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Abstract

In this paper, several variants of two-stream architec-

tures for temporal action proposal generation in long,

untrimmed videos are presented. Inspired by the recent

advances in the field of human action recognition utilizing

3D convolutions in combination with two-stream networks

and based on the Single-Stream Temporal Action Propos-

als (SST) architecture [3], four different two-stream archi-

tectures utilizing sequences of images on one stream and

sequences of images of optical flow on the other stream

are subsequently investigated. The four architectures fuse

the two separate streams at different depths in the model;

for each of them, a broad range of parameters is investi-

gated systematically as well as an optimal parametrization

is empirically determined. The experiments on the THU-

MOS’14 [11] dataset – containing untrimmed videos of 20

different sporting activities for temporal action proposals –

show that all four two-stream architectures are able to out-

perform the original single-stream SST and achieve state

of the art results. Additional experiments revealed that the

improvements are not restricted to one method of calculat-

ing optical flow by exchanging the method of Brox [1] with

FlowNet2 [10] and still achieving improvements.

1. Introduction

Computer vision plays a major role in sports, begin-

ning with an automatic semantic annotation of the observed

scene to enhanced viewing experience.

One major research field in computer vision is the recog-

nition of actions and activities in videos, with a special in-

terest in actions and activities performed by humans. The

recognition of specific actions usually takes place in videos

of limited length, called trimmed videos, by assigning a sin-

gle action class to each video.

Being well known, short videos containing only a single

action are rather an artificial construct, being produced by

special recordings of only a single action or by previously

cutting the short video out of a larger one. More naturally,

Figure 1. Example of sports activities in a video which have to be

localized temporally (green) and segments of non-sports activities

that have not to be localized temporally (red).

untrimmed videos usually feature no specific or limited

length and contain more than a single action – a video of

the Summer Olympics may contain for example the sport-

ing activities ‘high jump’, ‘hammer throwing’, and ‘fenc-

ing’, but also non sporting parts, such as the commentators

talking, interviews and shots of the crowd as well. Figure 1

depicts an example. Another application field is the area of

video surveillance, where often only a few time segments

of large videos contain actions of interest, such as theft. In-

dependent of the concrete application, time segments con-

taining actions have to be identified from the whole video

as accurate as possible in addition to the classification of the

different actions taking place. As traditional approaches for

solving this problem mostly use an expensive combination

of sliding window mechanisms and classification, tempo-

ral action proposals generation was introduced as prepro-

cessing step, searching for high-quality time segments first,

which are thought to contain an action of interest with both

high probability and good temporal localization. Thus, clas-

sification has to be performed only on the temporal action

proposals.

A recent state of the art approach based on deep neural

networks is the ‘Single-Stream Temporal Action Proposal’

(SST) model [3], processing videos utilizing 3D convolu-

tions and a recurrent architecture. To the best of our knowl-

edge, we are the first who investigate different positions and

ways of fusion in two-stream architectures that utilize 3D

convolutions on optical flow and image data for temporal

action proposals generation. Our main contributions are:
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(1) The development of four two-stream model architec-

tures for temporal action proposals generation originating

from the SST model [3]. (2) Investigation and fine-tuning

of the hyperparametrizations of the models. (3) Quantita-

tive evaluation on the THUMOS’14 [11] dataset. (4) Show-

ing the independence of a specific optical flow calculation

method.

2. Related Work

Action recognition is a task to associate a single action

class to a video. From this field, a lot of relevant innovation

emerged. Two-stream convolutional neural networks [15]

were designed to process image data on the first stream and

stacked optical flow fields on the second stream. The addi-

tional usage of stacked optical flow fields contributes tem-

poral dynamical information of motion. Another approach

was the extension of two-dimensional kernels used by the

classical CNNs into the third dimension, therefore operat-

ing on 3D volumes defined by consecutive frames. The

prominent C3D (Convolutional 3D) network [17] employs

this approach by processing videos divided into blocks of 16

consecutive frames. This is another way of utilizing tempo-

ral information. More recent approaches combine the two

previous ideas: temporal information is utilized by applying

3D convolution on two streams, one using image data and

the other one using optical flow. Among others [12, 18],

the I3D (Inflated 3D ConvNet) network [5] is a prominent

example of that approach, coming to the conclusion that 3D

convolutional neural networks also profit from a two-stream

architecture. This insight in the field of action recognition

serves in this work as inspiration to transfer that approach

to the field of temporal action proposals generation.

The need for temporal action proposals comes from

the task of the temporal localization of actions in long,

untrimmed videos and the classification of said actions. Be-

fore temporal action proposals, this problem was tackled

with sliding window approaches: The extraction of over-

lapping time segments with varied length. Subsequently,

a classification of each time segment was done to find the

action in time. As this process was very time-consuming

with a lot of time segments to be classified, temporal ac-

tion proposals were invented to reduce the number of time

segments that have to be classified. There exists early work

[4] on temporal action proposals relying on traditional ap-

proaches. Among recent successful work [7, 3, 8, 9, 13] it is

instead common to take advantage of deep neural networks.

Several works [7, 3, 8, 9] are utilizing 3D convolutional neu-

ral networks (3D ConvNets) for the generation of temporal

action proposals – an approach already known from the field

of action recognition, see above. Being another prominent

approach from the field of action recognition, two-stream

networks with 2D kernels are used as well [13, 8], taking

advantage of optical flow on the second stream. Despite

being successfully used in action recognition, the combina-

tion of 3D convolutions with a two-stream network has not

made it to common practice in the field of temporal action

proposals generation yet.

In the field of temporal action localization – both the

temporal localization and classification of actions in long,

untrimmed videos – the combination of 3D convolutions

with two-stream networks found use recently in [6, 14]. In

most works, the temporal action proposal generation is a

sub-task of the overall approach. However, there also exist

end-to-end approaches [2].

3. Methodic approach

In this work, we follow the general approach presented

by Buch et al. [3] for the SST model. Just like there, each

video is divided into non-overlapping blocks of 16 frames

and features are extracted using the C3D network [17] as

a feature extractor. Those features serve as input for a re-

current neural network, producing confidence scores for 32

possible time segments in each step. After post-processing

with a score threshold and non-maxima suppression, a re-

duced set of temporal action proposals is generated. We

stick to this approach and utilize the existing architectures,

but extend them to a two-stream model architecture by in-

troducing a second stream working on the corresponding

images of optical flow, with the optical flow corresponding

to image j being calculated from image j−1 and j. Apply-

ing 3D convolutions on the optical flow allows efficiently

making use of the dynamics of motion. We design four

variants of this new architecture, differing in the position

and way the separate streams are fused before continuing in

a common stream.

In the following, we will have a closer look at the four

designed two-stream model architectures. All of them have

in common that they process videos by dividing them into

subsequent blocks of 16 images without overlap and pro-

cessing them sequentially. For each block of 16 original

images on the first stream – called video stream – there are

the 16 corresponding images of optical flow on the second

stream – called flow stream. These blocks of 16 images are

then first processed in parallel before the streams get fused

later in the architecture. The position and the way of the

fusion differ in the four model architectures. In the follow-

ing, we will highlight the C3D network apart from the SST

network which uses it as feature extractor.

#1: Mid fusion by concatenation (2S-Mid+) The first of

the designed two-stream variants is fusing the two separate

streams by concatenating features extracted by two separate

C3D networks before being used as input into the SST net-

work. This approach is inspired by Khong et al. [12] from

the field of human action recognition. One of their inves-

tigated two-stream models utilizes C3D features extracted



Figure 2. Outline of variant mid fusion by concatenation (2S-Mid+) and mid fusion by fc layer (2S-Midfc) of the two-stream model

architectures. To get 2S-Midfc from 2S-Mid+, simply replace the 2S-Mid+ content in the dashed box with the one of 2S-Midfc. For

2S-Mid+, the optional processing steps and the concatenation of feature vectors are bundled in the ‘combination of features’.

from the fc6-layer of two separate C3D networks, one of

them operating on the original images and the other one op-

erating on optical flow. Among other processing steps, the

two separate C3D feature vectors get concatenated there be-

fore being fed into a linear support vector machine (SVM)

for classification.

The idea of fusing two streams by concatenating C3D

features serves as a basis for our variant 2S-Mid+ of the de-

signed two-stream networks. Two separate C3D networks

get employed: one operating on the original images and one

operating on the corresponding images of optical flow. The

two streams stay separate until the end of the C3D net-

works where separate feature vectors are extracted. Op-

tional processing of these feature vectors, like applying L2-

normalization or principal component analysis, takes place

after the extraction. The next performed step is the concate-

nation of the separate feature vectors. For block i of a video,

fv,i denotes the feature vector from the video stream and ff,i

denotes the feature vector from the flow stream, which are

concatenated and result in the concatenated feature vector

fc,i.

fc,i = [fT

v,i , f
T

f,i ]
T (1)

The concatenated feature vector fc,i serves then as an input

for the SST network, which determines confidence scores

for temporal windows. A schematic representation of the

resulting network is shown in Figure 2.

Training: Just as with the original combination of C3D

and SST network the C3D networks will be trained sepa-

rately from the SST network on the task of action recog-

nition. The SST network will be trained afterward based

upon the extracted and combined C3D feature vectors of

the pretrained C3D networks on the task of temporal action

proposal generation.

#2: Mid fusion by fc layer (2S-Midfc) The first variant

2S-Mid+ fuses the streams ‘by hand’, as the fusion is not

learned by the neural network but is performed by concate-

nation instead. A possible logical consequence is therefore

to let the neural network learn how to fuse the two streams

by combining the separate C3D networks in one of their

later, fully connected layers, as it will be done in 2S-Midfc.

This idea is supported by the work of Varol et al. [18] on

the field of action recognition, who use two separate C3D

networks for original images and optical flow that are fused

using a shared fc6 layer.

2S-Midfc uses – just as 2S-Mid+ – two separate C3D net-

works, one operating on the original images and one operat-

ing on the corresponding images of optical flow. In contrast,

the two streams stay only separate up to the fc6 layers. For

block i of a video, av-fc6,i denotes the activations that are put

out by the fc6 layer of the video stream and af-fc6,i denotes

the activations that are put out by the fc6 layer of the flow

stream accordingly. Both have 4096 elements and serve as

common input into the fc7 layer, thus delivering 8192 ele-

ments. The shared fc7 layer fuses both streams, producing

the output ac-fc7,i with 4096 elements. In equation 2, R de-

notes the ReLU activation function.

ac-fc7,i = R(Wfc7 · [a
T

v-fc6,i, a
T

f-fc6,i]
T + bfc7) (2)

The activation ac-fc7,i is used as feature representation and

optional post-processing can be applied before being used

as input to the SST network. A schematic representation of

the resulting network can be seen in Figure 2.



Figure 3. Outline of variant late fusion by weighted average (2S-LateAvg) and late fusion by fc layer (2S-Latefc) of the two-stream model

architectures. To get 2S-Latefc from 2S-LateAvg, simply replace the 2S-LateAvg’s content in the dashed box with the one of 2S-Latefc.

Training: Two single-stream C3D networks are to be

trained up front. The estimated weights are used to initial-

ize the layers up to fc6. As the dimension of the fc7 layer

changed, it cannot be trained up front with a single-stream

C3D network, so the two-stream C3D network with preini-

tialized weights up to fc6 has to be trained again on the task

of action recognition. The network trained that way is then

used to extract features, which are used to train the SST net-

work on the task of temporal action proposals generation.

#3: Late fusion by weighted average (2S-LateAvg) In

the third variant 2S-LateAvg the fusion is moved to the very

end of the network by forming a weighted average of two

separate confidence score vectors. The idea is inspired by

the temporal segment network (TSN) from Wang et al. [19]

for action recognition which fuses the separate streams by a

weighted average of class scores.

2S-LateAvg utilizes two separate streams, each consist-

ing of a full C3D and SST network. One stream operates

on the original images, the other one on the correspond-

ing images of optical flow. Both separate C3D networks

extract separate C3D feature vectors, which are used as in-

put into two separate SST networks. The SST networks

are then used to generate separate vectors with confidence

scores for the same time windows. For block i, the confi-

dence score vectors of the video stream and the flow stream

are called cv,i and cf,i. The streams get fused by calculating

the weighted average over these separate confidence scores

with the weight factor α, 0 ≤ α ≤ 1, and result in the com-

mon confidence score vector cc,i.

cc,i = (1− α) · cv,i + α · cf,i (3)

A schematic representation of the resulting network archi-

tecture can be seen in Figure 3.

Training: The two separate C3D networks are pretrained

on the task of action recognition. The two separate SST net-

works are then trained on basis of the extracted C3D feature

vectors, one of them on C3D feature vectors extracted from

the original images and the other one on C3D feature vec-

tors extracted from images of optical flow. Training of the

separate SST networks together based on the performance

of the weighted average of the confidence score vectors is

possible, but not mandatory.

#4: Late fusion by fc layer (2S-Latefc) For 2S-LateAvg,

the fusion of the separate streams is just as with 2S-Mid+

done ‘by hand’, as the fusion is not learned by the network

but done by calculating the weighted average over the con-

fidence score vectors. Therefore, it seems logical to let the

network learn how to fuse the two separate streams, which

will be done in 2S-Latefc by utilizing the fully connected

layer at the end of the SST network. 2S-Midfc, where the

second fully connected layer fc7 of the C3D network was

used for the fusion, serves as inspiration.

2S-Latefc utilizes two separate C3D networks, one oper-

ating on the original images and one on the corresponding

images of optical flow. Both are used to extract separate

C3D feature vectors. They serve as input into two separate

SST networks, one for the C3D feature vectors derived from

the original images and one for the C3D feature vectors de-

rived from the images of optical flow. Both SST networks

stay separate until the end of the sequence encoders – the

recurrent part before the fully connected layer. The output

vectors of the separate sequence encoders – for block i de-

noted as sv,i for the video stream and sf,i for the flow stream

– are used as input for a shared fully connected layer, which



utilizes a logistic sigmoid function σ to calculate the com-

mon confidence vector cc,i in each step.

cc,i = σ(Wfc · [s
T

v,i, s
T

f,i]
T + bfc) (4)

An outline of the resulting network is shown in Figure 3.

Training: The separate C3D networks are to be pre-

trained just as in 2S-LateAvg, the same applies to the two

separate SST networks. In contrast to 2S-LateAvg, the

weights determined for the separate SST networks can only

be used to initialize the two fused SST networks up to

the end of the sequence encoder, as the dimension of the

shared fully connected layer has changed. Therefore, the

fused SST networks are to be trained again to calculate the

weights for the fully connected layer, before they can be

used for confidence score calculation.

4. Evaluation

In this section, a quantitative evaluation will be per-

formed. First of all, we will investigate experiments regard-

ing the hyperparametrization of the flow stream, followed

by the evaluation of the four designed two-stream model ar-

chitectures in comparison to the single-stream variants. The

best configurations of fusion will be determined, as well as

the improvement to the single-stream networks. Evaluation

and training for temporal action proposal generation will be

performed on the THUMOS’14 [11] dataset. The validation

split will be used for the training as it is common practice

on this dataset, while the test split remains for the evalua-

tion. If the training of the C3D network is necessary, the

UCF101 [16] dataset will be utilized. We are building upon

a implementation1 of the SST network in TensorFlow, com-

ing with already extracted features for the original video

data of THUMOS’14. If not stated otherwise, the method

of Brox et al. [1] is used for optical flow calculation.

4.1. Flow stream experiments

As an initial step for the evaluation of the designed two-

stream models, the hyperparametrization of the flow stream

was investigated, working on images of optical flow. The

parameters of the C3D network used for feature extraction

remain untouched. For the SST network, several changes

for parameters are investigated. C3D features from the fc6

layer of the C3D network are compared with features from

the fc7 layer. One time the training of the C3D network is

stopped early, the features from that C3D network are re-

ferred as early C3D features and compared with features

from the C3D network when training is not stopped early;

these features are referred as late C3D features. Two dif-

ferent preprocessing steps of the C3D features are investi-

gated: L2-normalization and principal component analysis

for reducing the size of the feature vector from 4096 to 500

1https://github.com/JaywongWang/SST-Tensorflow

elements. Apart from these different inputs into the SST

network, the parameters of the network itself are investi-

gated: Different learning rates, different numbers of neu-

rons per GRU layer, different numbers of GRU layers and

different dropout rates. For the initial configuration, the pa-

rameter values of the video stream delivered with the used

implementation are utilized. First, each parameter value got

altered independently, afterward combinations of parame-

ter changes on the basis of previous experiments were in-

vestigated. The initial parameter values, as well as the best

configuration in the conducted experiments, can be seen in

Table 1. Not all parameter changes worked well, Figure 4

shows the best results of the best configurations in compar-

ison to the best results of the worst.

Parameter Initial Value Best Value

C3D features late, fc7 early, L2, fc7

Learning rate 1e-3 1e-2

Dropout rate 0.3 0.3

Neurons per GRU layer 128 256

Number of GRU layers 2 1

Table 1. Configuration of the SST network operating on features

from images of optical flow. The initial (left) and experimentally

determined best (right) values are displayed. L2 stands for L2 fea-

ture normalization prior to usage.

4.2. 2S­Mid+ evaluation

For these experiments, the already extracted features for

the original images delivered with the TensorFlow imple-

mentation and the already extracted features for the images

of optical flow extracted during the flow stream experiments

are used. If being used, preprocessing steps are applied be-

fore those features are concatenated.

Experiments are conducted similar to the flow stream ex-

periments, with the difference, that a reduced set of parame-

ter values is explored based upon successful parameter val-

ues from the flow stream experiments. For each parameter

setup, a new SST network is trained and evaluated on the

concatenated features, as no pretrained model exists for the

concatenated C3D feature vectors. Per configuration two

SST networks were trained and evaluated.

The best results were achieved with the configuration in

Table 2. In Figure 5 the comparison with the single-stream

networks – the original SST network and the TensorFlow

implementation of the SST network – shows that the addi-

tional usage of optical flow leads to improvements for major

parts of both metrics, while for minor parts in both metrics

results of a comparable level were achieved.

4.3. 2S­Midfc evaluation

The two streams are fused inside the feature extractor,

thus, already extracted features cannot be used for the ex-
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Figure 4. Comparison of the results achieved with different parametrizations of the SST network using C3D features from images of optical

flow as input. The high gap between best and worst parametrization results shows the importance of a proper parametrization, while the

comparably small gap between initial and best parametrization indicates that the initial parametrization already worked well.
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Figure 5. Comparison between the results of 2S-Mid+ and 2S-Midfc of the two-stream model architectures using the experimentally

determined best parametrization for them and the single-stream networks. For major parts of the metrics, the two-stream models manage

to outperform the single-stream ones, with 2S-Mid+ outperforming 2S-Midfc.

periments. Instead, the existing weights for the feature ex-

traction on image data and the weights determined during

the flow stream experiments for feature extraction on im-

ages of optical flow are used for initialization. Training is

done as described above using the UCF101 dataset for train-

ing the fused C3D networks. The weights used for initial-

ization remain fixed in a first training phase used to deter-

mine the not preinitialized weights; an optional subsequent

fine-tuning where no weights remain fixed is investigated as

well. Solely the fc7 layer is investigated for feature extrac-

tion, as the streams are separate before that layer.

After the extraction of the C3D feature vectors, the train-

ing and subsequent evaluation of the SST network takes

place. As with the experiments for the previous variant,

different parameter configuration derived from successfull

parameter values of the flow stream experiments are inves-

tigated, with two SST networks being trained and evaluated

per configuration.

Among all experiments, the configuration in Table 3 pro-

duced the best results. The parametrization is, apart from

the obvious deviation in the used C3D features caused by

the design of the two-stream network, identical to the one

which produced the best results for 2S-Mid+. The com-

parison of the performance concerning the two metrics can



Parameter Shared Stream

C3D features (images) L2, fc6

C3D features (flow) L2, early, fc7

Learning rate 1e-2

Dropout rate 0.3

Neurons per GRU layer 256

Number of GRU layers 2

Table 2. Parameters and their experimentally determined best val-

ues for the SST network of 2S-Mid+ that operates on the concate-

nated feature vectors.

Parameter Shared Stream

C3D features L2, no finetuning, fc7

Learning rate 1e-2

Dropout rate 0.3

Neurons per GRU layer 256

Number of GRU layers 2

Table 3. Parameters and their experimentally determined best val-

ues for the SST network of 2S-Midfc.

be found in Figure 5. Concerning both metrics, 2S-Midfc

achieves in comparison with the single-stream networks im-

provements for major parts of both metrics as well but pro-

duces slightly worse results than 2S-Mid+.

4.4. 2S­LateAvg evaluation

Because fusion takes place right after the confidence

scores of each stream were created, the pretrained SST net-

work and the SST networks from the flow stream experi-

ments can be used. For α the values 1/3, 1/2, and 2/3 are

investigated.

Different sets of parameter values are explored for the

hyperparameters of the SST network of the flow stream.

The parameter values of hyperparameters of the SST net-

work of the video stream remain untouched. To produce

first results no further training is needed as the whole two-

stream model can be initialized with pretrained weights, but

an optional common fine-tuning of the two SST networks

based upon the weighted average of the confidence scores

is investigated as well.

The parametrization that delivered the best results among

all experiments for 2S-LateAvg is displayed in Table 4. The

comparison with the single-stream networks concerning the

two known metrics is displayed in Figure 6. For major parts

– even for small tIoU – improvements are achieved.

4.5. 2S­Latefc evaluation

Feature extraction is performed as in 2S-LateAvg, but al-

ready trained SST networks cannot be employed totally, as

the fusion is done by a shared fully connected layer of both

separate SST networks. Therefore, weights of those net-

Parameter Flow Stream Image Stream

C3D features early, L2, fc7 fc6

Learning rate 1e-2 1e-3

Dropout rate 0.3 0.3

Neurons per GRU layer 256 128

Number of GRU layers 1 2

Flow stream weight α 0.5 0.5

Common Finetuning Not used

Table 4. Parameters and their experimentally determined best val-

ues for the two separate SST networks utilized by 2S-LateAvg.

Different parametrizations were only examined for SST network

of the flow stream.

Parameter Flow Stream Image Stream

C3D features early, L2, fc7 fc6

Separate learning rate 1e-2 1e-3

Common learning rate 1e-3 1e-3

Dropout rate 0.3 0.3

Neurons per GRU layer 256 128

Number of GRU layers 1 2

Common Finetuning Not used

Table 5. Parameters and values for the two separate SST networks

in 2S-Latefc. The ‘separate learning rate’ denotes the learning rate

used to pretrain the two separate SST networks, whose weights are

used to initialize the separate sequence encoders. The ‘common

learning rate’ denotes the learning rate used to train the common

fc layer after the preinitialized sequence encoders.

works can only be used for initialization up to the point of

fusion. Training is done as described above. Weights used

for the initialization remain fixed while training the fully

connected layer, but an optional fine-tuning of all weights

of the fused SST networks is investigated as well.

Similar to the experiments above the hyperparameters

for the part belonging to the video stream remain fixed

whereas for the flow stream they are explored. For each

configuration two training and evaluation procedures are

performed for the fused SST networks.

The parametrization producing the best results can be

seen in Table 5. It can be seen that the values of the param-

eters that are common to 2S-LateAvg and 2S-Latefc are the

same, therefore showing consistency. A comparison with

the single-stream networks concerning both known metrics

is shown in Figure 6. Again, improvements are achieved for

major parts of both metrics in comparison with the single-

stream networks.

4.6. Optical flow experiments

Until now experiments were conducted using Brox et

al. [1] for optical flow. To investigate if the observed im-

provements can hold when the method of calculating optical
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Figure 6. Comparison between the results of 2S-LateAvg, 2S-Latefc and the single-stream networks. For major parts of the metrics, the

two-stream models manage to outperform the single-stream ones, with 2S-LateAvg also achieving improvements for very small tIoU.

flow is changed, for 2S-LateAvgFN FlowNet2 [10] is used.

This method uses a neural network for supervised learn-

ing of optical flow in contrast to the traditional optimiza-

tion approach of Brox et al. A C3D network and a single-

stream SST network are trained the same way as before,

using the best configuration from 2S-LateAvg. The deter-

mined weights are used for initialization of the flow stream

of 2S-LateAvgFN. Experiments with this parametrization

and these weights are conducted just as when using opti-

cal flow calculated with Brox et al. The results are slightly

worse compared to the case where Brox is used, but remain

on a comparable level, achieving improvements in compar-

ison to the single-stream networks.

4.7. Summary

All four two-stream models lead to improvements com-

pared to the single-stream networks. This indicates that the

utilization 3D convolutions in a two-stream setup makes

sense for the task of temporal action proposal generation. A

tabular comparison is shown in Table 6. 2S-Mid+ and 2S-

LateAvg perform best, with negligible differences in per-

formance. They have in common that the fusion of both

streams takes place outside of the actual neural networks,

thus does not get learned.

5. Conclusion

In this work, four different two-stream model architec-

tures with different fusions utilizing sequences of images on

one stream and images of optical flow on the other stream

were investigated for the purpose of temporal action pro-

posal generation. Utilizing sequences of images of opti-

cal flow on the second stream in addition to sequences of

the original images on the first and processing them us-

ing 3D convolutions on both streams, improvements where

achieved for all explored two-stream models in comparison

to the single-stream models omitting a second stream. It

was also shown that the improvement is not bound to us-

ing a certain method of calculating optical flow by inves-

tigating another one and achieving improvements as well.

Apart from showing that the general approach of combin-

ing a two-stream architecture with 3D convolutions is ben-

eficial for the task of temporal action proposal generation, a

suitable basis for further work on the larger field of action

localization has been created.

Network Score

Original SST network 0.6025

TensorFlow Implementation of SST network 0.6295

SST network (images of optical flow) 0.6320

2S-Mid+ 0.6497

2S-Midfc 0.6438

2S-LateAvg 0.6495

2S-Latefc 0.6466

2S-LateAvgFN 0.6436

Table 6. Comparison of the single-stream networks with the dif-

ferent two-stream models. The displayed score refers to the metric

‘average recall at average 1000 proposals’. The scores for the two-

stream networks and the single-stream network with optical flow

come from the best experiments presented in this work. It can be

seen that all the single-stream variants of the SST networks are

surpassed by every single two-stream model, even if the calcula-

tion method of optical flow is changed. Best results are achieved

with 2S-Mid+ and 2S-LateAvg.
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