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Abstract

When working out, it is necessary to perform the same

action many times for it to have effect. If the action, such

as squats or bench pressing, is performed with poor form, it

can lead to serious injuries in the long term. With the pre-

vention of such harm in mind, we present an action dataset

of videos where different types of poor form are annotated

for a diversity of subjects and backgrounds, and propose

a model for the form-classification task based on temporal

distance matrices, both in the case of squats. We first run

a 3D pose detector, then normalize the pose and compute

the distance matrix, in which each element represents the

normalized distance between two joints. This representa-

tion is invariant under global translation and rotation, as

well as robust to individual differences, allowing for better

generalization to real world data. Our classification model

consists of a CNN with 1D convolutions. Results show that

our method significantly outperforms existing approaches

for the task.

1. Introduction

In recent years, working out or fitness has become

popular in order to improve health and pursue a certain

physique. Working out improves basal metabolism, can pre-

vent metabolic syndrome and lower stress. It is not only

for young people either for the elderly it has merits such as

improvement of posture and the rehabilitation of restricted

movement. One might go so far as to say that muscle devel-

opment is essential for human beings to live healthily.

However, there is a danger in working out. Poor form of

motion does not only utilize muscles incorrectly and thus

decrease workout efficiency but also significantly increases

the possibility of injury. Many beginners work out with poor

form, leading to an assortment of problems. In recent years,

being taught by personal trainers has become widespread, but

Figure 1: Given a video of a user performing squats, we

estimate the 3D pose of each frame, and convert the 3D data

to a temporal distance matrix representation. We then per-

form classification to detect mistakes in the squat form. Our

data representation is independent of the image, allowing for

strong generalization across scenes.

it incurs an economical burden, and still does not guarantee

that the correct form will be taught.

In this work, we attempt to automatically detect and cor-

rect poor form when working out, utilizing videos. In par-

ticular, we target squats and classify the different types of

poor form beginners. Issues we face in the task include the

following. First of all, there are no associated datasets for

the task. For this reason, we have created our own squat

video dataset1 with annotations on form, to serve as a testbed

for different approaches (Fig. 2). Furthermore, the variety

in lighting, background, clothing, individual, etc. makes the

1Dataset will be made publicly available.
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Inward Knees Round Back Warped Back Upwards Head Shallowness Frontal Knee Good Squat

Figure 2: We have collected a multi-class dataset consisting of common squat mistakes and correct squats. The dataset contains

a variety of backgrounds and individuals performing the squats.

detection in a general setting difficult, and necessitates an

impossibly large datasets, if a simple learning approach were

to be taken. Therefore, it is important to develop algorithms

that generalize well on inputs different from the training

data. For this purpose, we developed a technique based on

temporal distance matrices.

Our method is based on first extracting the 3D human

pose from an input video as shown in Fig. 1. This gives a

representation that is independent of the pixel information

and thus independent of the background, illumination, etc.

However, it is still sensitive to differences between individ-

uals and between reference frames. Therefore, we perform

a normalization of the different limb lengths, which gives

a subject-independent representation, and compute the dis-

tance matrix of the 3D pose, i.e., the distance between all

the different joints. This gives us a representation that is

largely independent of the scene information, the individual

bone length, and the reference frame. This representation

is amenable to processing with Convolutional Neural Net-

works (CNN) with 1D convolutions. We propose a model

based on ResNet that obtains high performance for the task

of working out classification.

In this paper, we focus on six common kinds of poor squat

form: inward knees, round back, warped back, upwards head,

shallowness, and frontal knee, in addition to good squats. We

collect several sources of data, including detailed data from

a single individual, more data from multiple individuals with

varying scenes, and videos from YouTube, and do an ablation

analysis of the different components of our approach. We

also provide a comparison with existing approaches for video

classification and show a significant improvement for the

squat classification task.

In summary, our contributions are the following:

1. A dataset for classification of good and various bad

form of squats.

2. A method to assess the workout form from video by

a feature extraction approach based on temporal dis-

tance matrices, which is robust to differences in scene,

subject, and global translation and rotation.

3. An experimental validation of our method, in which it

outperforms existing video classification approaches.

2. Related work

Our work is closely related to action recognition, action

assessment, and pose estimation.

Action recognition is the major area of study related to

our purpose, where the objective is to classify what the per-

son in a video is doing. Most of current literature relies

on learning that requires a large training dataset of videos,

which include UCF-101[30], kinects[14], ActivityNet[8],

YouTube-8M[1], HMBD[9], and MACH[26]. These are vast

collections of data aiming to contain as general actions and

environments as possible. Recognizing video input requires

exploiting three-dimensional features, representing sequen-

tial as well as spatial information. For instance, the two-

stream method[29, 7] utilizes both the spatial features from



single frames and the sequential information from optical

flow, putting them into a CNN together to recognize actions.

C3D[31] feeds video frames into a CNN directly, which

turned out to be more effective. This has been improved

by fine-tuning the result of learning with two-stream[3]

and by incorporating global features by adding a non-local

module[32]. Although LSTM [27] can relate temporal fea-

tures, it becomes harder to train as the sequence gets longer.

In our method, we treat temporal features by using residual

networks [10]. For action recognition, using pose estima-

tion is also effective, as it can remove background features

and focus on human movement [5, 12, 21]. In recent years,

multiview camera datasets [11, 15] have enabled 3D pose

estimation. Using these datasets, 3D pose estimation can be

done after 2D pose estimation, leading to improved action

recognition [19, 18, 25, 17]. However, as these methods

directly input coordinates to CNN, they have dependence

on the orientation and the location. This can be remedied

by computing the Euclidean distance matrix, which is inde-

pendent of orientation and location [20]. Our method adds

temporal features on this method using the distance matrix

to improve accuracy.

Thus, our task here is closely related to action assessment,

which estimates how well the action is performed. In the

sport-related vision, there have been proposed methods to

automatically score a dive or a skate performance mimicking

human expert scorers[24, 23]. Besides scoring, the method

in [23] also provides a feedback as to where the action can

be improved, which is useful for the athletes. Out of sports,

[6] gives relative scores on skills such as drawing and the use

of chopsticks by comparing videos in the first-person view.

This view dependence somewhat limits the applicability of

the method under different conditions. For action assessment

under more general conditions, there are methods[4, 22, 2]

that utilize three-dimensional pose information acquired by

kinect. The need for kinect, however limits the applicability

in another way. In this paper, we use a single ordinary camera

for pose estimation, giving more general applicability.

3. Dataset

We present four datasets of videos for the classification of

good and differently bad squat forms: the Single Individual,

the Multiple Individual, the Background Change, and the

YouTube dataset. Table 1 summarizes the difference between

the four.

3.1. Video

Each video shows one person performing squats and lasts

for 10 seconds (300 frames), which translates to approxi-

mately three to five squats. The dataset contains a variety of

individuals, clothing, and backgrounds. There are our orig-

inal videos (i.e., videos we took), and videos downloaded

from YouTube. In Table 1, the Source column indicates

where the videos in each dataset come from (our original,

YouTube, or both). The camera is static in all the videos.

3.2. Background

In the case of our original videos, the background of the

videos are classified as “simple” or “complex”. In Table 1,

the Background column indicates if this classification is uni-

form or not in the test and training subset of the data. In the

Single Individual and the Multiple Individual datasets, the

data is divided into test and training subsets randomly, so

each subset include videos with both “simple” and “complex”

backgrounds. This is indicated as “mixed”. In the Back-

ground Change dataset, on the other hand, all the videos

with “simple” backgrounds are used as the training data and

all with “complex” backgrounds are used as the test data,

to test robustness to different kinds of background between

training and test time. The videos in YouTube dataset have

various background.

3.3. Single Individual Dataset

The single individual dataset serves as a baseline. It con-

sists of our original videos, all showing the same individual

performing squats. Details are shown in Table 2. Each video

shows one of the seven (one good and six bad) classes of

squat forms. Thus, the ground truth label is one-hot, i.e.,

each video has one of the seven labels as its true classifica-

tion. Although it is conceivable to use a score instead of the

one-hot label, we decided scoring squats is too difficult. The

total of 2001 videos have been taken, and then randomly

assigned to the test, training, and validation subsets, which

contain 612, 1160, and 229 videos, respectively.

3.4. Multiple Individual Dataset

The Multiple Individual Dataset consists of 599 videos,

including our original videos, showing seven individuals, as

well as those downloaded from YouTube. Table 3 shows the

number of videos for each label and individual (A,...,G) or

YouTube (YT). In this dataset, each video shows squats that

may have multiple problems, as sometimes happens with

a beginner, and thus may be multiply labeled. This is why

the numbers for each individual’s column do not add up to

the bottom number, which is the actual number of videos

showing that individual. A video is labeled “Good Squat”

if and only if there is no problem. This dataset is meant to

be tested with eight-fold cross validation, testing with the

videos of one column (individual or YouTube) after training

with the videos of other seven. In training, four videos are

randomly chosen from the training data for use as validation

set.

3.5. Background Change Dataset

This dataset is for testing the robustness to background

change. The videos are same as those in the Single Individual



Table 1: Four squatting datasets details

Source #individuals Background Labels #videos

Single Individual original 1 mixed One-hot 2001

Multiple Individual both 14 mixed Multi-label 599

Background Change original 1 separated One-hot 2001

YouTube YouTube 7 - Multi-label 23

Table 2: Single Individual Dataset. Number of videos with

each label, divided into test, training, and validation subsets.

Test Train Val Total

Inward Knees 48 133 49 230

Round Back 95 161 24 280

Warped back 95 188 29 312

Upwards Head 86 154 32 272

Shallowness 105 180 34 319

Frontal Knee 110 159 26 295

Good Squat 73 185 35 293

Total 612 1160 229 2001

Figure 3: Examples from the Background Change Dataset.

Left two: test data with “complex” backgrounds (test, vali-

dation). Right two: training data with “simple” background

(training).

Figure 4: YouTube (YT) Dataset examples. Various persons

are performing squats in front of various background.

dataset. Only the division into test, training, and validation

subsets is different, as explained above in §3.2.

3.6. YouTube Dataset

The YouTube Dataset consists of videos downloaded from

YouTube showing persons performing squats. This set is

the same as those from YouTube in the Multiple Individual

Dataset. Some examples are shown in Fig. 4. Videos show-

ing squatting in YouTube seldom lasts for 10 seconds, so we

could find only 23 videos.

4. Proposed Approach

Our approach is based on exploiting the pose informa-

tion. The main advantage of using pose information as a

feature, rather than direct video information, is improved

generalization. This is important as it is not simple to obtain

and prepare data for sports activities such as squats. Not

only is expert knowledge necessary, but a large amount of

subjects must be recruited and different environment must

be used for the video capture. Instead of using the video

information, we use 3D pose information, which we con-

dense into rotation and translation invariant representation

using distance matrices, which are then amenable to further

processing using 1D Convolutional Neural Networks. An

overview of our approach is shown in Fig. 5.

4.1. 3D Pose Estimation

For 3D pose estimation, we use the pose estimator de-

scribed in [13]. This approach estimates the 3D pose of a

single person from a monocular camera image. The output

consists of 19 keypoints with their corresponding (x, y, z)
3D coordinates, and are normalized by the SMPL [16] model

parameter. By using the SMPL model parameter, we can

adjust according to individual body shape for more precise

estimation, as well as detecting hidden keypoints.

4.2. Normalization

Even using the pose information, subject-specific infor-

mation such as limb-length, which varies depending on in-

dividuals, still remain. When training with few individuals,

this can lead to a bias and poor generalization of the results.

To remedy this, we evaluate different types of normalization

procedures, as shown in Fig. 6. Normalization is done by

converting limbs to unit length.

4.3. Distance Matrices

A normalized pose is still not fully invariant, as it depends

on the global reference frame. Although this variability can

be partially absorbed by the 3D pose estimation network, we

convert the 3D pose to a distance matrix, which is invariant to



Table 3: Multiple Individual Dataset details.

A B C D E F G YT Total

Inward Knees 0 0 0 1 49 0 5 0 56

Round Back 17 0 0 10 109 0 40 1 177

Warped Back 22 0 3 6 39 0 6 11 87

Upwards Head 0 0 0 0 61 0 0 0 61

Shallowness 19 63 3 8 79 0 18 0 180

Frontal Knee 16 73 58 15 82 8 46 3 301

Good Squat 0 0 9 0 3 0 21 10 33

#videos 71 75 64 26 258 8 74 23 599

Figure 5: Overview of our proposed approach. a) Input video. b) We estimate the 3D human pose in each frame of the video. c)

For each frame, we calculate the Euclidean distances between all pairs of the keypoints to obtain a symmetric distance matrix,

take the upper-right triangle, and flatten it to a vector. d) The vectors for each frame are concatenated together temporally, and

processed with a CNN based on 1D convolutions. e) The output classifies the action being done in the video.

Table 4: Background Change Dataset details.

Test Train Val Total

Inward Knees 22 203 5 230

Round Back 47 224 9 280

Warped Back 45 256 11 312

Upwards Head 32 232 8 272

Shallowness 36 266 17 319

Frontal Knee 40 246 9 295

Good Squat 27 258 8 293

Total 249 1685 67 2001

global translation, rotation, and has a unique representation

for each pose.

We compute each element di,j in the distance matrix by

computing the Euclidean distance between the i-th and j-th

joints:

di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (1)

None Head Body Full

Figure 6: Examples of different types of 3D pose normal-

ization. We normalize different limbs to unit length. This

removes the dependency on individual characteristics of

bone lengths. We test with normalization of different subsets

of limbs.

Flattening it to a vector representation, it contains, for a

N×N distance matrix,
(N−1)(N−2)

2 unique elements. In the

case of our 3D pose with 19 joints, each can be represented

by a 171-dimensional vector.



Figure 7: Illustrative example of processing temporal dis-

tance matrices with 1D convolutions. Each column rep-

resents a pose formed by the flattened upper-triangle of a

distance matrix. Each output column is computed from

the input column and neighboring columns which are deter-

mined by the width of the kernel.

a. proposal network structure b. res layer structure

Figure 8: Our network model. Left: the network as a whole.

Right: structure of the res layer. The output size is 1 because

of the adaptive average pooling before the last convolutional

layer. For the convolution layers, we indicate in brackets the

three main parameters: [kernel size, stride, channel].

4.4. Classification Model

Once we compute the distance matrix for the pose of

each frame, we can concatenate all the matrices for all the

frames in a video to obtain a matrix, where each column

represents a pose and the y-axis represents time. To perform

classification with this input, we rely on one-dimensional

convolutions. The distance-matrix features represent the

different channels in the data. An overview of this is shown

in Fig. 7. Our model is based on ResNet [10] with a recursive

structure. Fig. 8 shows our network.

Table 5: Comparison with existing approaches on the Back-

ground Change dataset. We compare a 3D ResNet50 [10],

Non-Local Networks [32], a 1D Resnet50 using Distance

Matrices (DM), and our proposed approach. All approaches

are using 128 frame inputs.

Input Video Video DM DM

Network Resnet50 Nonlocal 1D-Resnet50 Ours

Accuracy 64.66 69.48 74.30 75.00

4.5. Data Augmentation and Training

We train our model with a fixed number of frames. In

order to improve the generalization, we sample a variable

number of frames and use linear interpolation to convert it to

the fixed number of frames, resulting in either a slow-down

or speed-up of the video. This helps improve performance

given that different individuals move at different speeds.

We also sample the training videos so that the first frame

is in a canonical pose, i.e., the subject is standing, at the

beginning of a squat. We do this by computing the knee

angle between ankle and hip. If it is 150 degrees or more, we

consider the subject to be in the canonical pose, and sample

the fixed number of frames after the canonical pose. (See

Fig. 9.)

We train our model using the AdaDelta algorithm [33]

and employ a cross-entropy loss.

5. Experiments

We perform ablation experiments and quantitative com-

parison of our proposed approach with existing methods.

Unless specified otherwise, we use the AdaDelta [33] op-

timizer with a batch size of 16 videos. We train for 8,000

iterations.

5.1. Quantitative Comparison

We compare our method against existing approaches for

video classification on the Background Change dataset.The

results are shown in Table 5. We compare against a 3D

variant of ResNet50 [10], Non-Local Neural Networks [32],

and a 1D variant of ResNet50 trained using distance matri-

ces. The 3D variant of ResNet50 is that of [31], while we

replaced all the 2D convolutions with 1D convolutions for

the 1D variant of ResNet50. For comparison purposes, we

use the same training conditions as [32] for all approaches,

such as training with Stochastic Gradient Descent instead

of AdaDelta. Both video-based approaches fail to general-

ize to a diversity of backgrounds and individuals. On the

other hand, using a distance matrix feature representation is

invariant to the scene background, and shows higher general-

ization performance. Our proposed model also outperforms

the 2D variant of ResNet50.



Table 6: Comparison of different hyper parameters on the

Single Individual dataset. We compare a linear SVM ap-

proach with various CNN configurations. Frames indicates

the length of the video used during training. Smoothing indi-

cates whether or not a median filter is used for smoothing.

Standing indicates whether or not the first frame shows the

individual in a standing position.

Approach SVM CNN CNN CNN

Frames 200 200 180-220 180-220

Smoothing No No No 3 frames

Standing No No No Yes

Accuracy 53.84 74.22 79.49 81.05

Figure 9: In training, start with standing position(left). Right

shoulder, right hip, right knee degrees should be more than

150.

5.2. Training Hyperparameters

We show the result of ablation of different training param-

eters in Table 6. In particular, we compare randomizing the

input frames, temporal smoothing, and forcing the videos to

start with a standing position (Figure 9). We also compare

with a linear SVM baseline. For all evaluations we use the

distance matrices as input. We can see that randomizing

the number of video frames gives a significant improvement.

Further adding temporal smoothing and making the videos

start with a standing position gives a further increase in

performance.

5.3. Evaluation of the Normalization

We compare the effect of the different types of normal-

ization on the Multiple Individual and the YouTube datasets

in Table 7. For all comparisons, we use the best performing

model, i.e., a CNN trained with randomized frames with tem-

poral smoothing and videos starting from a standing position.

We see that the YouTube dataset is significantly tougher than

the other datasets, and the body normalization gives a signif-

icant improvement in that case, given the larger variety of

Table 7: Comparison of different types of normalization

on the Multiple Individual and YouTube datasets. For all

comparisons we use a CNN training with 180-220 frames

with 3 frame smoothing and videos starting from a standing

position.

Normalization None Head Body Full

Accuracy 87.84 87.16 88.93 88.86

Accuracy (YT) 73.91 67.08 78.26 77.02

individuals.

5.4. Visualization

We use Grad-cam [28] to perform a temporal and posi-

tional analysis of the proposed approach. The result is shown

in Fig. 10. The frames showing first squat command high

attention, while standing position between squats seems to

attract much less attention.

5.5. Limitations

Failure cases in our approach are shown in Fig. 11. In

this approach, failure in pose estimation can lead to failure

of classification. The distinction between warped and round

back seems especially hard because there is no keypoint in

the middle of the back. We think this can be remedied by

changing the placement of the keypoints. Also, inward bend-

ing knees can be missed because it requires the instantaneous

motion of the knees at the crucial moment to be correctly

detected. Other cases of failure tend to be when the person is

too far way or when only part of the body is visible. To show

the importance of the accuracy of the 3D pose estimation,

we add Gaussian noise to the result of pose estimation in

each frame. We train using the Single Individual dataset, and

add the noise randomly to the training, validation, and test

splits. The pose estimator we use, HMR [13], normalizes

each joint coordinate to [−1, 1], and we show the results in

Fig. 12. We see how accuracy gets worse as noise becomes

larger. It is most sensitive for the ’Inward Knees’ and the

’Frontal Knee’ classes. This is likely due to the importance

few joints (knees) have for these classes.

6. Conclusion

We have presented a new dataset for video recognition

of squat form that captures a diversity of users and back-

grounds, and a new method based on temporal distance

matrices that shows favourable performance with respect

to existing approaches. By using the 3D pose, normalizing

for user-specific characteristics and using a translation and

rotation invariant representation, we show that our approach

generalizes much better to other real world data. Although

we have focused on squat form detection as a problem, our



Figure 10: Attention map visualization by Grad-cam[28]. Lighter part in the band below the frames indicate higher attention.

Video 1 Video 2

Figure 11: Failure cases. In the left video, Warped Back is detected even though the back is in fact round. This is mad difficult

because there is no keypoint in the middle of the back. In the right video, Good Squat is the result even though the knees are

bending inwards. This is the result of failing to correctly place the right knee key point at the crucial frame when the knee

bends inwards.

Figure 12: Result of adding noise to the pose estimation.

Accuracy gets worse as the noise becomes bigger.

proposed approach is amenable to any human-centric video

classification problem.
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