profes-

sional golfers, comprising various native frame-rates and

over 390k frames, were gathered from YouTube. Each

video sample was manually annotated with eight event la-

bels (event classes shown in Fig. 1). Furthermore, the

dataset also contains bounding boxes and labels for club

type (e.g., driver, iron, wedge), view type (face-on, down-

the-line, or other), and player name and sex. With this sup-

plemental data, GolfDB creates opportunities for future re-

search relating to general recognition tasks in the sport of

golf. Finally, we advocate mobile deployment by propos-

ing a lightweight baseline network called SwingNet that

correctly detects golf swing events at a rate of 76.1% on

GolfDB.

2. Related Work

2.1. Computer Vision in Golf

Arguably the most well-known use of computer vision

in golf deals with the real-time tracing of ball flights in golf

broadcasts [8]. The technology uses difference images be-

tween consecutive frames and a ball selection algorithm to

artificially trace the path of a moving ball. In a different

light, radar vision is used in the TrackMan launch monitor

to precisely track the 3D position of a golf ball in flight and

measure its spin magnitude [38].

Computer vision algorithms have also been implemented

for analyzing golf swings. Gehrig et al. [9] developed an al-

gorithm that robustly fit a global swing trajectory model to

club location hypotheses obtained from single frames. Fleet

et al. [39] proposed incorporating dynamic models with hu-

man body tracking, and Park et al. [29] developed a proto-

type system to investigate the feasibility of pose analysis in

golf using depth cameras. In line with these research direc-

tions, GolfDB may be conveniently extended in the future to

include various keypoint annotations to support human pose

and golf club tracking. Moreover, automated golf swing se-

quencing using SwingNet is complementary to pose-based

golf swing analysis.

2.2. Action Detection

In the domain of action detection, there exist several sub-

problems that correspond to increasingly complex tasks.

Action recognition is the highest-level task and corre-

sponds to predicting a single action for a video. The first use

of modern CNNs for action recognition was by Karpathy et

al. [21], wherein they investigated multiple methods of fus-

ing temporal information from image sequences. Simonyan

and Zisserman [35] followed this work by incorporating a

second stream of optical flow information to their CNN. A

different approach to combine temporal information is to

use 3D CNNs to perform convolution operations over an

entire video volume. First implemented for action recog-

nition by Baccouche et al. [2], 3D CNNs showed state-of-

the-art performance in the form of the C3D architecture on

several benchmarks when trained on the Sports-1M dataset

[37]. Combining two-stream networks and 3D CNNs, Car-

reira and Zisserman [3] created the I3D architecture. Recur-

rent neural networks (RNNs) provide a different approach

to combining temporal information. RNNs with long short-

term memory (LSTM) cells are well suited to capture long-

term temporal dependencies in data [16] and these networks

were first used for action recognition by Donahue et al. [6]

in the long-term recurrent convolutional network (LRCN),

whereby features extracted from a 2D CNN were passed to

an LSTM network. A similar method to Donahue et al. is

adopted in this work.

Temporal action detection is a mid-level task wherein the

start and end frames of actions are predicted in untrimmed

videos. Shou et al. [32] proposed the Segment-CNN (S-

CNN) in which they trained three networks based on the

C3D architecture. In a different approach, Yeung et al. [41]

built an RNN that took features from a CNN and utilized

reinforcement learning to learn a policy for identifying the

start and end of events, allowing for the observation of only

a fraction of all video frames.

Spatio-temporal action localization is the lowest level

and most complex task in action detection. Both the frame

boundaries and the localized area within each frame cor-

responding to an action are predicted. Several works in



this domain approach the problem by combining 3D CNNs

with object detection models, such as in [11], where the I3D

model is combined with Faster R-CNN, and in [17], where

the authors generalize the R-CNN from 2D image regions

to 3D video tubes to create Tube-CNN (T-CNN).

2.3. Event Spotting

After asking Amazon Mechanical Turk workers to re-

annotate the temporal extents of human actions in the Cha-

rades [34] and MultiTHUMOS [40] datasets, Sigurdsson et

al. [33] demonstrated that the temporal extents of actions

in video are highly ambiguous; the average agreement in

terms of temporal Intersection-over-Union (tIOU) was only

72.5% and 58.7%, respectively. This raised concerns over

the inherent error associated with temporal action detection.

Considering the uncertainty surrounding the temporal

extents of actions, Giancola et al. [10] proposed the task of

event spotting within the context of soccer videos, arguing

that in contrast to actions, events are anchored to a single

time instance and are defined using a specific set of rules.

As opposed to predicting the temporal bounds of an action,

spotting consists of finding the time instance (or spot) when

well-defined events occur. We consider event spotting and

event detection as equivalent terminology, and use the latter

moving forward.

3. Golf Swing Sequencing

Drawing inspiration from Giancola et al. [10], we de-

scribe the task of golf swing sequencing as the detection

of events in trimmed videos containing a single golf swing.

The reasoning behind using trimmed golf swing videos is

three-fold:

1. We speculate that the most compelling use-case for de-

tecting golf swing events is to obtain instant biome-

chanical feedback in the field, as opposed to localiz-

ing golf swings in broadcast video. Although GolfDB

contains the necessary data to perform spatio-temporal

localization of full golf swings in untrimmed video, we

consider this a separate task and a potential avenue for

future research.

2. Golfers or golf instructors who wish to view a golf

swing sequence in the field can simply record a con-

strained video of a single golf swing on a mobile de-

vice, ensuring that the subject is centered in the frame.

This eliminates the need for spatio-temporal localiza-

tion.

3. A video sample containing a single golf swing instance

will consist of a specific number of events occurring in

a specific order. This information can be leveraged to

improve detection performance.

Golf Swing Events. In [10], soccer events were resolved at

a one-second resolution. In contrast, golf swing events can

be localized to a single frame using strict event definitions.

Although various golf swing events have been proposed in

the literature [23], we define the eight contiguous events

comprising a golf swing sequence as follows:

1. Address (A). The moment just before the takeaway be-

gins, i.e., the frame before movement in the backswing

is noticeable.

2. Toe-up (TU). Shaft parallel with the ground during the

backswing.

3. Mid-backswing (MB). Arm parallel with the ground

during the backswing.

4. Top (T). The moment the golf club changes directions

at the transition from backswing to downswing.

5. Mid-downswing (MD). Arm parallel with the ground

during the downswing.

6. Impact (I). The moment the clubhead touches the golf

ball.

7. Mid-follow-through (MFT). Shaft parallel with the

ground during the follow-through.

8. Finish (F). The moment just before the golfer’s final

pose is relaxed.

The above definitions do not always isolate a single frame.

For example, a golfer may not hold a finishing pose at all,

making the selection of the Finish event frame subjective.

These issues are discussed further in the next section.

4. GolfDB

In this section we introduce GolfDB, a high-quality

video dataset created for general recognition applications

in golf, and specifically for the novel task of golf swing se-

quencing. Comprising 1400 golf swing video samples and

over 390k frames, GolfDB is relatively large for a specific

domain. To our best knowledge, GolfDB is the first sub-

stantial dataset dedicated to computer vision applications in

the sport of golf.

4.1. Video Collection

A collection of 580 YouTube videos containing real-time

and slow-motion golf swings was manually compiled. For

the task of golf swing sequencing, it is important that the

shaft remains visible at all times. To alleviate obscurities

caused by motion blur, only high quality videos were con-

sidered. The YouTube videos primarily consist of profes-

sional golfers from the PGA, LPGA and Champions Tours,

totalling 248 individuals with diverse golf swings. The
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Figure 2: Average event timings from Address to Impact for 5 female (top 5) and male (bottom 5) professional golfers using a driver or

fairway wood. Event timings normalized from Address to Impact. The diamond indicates the Top event. Blue represents the backswing,

red represents the downswing. Average golf swing tempos (backswing duration/downswing duration) shown on the right.

videos were captured from a variety of camera angles, and

a variety of locations on various golf courses, including the

driving range, tee boxes, fairways, and sand traps. The

significant variance in overall appearance, taking into con-

sideration the different players, clubs, views, lighting con-

ditions, surroundings, and native frame-rates, benefits the

generalization ability of computer vision models trained on

this dataset. The YouTube videos were sampled at 30 fps

and 720p resolution.

4.2. Annotation

A total of 1400 trimmed golf swing video samples were

extracted from the collection of YouTube videos using an

in-house MATLAB code that was distributed to four annota-

tors. For each YouTube video, the annotators were asked to

identify full golf swings (i.e., excluding pitch shots, chips,

and putts) and label 10 frames for each: the start of the

sample, eight golf swing events, and the end of the sample.

The number of frames between the start of the sample and

Address, and similarly, between Finish and the end of the

sample, was naturally random, and the beginning of sam-

ples occasionally included practice swings. Depending on

the native frame-rate of the sample, it was not always pos-

sible to label events precisely. For example, in real-time

samples with a native frame-rate of 30 fps, it was rare that

the precise moment of impact was captured. The annotators

were advised to chose the frame closest to when the event

occurred at their own discretion.

Besides labeling events, the annotators were asked to

draw bounding boxes, enter the club and view type, and in-

dicate whether the sample was in real-time or slow-motion

(considering a playback speed of 30 fps). The bound-

ing boxes were drawn to include the clubhead and golf

ball through the full duration of the swing. Player names

were extracted from the video titles, and sex was deter-

mined by cross-referencing the player name with infor-

mation available online. The annotators were briefed on

domain-specific knowledge before the annotation process,

and the dataset was verified for quality by an experienced

golfer. Fig. 2 provides the average timing of events from
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Figure 3: Distribution of GolfDB. The total number of frames

in real-time and slow-motion samples was roughly equal (≈195k

each). The event densities for real-time and slow-motion samples

were 3.072× 10
−2 and 2.628× 10

−2 events/frame, respectively.

Address to Impact for five male and female golfers using a

driver or fairway wood, and Fig. 3 illustrates the distribution

of the dataset.

4.3. Evaluation Metric and Experimental Protocol

In a similar fashion to Giancola et al. [10], we intro-

duce a tolerance δ on the number of frames within which

an event is considered to be correctly detected. In the real-

time samples, if an event was thought to occur between two

frames, it was at the discretion of the annotator to select the

event frame. Given the inherent variability of the annota-

tor’s selection, we consider a tolerance δ = 1 for real-time

videos sampled at 30 fps. For the slow-motion videos, the

tolerance should be scaled based on the native frame-rate,

but the native-frame rates are unknown. We therefore pro-

pose a sample-dependent tolerance based on the number of

frames between Address and Impact. This value was ap-

proximately 30 frames on average for the real-time videos,

matching the frame-rate of 30 fps (i.e., the average dura-

tion of a golf swing from Address to Impact is roughly 1s).

Thus, we define the sample-dependent tolerance as

δ = max(

⌊

n

f

⌉

, 1) (1)



where n is the number of frames from Address to Impact, f

is the sampling frequency, and ⌊x⌉ rounds x to the nearest

integer.

Drawing inspiration from the field of human pose es-

timation, we introduce the PCE evaluation metric as the

“Percentage of Correct Events” within tolerance. PCE is

the temporal equivalent to the popular PCKh metric used

in human pose estimation [1], which scales a spatial de-

tection tolerance using head segment length. For the ex-

perimental protocol, four random splits were generated for

cross-validation, ensuring that all samples from the same

YouTube video were placed in the same split. PCE averaged

over the 4 splits is used as the primary evaluation metric.

5. SwingNet: A Swing Sequencing Network

In this section, we describe SwingNet, a network archi-

tecture designed specifically for the task of golf swing se-

quencing, but generalizable to the swings present in various

sports, such as baseball, tennis and cricket. Additionally,

the implementation details are discussed.

5.1. Network Architecture

MobileNetV2 is a CNN based on an inverted residual

structure and makes liberal use of lightweight depthwise

convolutions [18]. As such, it is well suited for mobile vi-

sion applications. Furthermore, MobileNetV2 includes a

“width multiplier” that scales the number of channels in

each layer, providing a convenient trade-off for network

complexity and speed. For the task of image classification,

it runs at 75ms per frame on a single core of the Google

Pixel using an input size of 224×224 and width multiplier

of 1 [31]. Placing emphasis on mobile deployment, we em-

ploy MobileNetV2 [31] as the backbone CNN in an end-to-

end network architecture that maps a sequence of d×d RGB

images I = (I1, I2, ..., IT : It ∈ R
d×d×3) to a correspond-

ing sequence of event probabilities e = (e1, e2, ..., eT :
et ∈ R

C), where T is the sequence length and C is the

number of event classes. For the task of golf swing sequenc-

ing, there are 9 event classes: eight golf swing events and

one No-event class.

Detecting golf swing events using a single frame would

likely be a difficult task. Precisely identifying Address

requires knowledge of when the actual golf swing com-

mences. Without this contextual information, Address may

be falsely detected during the pre-shot routine, which of-

ten includes full or partial practice swings, and frequent

clubhead waggling. In a similar manner, precisely identi-

fying Top is generally not possible using a single frame,

based on its event definition. Moreover, Mid-backswing

and Mid-downswing are relatively similar in appearance.

For these reasons, temporal context is likely a critical com-

ponent in the task of golf swing sequencing. To capture

temporal information, the sequence of feature vectors f =

(f1, f2, ..., fT : ft ∈ R
1280) obtained by applying global

average pooling to the final feature map in MobileNetV2 is

used as input to an N -layer bidirectional LSTM [16] with

H hidden units in each layer. At each frame t, the H-

dimensional output of the LSTM is fed through a final fully-

connected layer, and a softmax is applied to obtain the class

probabilities e. The weights of the fully-connected layer are

shared across frames. The overall architecture is illustrated

in Fig. 4. In Section 6.1, an ablation study is performed to

identify a suitable model configuration.

5.2. Implementation Details

The frames were cropped using the golf swing bounding

boxes. They were then resized using bilinear interpolation

such that the longest dimension was equal to d, and padded

using the ImageNet [5] pixel means to reach an input size

of d×d. Finally, all frames were normalized by subtracting

the ImageNet means and dividing by the ImageNet standard

deviation.

The network was implemented using PyTorch version

1.0. Each convolutional layer in MobileNetV22 is followed

by batch normalization [20]. Unique to MobileNetV2,

ReLU is used after batch normalization everywhere ex-

cept for the final convolution in the inverted residual mod-

ules [31], where no non-linearity is used. The running

batch norm parameters were updated using a momentum

of 0.1. The MobileNetV2 backbone was initialized with

weights pre-trained on ImageNet, and the weights in the

fully-connected layer were initialized following Xavier Ini-

tialization [12]. Given the significant class imbalance be-

tween the golf swing events and the No-event class (roughly

35:1), a weighted cross-entropy loss was used, where the

golf swing events were each given a weight of 1, and the

No-event class was given a weight of 0.1.

Training samples were drawn from the dataset by ran-

domly selecting a start frame and, if the number of frames

remaining in the sample was less than T , the sample was

looped to the beginning. Randomly selecting the start frame

serves as a form of data augmentation and is commonly

used in action recognition applications [3, 27]. Other forms

of data augmentation used included random horizontal flip-

ping, and slight random affine transformations (−5◦ to +5◦

shear and rotation). The intent of the horizontal flipping was

to even out the imbalance between left- and right-handed

golfers, and the intent of the affine transformations was to

capture variations in camera angle. To enable training on

batches of image sequences, multiple sequences of length

T were concatenated along the channel dimension before

being input to the network. The output features f were re-

shaped to (batch size, T , 1280) before being passed to the

LSTM. Various batch sizes and sequence lengths T were

2PyTorch implementation of MobileNetV2 available at https://

github.com/tonylins/pytorch-mobilenet-v2
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Figure 4: The network architecture of SwingNet, a deep hybrid convolutional and recurrent network for swing sequencing. In an end-

to-end architectural framework, SwingNet maps a sequence of RGB images I to a corresponding sequence of event probabilities e. The

sequence of feature vectors f generated by MobileNetV2 are input to a bidirectional LSTM. At each frame t, the LSTM output is fed into

a fully-connected layer, and a softmax is applied to obtain the event probabilities.

explored in the experiments; they are explicitly declared in

Section 6. In all training configurations, the Adam opti-

mizer [22] was used with an initial learning rate of 0.001.

The number of training iterations and learning rate sched-

ules are discussed in Section 6. All training was performed

on a single NVIDIA Titan Xp GPU.

At test time, a sliding window approach is used over

the full-length golf swing video samples. The sliding win-

dow has a size T and, to minimize the computational load,

no overlap was used. Knowing that each sample contains

exactly eight events, event frames were selected using the

maximum confidence for each event class. The exploration

of alternative selection criteria that leverages event order is

encouraged in future research.

6. Experiments

In this section, an extensive ablation study is performed

to determine suitable hyper-parameters. Following the ab-

lation study, a final baseline SwingNet is proposed and eval-

uated.

6.1. Ablation Study

The hyper-parameters of interest are the input size (d),

sequence length (T ), batch size, number of LSTM layers

(N ), and number of hidden units in each LSTM layer (H).

It was also of interest to see whether initializing with pre-

trained ImageNet weights was advantageous as opposed to

training from scratch, and if LSTM bidirectionality had an

impact. The goal was to identify a computationally efficient

configuration to maximize performance with limited com-

pute resources. Normally, MobileNetV2’s width multiplier

would be a key hyper-parameter to include in the ablation

study; however, for reasons to be discussed, using a width

multiplier other than 1 was not feasible. Table 1 provides

the PCEs of 11 model configurations, along with the num-

ber of parameters and floating point operations (FLOPs) for

each. Each configuration was trained for 10k iterations on

the first split of GolfDB, providing a proxy for overall per-

formance. For the ablation study, no affine transformations

were used, and the learning rate was held constant at 0.001.

Hyper-parameters used in comparison are shown in bold.

Remarkably, it was found that the model could not be

trained effectively unless the pre-trained ImageNet weights

were used. We acknowledge that if Configuration 1 were

trained longer, it may have eventually converged to a similar

level of performance. In any case, we speculate that using

weights pre-trained on large and diverse image datasets is

critical in domain-specific tasks where the variation in over-

all appearance is minimal. Because the pre-trained weights

were only available for a width multiplier of 1, adjusting the

width multiplier was not feasible.

Another interesting finding was that the correlation be-

tween input size and performance did not behave as ex-

pected. With increasing input size, one would expect a

monotonically increasing PCE. However, it was found that

that input sizes of 160 and 128 outperformed 192 by a large

margin, and the PCE using an input size of 160 was only

4.4 points worse than the 224.

The sequence length T had a significant impact on per-

formance, supporting the importance of temporal context.

Additionally, increasing the batch size improved perfor-

mance dramatically. Still, it is difficult to fairly assess these

hyper-parameters as they may have had a significant impact

on convergence speed. Regarding the LSTM, bidirectional-

ity led to a 12.1 point improvement in PCE. The single-layer

LSTM outperformed the two-layer LSTM, and 256 hidden

units performed better than 64 and 128.

6.2. Frozen Layers

The results of the ablation study revealed that increasing

the sequence length and batch size provided large perfor-

mance gains. On a single GPU, the sequence length and

batch size are severely limited. Knowing that the model re-

lies heavily on pre-trained ImageNet weights, we hypothe-



Config.

Input

Size

(d)

Seq.

Length

(T )

Batch

Size

ImageNet

Weights

LSTM

Layers

(N )

LSTM

Hidden

(H)

Bidirect.
Params

(106)

FLOPs

(109)

PCE

(10k iter.)

0 224 32 6 Yes 2 128 Yes 4.07 10.32 66.8

1 224 32 6 No 2 128 Yes 4.07 10.32 1.5

2 224 32 6 Yes 2 128 No 3.08 10.26 54.7

3 192 32 6 Yes 2 128 Yes 4.07 7.62 45.7

4 160 32 6 Yes 2 128 Yes 4.07 5.33 62.4

5 128 32 6 Yes 2 128 Yes 4.07 3.45 57.7

6 160 64 6 Yes 2 128 Yes 4.07 10.65 71.1

7 160 32 12 Yes 2 128 Yes 4.07 5.33 70.1

8 224 32 6 Yes 1 128 Yes 3.67 10.39 69.4

9 224 32 6 Yes 2 64 Yes 3.01 10.26 66.9

10 224 32 6 Yes 2 256 Yes 6.96 10.51 69.3

Table 1: Hyper-parameter search for the proposed SwingNet. Each configuration was trained for 10k iterations on the first split of GolfDB,

providing a proxy for final performance. Parameters used in comparison are in bold.
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Figure 5: PCE after 10k iterations using configuration 4 from

Table 1 and freezing the ImageNet weights in the first k layers.

Freezing the first 10 layers provided optimal results.

sized that some of the ImageNet weights could be frozen

without a significant loss in performance. Thus, we ex-

perimented with freezing layers in MobileNetV2 prior to

training to create space in GPU memory for larger sequence

lengths and batch sizes. Fig. 5 plots the results of freezing

the first k layers using configuration 4 from Table 1. De-

spite a few outliers, the PCE increased until k = 10 and

then began to decrease. We leverage this finding in the next

section to train a baseline SwingNet using a larger sequence

length and batch size.

6.3. Baseline SwingNet

The results in Table 1 suggest that an input size of 160

is more cost effective than an input size of 224; the latter

requires double the computation for a relative increase in

PCE of just 7%. Taking this into consideration, as well as

the comparative results of the other hyper-parameters, we

propose a baseline SwingNet with an input size of 160, se-

quence length of 64, and a single-layer bidirectional LSTM

with 256 hidden units. By initializing with pre-trained Im-

ageNet weights and freezing 10 layers, the model can be

trained using a batch size of 24 on a single GPU with 12GB

memory. With this relatively large batch size, the model

converges faster and does not need to be trained for as many

iterations. Thus, the baseline SwingNet was trained for 7k

iterations on each split of GolfDB, and the learning rate was

reduced by an order of magnitude after 5k iterations. Affine

transformations were used to augment the training data (see

Section 5.2).

Table 2 provides the event-wise and overall PCE aver-

aged over the 4 splits of GolfDB. Overall, SwingNet cor-

rectly detects events at a rate of 76.1%. As expected, rel-

atively poor detection rates were observed for the Address

and Finish events. This was likely caused by the compound-

ing factors of subjective labeling and the inherent difficulty

associated with precisely localizing these events temporally.

These factors may have also played a role in detecting the

Top event, which was detected in real-time videos more

consistently than in slow-motion videos; in slow-motion,

the exact frame where the club changes directions is diffi-

cult to interpret because the transition is more fluid. More-

over, the detection rate was generally lower in slow-motion

videos for the backswing events. This was likely due to the

fact that the backswing is much slower than the downswing,

so there are more frames in the backswing that are similar

in appearance to the ground-truth event frames.

Impact was the event detected the most proficiently. This

result is intuitive because the model simply needs to de-

tect when the clubhead is nearest the golf ball. Interpreting

when the arm or shaft is parallel with the ground, which is

required for events like Toe-up and Mid-backwing, requires

more abstract intuition. Disregarding the Address and Fin-

ish events, the overall PCE was 91.8%. Fig. 6 illustrates

the inferred event probabilities for a slow-motion swing.

Within a 5-frame tolerance, SwingNet correctly detected all

but the Address and Finish events, which were off by 10 and



Model A TU MB T MD I MFT F PCE

SwingNet-160 (slow-motion) 23.5 80.7 84.7 75.7 97.8 98.3 98.0 21.5 72.5

SwingNet-160 (real-time) 38.7 87.2 92.1 90.8 98.3 98.4 97.2 30.7 79.2

SwingNet-160 31.7 84.2 88.7 83.9 98.1 98.4 97.6 26.5 76.1

Table 2: Event-wise and overall PCE averaged over the 4 splits for the proposed baseline SwingNet. Configuration: bidirectional LSTM,

d = 160, T = 64, L = 1, N = 256, k = 10. This configuration has 5.38× 10
6 parameters and 10.92× 10

9 FLOPs.

Seq. Length (T ) FLOPs (109) CPU (ms)∗ PCE

64 10.92 10.6 76.2

32 5.41 10.8 74.0

16 2.70 11.5 71.0

8 1.35 12.0 66.0

4 0.68 13.8 63.1

Table 3: SwingNet-160 performance and CPU runtime on GolfDB

split 1 using various sequence lengths at test time. ∗Effective pro-

cessing time for a single frame, excluding I/O, using an Intel i7-

8700K processor.

7 frames from their respective ground-truth frames.

Table 3 demonstrates that, after being trained using a se-

quence length of 64, smaller sequence lengths can be used

at test time with only a modest decrease in performance.

This has implications to mobile deployment, where smaller

sequence lengths may be leveraged to reduce the memory

requirements of the network.

7. Conclusion

This paper introduced the task of golf swing sequenc-

ing as the detection of key events in trimmed golf swing

videos. The purpose of golf swing sequencing is to facil-

itate golf swing analysis by providing instant feedback in

the field through the automatic extraction of key frames on

mobile devices. To this end, a golf swing video database

(GolfDB) was established to support the task of golf swing

sequencing. Advocating mobile deployment, we introduce

SwingNet, a lightweight baseline network with a deep hy-

brid convolutional and recurrent network architecture. Ex-

perimental results showed that SwingNet detected eight

golf swing events at an average rate of 76.1%, and six out

of eight events at a rate of 91.8%. Besides event labels,

GolfDB also contains annotations for golf swing bounding

boxes, player name and sex, club type, and view type. We

provide this data with the intent of promoting future com-

puter vision research in golf, such as the spatio-temporal

localization of golf swings in untrimmed broadcast video,

and view type recognition.
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Figure 6: Using SwingNet to infer event probabilities in the slow-motion golf swing of LPGA Tour player Michelle Wie. Six out of eight

events were correctly detected within a 5-frame tolerance. Address and Finish were missed by 10 and 7 frames, respectively. Best viewed

in color. Video available at https://youtu.be/QlKodM7RhH4?t=36.
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