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Abstract

The estimation of an athlete’s pose in video footage en-

ables the automation of athletic performance assessment,

the prediction of motion kinematics and dynamics in sports

videos and the possibility of technology-assisted, direct

training feedback. Despite remarkable progress in the field

of deep learning assisted human pose estimation, the per-

formance of such systems decreases while noise and errors

increase with the complexity of the scene. In this paper, we

focus on aquatic training scenarios, where even novel pose

estimators produce several types of orthogonal errors, in-

cluding joint swaps and prediction outliers. In order to im-

prove the estimation of an athlete’s pose in swimming, we

propose a graph partitioning problem that connects pose

estimates over time and explicitly allows for joints to switch

labels if their location better fits each other’s trajectory.

We optimize the problem using integer linear programming,

which partitions the graph into the most probable joint tra-

jectories. We show experimentally that our method of joint

rectification improves the joint detection precision of swim-

mers in a swimming channel by 0.8%−4.8% PCK for anti-

symmetrical motion and up to 1.8% PCK for symmetrical

styles.

1. Introduction

State-of-the-art pose estimation systems like Convolu-

tional Pose Machines (CPM, [26]) or Mask R-CNN [13] en-

able the continuous estimation of the human pose in sports

footage. While state-of-the-art pose estimation algorithms

often perform well on benchmark video footage and less

complex scenes, the output of such algorithms can be in-

accurate and partially incorrect in a visually demanding

training scenario. Human pose estimation in aquatic en-

vironments is exacerbated by noise from air bubbles, wa-

ter splashes, constant self-occlusion and refraction, which

often impede the prediction of the human pose and con-

sequently the retrieval of key-poses. The unique perspec-

tive on a swimming channel entails an additional challenge.

The side view exhibits visually ambiguous poses for anti-
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Figure 1. A sequence of joint coordinates of a freestyle swimmer’s

left (blue) and right (orange) elbow. The first column depicts x

coordinates, the second y coordinates. Top: original sequence as

predicted by fine-tuned [26]. Middle: after partner graph optimiza-

tion. Bottom: final result after outlier and noise correction. Col-

ored corridors depict the ground truth time series with ±0.2PCK.

Qualitative examples from this sequence are depicted in Figure 2.

symmetrical body movements, thereby inducing many false

detections from swapped joint pairings.

For human pose estimation to be a useful tool for fully

automated, continuous performance analyses and training

feedback, high expectations of coaches have to be met with

appropriately precise detection results. A straight forward

application for pose estimation in sports is visualization,

which allows for enhancing images with pose inpainting,

therefore illustrating the motion qualitatively. Rectified

pose estimates lead to a better pose visualization, thus as-

sisting coaches with a qualitative pose assessment by re-

moving joint landmark wiggling between frames. As a tool

for quantitative evaluation, pose estimation can be used to

count steps, strokes or kicks, and it can be used to automat-

ically and precisely measure execution times, body angles,

jump distances as well as motion kinematics of athletes.

In this paper, we strive to improve human pose estima-
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Figure 2. Qualitative examples of different errors. From left to right: original image, ground truth annotations, pose prediction CPM [26],

pose prediction Mask R-CNN [13].

tion in aquatic environments. Therefore, we identify a tax-

onomy of several orthogonal pose estimation errors, which

are much more prevalent in aquatic training scenarios. Our

goal is to rectify them or, if complete rectification is not

possible, at least minimize the overall error magnitude. We

achieve this by constructing a weighted graph from pose es-

timates, where edges connect joint detections over different

frames and edge weights encode transition probabilities. To

account for swap errors, the proposed graph structure ex-

plicitly allows for detections to change their labels, e.g, a

detection for the right wrist can be labeled a left wrist af-

ter optimization if the right wrist detection better fits the

trajectory of the left wrist. Formulating this graph as an in-

teger linear program (ILP) allows for partitioning the graph

into subsets of edges, where each subset represents the most

probable trajectory for one joint. In a second step, joint tra-

jectories are smoothed and filtered for outliers using a lo-

cally robust regression through L1-norm minimization of

trajectory residuals.

Contributions. With the proposed method, we make the

following contributions: (a) Our approach explicitly models

the possibility that joints may change their label in order to

tackle the problem of joint transposition in human pose esti-

mation sequences. (b) We propose a novel scheme for mod-

eling transitive edges and edge potentials in the optimiza-

tion graph, which is inspired by motion kinematics. (c) We

present an analysis of potential pose estimation errors that

are more frequent in sports applications. (d) Our pipeline

is merely based on joint coordinate predictions and can be

trained with a comparatively small set of annotated training

sequences. Obtaining large quantities of high precision an-

notations to train sophisticated machine learning algorithms

remains a time-consuming and tedious challenge which is

often not feasible, especially in exotic applications and less

popular sports.

The rest of this paper is organized as follows. We first

analyze sequences of consecutive pose estimates produced

by a refined version of [26] qualitatively and quantitatively

to give a better sense of error types, correlation, and fre-

quency. Build on this analysis, a pipeline for joint tracking

and joint regression is presented. The experimental section

reports improvements for different stages.

2. Related Work

Pose estimation in images has made remarkable progress

over the last years. Deep neural networks have been

used for learning visual appearance [28, 25] and structure

[5, 26, 27, 13, 30, 23] of the human pose. Deep archi-

tectures have been proposed for improving pose estima-

tion in videos. For instance, [22] stack multiple contigu-

ous frames as parallel input for a network, while [4] lever-

age a recurrent network structure for improving pose es-

timates. [15] incorporate human action into a deformable

part model to improve pose estimation in videos and pro-

pose a procedure for jointly training both pose and action

in one model. [12] feed additional pose priors from previ-

ous detections together with an image into a CNN. [8] pro-

pose a late fusion network, where the predictions of multi-

ple frames are merged and processed to improve temporal

consistency. While all these methods enforce consistency

by leveraging some type of smoothing constraints, others

[20] favor optical flow as an additional input modality. Re-

cently, multi-person tracking has gained a lot of attention

from the scientific community. [16] use LP optimization

on a spatiotemporal pose graph for tracking multiple per-

sons. [11] use [13] for keypoint prediction in small clips

and link them over an entire video using a lightweight track-

ing scheme. While both multi-person tracking solutions are

structurally similar to our method, none of them allows for

explicit label swapping.

Pose rectification can also be seen as a ”data cleaning”

task. To this, recurrent frameworks [19], conditional Boltz-

mann machines [24], Kalman filtering [3], dimensionality

reduction [1] or data-dependent random forests [9] have

been successfully applied to identify and rectify outliers in
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Figure 3. Pearson correlation for residual magnitudes of different

joints for freestyle (left) and backstroke (right) swimmers. Larger

correlation coefficients emerge for the upper body joints and espe-

cially for partner joints, and separately for the lower body joints.

human poses and other modalities. Specifically in sports,

[14] combined global and local pose estimation to refine

joint predictions of athletes. Human pose estimation in live

sports footage has been addressed by [10], who propose a

generative learning algorithm for athlete tracking. [29] per-

form pose rectification for an athlete by means of a convex

optimization problem based on motion kinematics of an ath-

lete. Compared to our approach, their solution involves a

strictly causal dynamic program, which does not allow for

incorporating detections from future frames.

3. Prediction Error Taxonomy

Even novel pose estimation system like [26, 13] have dif-

ficulties dealing with the visual ambiguity of the pose from

a side-view and to accurately produce reliable outputs. In

the following, we discuss different error modes in order to

convey a deeper understanding of why it is necessary to ad-

dress them. Therefore, we performed an analysis of orthog-

onal joint errors on pose estimates produced by a Convolu-

tional Pose Machine (CPM, [26]), which we fine-tuned on

a set of 55 sequences covering 4000 images of freestyle and

backstroke swimmers in a swimming channel (see Figure 2

for examples). We focus this assessment on only two of the

four major swimming styles because we found that the pose

detectors produced most errors, quantitatively and qualita-

tively, on them. However, the error classes we observe in

different swimming styles are at least a subset of what is

discussed in the following.

A disadvantage of using a per-frame pose estimator

is that no prior temporal consistency between contiguous

poses is enforced for improving the temporal stability of

continuous pose estimates. In Figure 2, different types of

errors are depicted. They usually fall into one of four cate-

gories. A joint transposition occurs if the estimator swaps

joints that are visually similar. For instance, the right wrist

is falsely detected as the left wrist and vice versa. In our

pose parametrization, there exist six visually similar part-

ner joints, which are the wrists, elbows, shoulders, right

and left hip, knees, and ankles. Swaps are correlated with

visually challenging poses, where the detector is not able to

properly distinguish between body sides. This error class is,

therefore, most prevalent in antisymmetrical motion, e.g., in

freestyle or backstroke swimming. We can find a strong in-

dication of joint swaps being a problem when plotting the

correlation between residual magnitudes of different joints

for freestyle and backstroke swimmers (Figure 3). It be-

comes apparent that there is a strong correlation of error

magnitudes in the upper body and separately in some joints

of the lower body. With correlation coefficients for partner

joints reaching values of > 0.8, a larger error in one joint

is often answered with an equally large error in the partner

joints.

A joint estimate is considered an outlier if its residual

magnitude is too large. This includes outliers where one

joint is placed at the position of the partner. Outliers are

classical false positive detections which can often be cor-

rected using robust interpolation. A false negative is a

ground truth location that was not estimated by the joint

detector. All other joint detections that are not predicted

precisely at the ground truth location but in close proximity

of a joint fall in the last category. This location jitter has

a joint-specific variance and usually leads to volatile joint

trajectories.

Joint transposition and outlier errors are typically consid-

ered false positives, while misses are false negative detec-

tions. In the context of the Percentage of Correct Keypoints

(PCK) measure, the rectification of these error categories

leads to a better recall at the largest inlier threshold. Im-

proving joints on a finer scale by removing location noise

from the trajectory mainly raises the PCK curve for smaller

thresholds.

One important question to ask is how common different

error types are. If each error class only rarely occurs, then

correcting them would be a trivial task. Figure 1 visual-

izes the x and y coordinates (blue and orange) of an elbow

of a freestyle swimmer. The top row of plots depicts the

raw output of the CPM. These graphs are very exemplary

for the error frequency we observe in the data: While joint

swaps and outliers can appear as standalone events, more

often than not they appear in bursts over a longer sequence

of frames. In addition to the number of errors, the mix-

ture of different error types proves challenging to tracking

algorithms. As becomes apparent in Figure 3, joint trans-

position errors mix with single and consecutive outliers as

well as general detection noise.

4. Joint Refinement

We discuss a pipeline of optimization problems, each of

which is designed for identifying the error types discussed

in the previous section with the goal to rectify them or,

if complete rectification is not possible, at least minimize

the overall error magnitude. All optimization problems are

merely defined on the raw 2d joint location output of a



Figure 4. An example of a kinematic partner graph for wrist joints. Top: Three consecutive images with joint predictions. Wrists marker

colors indicate joint labels as detected by [26] (swap error in left image). Bottom: ILP edges for wrists. Green edges connect joint

predictions from adjoining frames. Red edges explicitly model label swaps between adjoining frames. Transitive edges (yellow) skip one

frame, connecting joints from frames t with frames t+ 2.

pose estimator. Therefore, we examine two popular pose

estimation frameworks: a CPM [26] and a Mask R-CNN

[13] are used to produce joint estimates for each frame in a

video depicting an athlete (Figure 4, top). The main focus

of this paper is addressing the problem of joint transposi-

tion. A weighted graph is constructed from pose estimates,

where edges connect joint detections over different frames

and edge weights encode transition probabilities. We will

use the terms velocity- and acceleration edges to differen-

tiate between different edge types. This denomination is

not by chance and hints on how the associated edge weights

are constituted. Details are presented in Section 4.1.2. To

account for swap errors, the proposed graph structure ex-

plicitly allows for detections to change their labels, e.g, a

detection for the right wrist can be labeled a left wrist af-

ter optimization if the right wrist detection better fits the

trajectory of the left wrist. Formulating this graph as an in-

teger linear program (ILP) allows for partitioning the graph

into subsets of edges, where each subset represents the most

probable trajectory for one joint.

4.1. Swap Optimization

The partitioning of the weighted graph can be formulated

as an ILP as follows. The goal is to optimize over

maximize wT x

s.t. Cx ≤ b

x ∈ {0, 1}n
(1)

Here, x is a binary vector where each entry xi indicates

if an edge is present (xi = 1) or absent (xi = 0). The

weight vector w associates a weight wi with each edge in

x. Matrix C and vector b encode constraints on the graph,

e.g., required co-occurrence and mutual exclusivity for cer-

tain edges. Given a set of constraints, optimizing over the

problem in (1) yields subsets of edges which maximize the

sum of edge weights in the graph. The joint detections con-

nected by a path of edges form the optimal trajectory w.r.t.

(1). In the following, we will define edge types which are

included in x, how edge weights w are chosen and what

constraints to formulate in order for the problem to be well

defined and feasible.

4.1.1 Kinematic Partner Graphs

We define a kinematic partner graph as the foundation of

the ILP. The nomenclature refers to the fact that edges in

this graph model the relationship between partner joints and

that the weights for each edge are derived from the motion

kinematics of the athlete. A CPM is used to obtain sets of

joint detections Dt for each frame t in a video. Each de-

tection d
(t)
j ∈ Dt of joint type j is associated with a joint

pixel location l
(t)
j = (xj , yj)

T in the image. The function

j′ = ν(j) returns the partner joint j′ of joint j. For in-

stance, if j is the identifier for the left wrist, ν(j) returns

the identifier for the right wrist. Wrists, elbows, shoulders,

hips knees and ankles are defined as partner joints, respec-

tively. A kinematic partner graph is defined by edges con-

necting joint detections of the same type and partner joint

detections over adjoining frames. Edges can be divided into

two types. Let a set of velocity edges Ev connect detections

over consecutive frames:

Ev = {(d
(t)
j , d

(t+1)
j′ ) : d

(t)
j ∈ Dt ∧ d

(t+1)
j′ ∈ Dt+1

∧ j′ ∈ {j, ν(j)}}
(2)

Edges in Ev represent the trajectory of all joint detec-

tions as originally predicted by the pose estimator. Addi-

tionally, Ev includes connections between a detection d
(t)
j

of joint j in frame t and its partner joint d
(t+1)
ν(j) in frame t+1

to account for joint transpositions. These additional edges

allow for joints to swap their labels if the associated weights



have a larger benefit for the optimization problem. For each

pair of partner joints in two consecutive frames, there are

four velocity edges. Adding to Ev , transitive edges or ac-

celeration edges Ea are defined as

Ea = {(d
(t)
j , d

(t+2)
j′ )j′′ : d

(t)
j ∈ Dt ∧ d

(t+2)
j′ ∈ Dt+2

∧ j′, j′′ ∈ {j, ν(j)}}

(3)

Acceleration edges connect detections of joint j in frame

t with joint detections of the same joint type as well as

the partner in frame t + 2. Note the edge subscript j′′

added to the edge definition. It indicates that there are

two edges connecting (d
(t)
j , d

(t+2)
j′ ), namely (d

(t)
j , d

(t+2)
j′ )j

and (d
(t)
j , d

(t+2)
j′ )ν(j). Both these edges connect d

(t)
j with

d
(t+2)
j′ , but have different weights. The weights are de-

termined by which of the two joint detections d
(t+1)
j and

d
(t+1)
ν(j) at frame t+1 better fit the respective trajectory. This

peculiarity leads to overall eight acceleration edges con-

necting each pair of partner joints over two frames. A fully

build partner graph for the wrists in three consecutive im-

ages is depicted in Figure 4, where red and green lines are

velocity edges and yellow lines depict acceleration edges.

4.1.2 Edge Weighting

The optimization problem in Equation 1 partitions subsets

of edges by maximizing over the associated weights. The

denomination of velocity and acceleration edges in the pre-

vious section is not accidental, as we will use first and sec-

ond order numerical derivatives of the joint locations to de-

termine edge weights.

Pose preprocessing. All predicted joint locations are re-

sized relative to a reference upper body size sref to account

for athletes of different size in images. In our experimental

setup, the size of an athlete in a video is approximately con-

stant. Hence, let sup be the median length of an athlete’s

upper body size in a video, determined by the distance be-

tween right shoulder and left hip. Then, each original joint

estimate at location l̂
(t)

j for all joints j in all frames t is re-

sized to

l
(t)
j =

sref
sup

l̂
(t)

j . (4)

The estimate of sup may be more complex if athletes are

filmed in different training scenarios. For example, if pan

shots are used and the size of the athlete in the footage

changes over time, sup needs to be continuously estimated,

for instance by a smoothing spline over predicted upper

body lengths.

Kernel density edge weights. A weight for each edge

can be computed from first and second order numerical

derivatives of joint locations. Let the velocity v
(t)
j of a joint

j in frame t be defined as

v
(t)
j = ∇l

(t)
j = l

(t)
j − l

(t−1)
j (5)

and the acceleration a
(t)
j be the rate of change in velocity,

thus

a
(t)
j = ∇2

l
(t)
j = v

(t)
j − v

(t−1)
j = l

(t)
j − 2l

(t−1)
j + l

(t−2)
j .

(6)

A kernel density estimator (KDE) based on the parabola

shaped Epanechnikov kernel K(v;h) = 1 − v2/h2 and a

bandwidth of h = 1 is used to determine a probability for

a observed velocity magnitude |vj | (=speed). Therefore, a

probability distribution is learned from ground truth speeds

in a separate set of training videos. When formulating the

ILP, the predicted velocity can be determined from pre-

dicted joint locations using Equation 5. The KDE is queried

to determine probabilities for predicted speeds, which are

then assigned to the respective velocity edge Ev . After

all weights are assigned, edge normalization for all veloc-

ity edges connecting partner joints from frame t with frame

t+1 is performed. Therefore, all velocity edges connecting

two partner joints, i.e, {(d
(t)
j′ , d

(t+1)
j′′ ) : j′, j′′ ∈ {j, ν(j)}},

are normalized such that the sum of weights equals one.

The same weighting process is repeated for all acceler-

ation edges Ea. A KDE for each joint type is queried to

determine probabilities for the predicted acceleration mag-

nitude |aj |. When using acceleration edges to connect de-

tections in frame t− 2 with detections in frame t, Equation

6 tells us that detections from frame t − 1 contribute to ac-

celeration determination. Hence, two transitive edges with

distinct weights are generated connecting any joint pairing.

An example is shown in Figure 5. Both blue edges f1 and

f2 connect the same two detections, but have different edge

weights, depending on the detections at frame t + 1 that

contribute to the acceleration weight.

4.1.3 Edge Constraints

The weighted partner graph defined in Section 4.1.1 is con-

structed from velocity and acceleration edges connecting

partner joints over all configurations in a sequence. For the

IPL to find a feasible partition of this graph, constraints have

to be defined. In order to be able to intelligibly explain con-

straints without requiring an overly intricate notation, we

will use the exemplary notation from Figure 5. This figure

depicts an abstract sketch of two partner detections (large

rectangles) in three consecutive frames (from left to right).

Velocity edges ei (black and red) connect all detections in a

trellis graph. Additionally, two transitive acceleration edges

f1 and f2 are also added in this sketch. For clarity, all other

transitive edges have been omitted. We will use the edge
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Figure 5. Velocity edges {e1, ..., e8} between joint detections d of

partner joints j and ν(j) in three consecutive frames (t, t+ 1, t+
2). Colors indicate predicted trajectories (black) and swap-edges

(red). Transitive acceleration edges f1 and f2 (blue) connect d
(t)
j

with d
(t+2)
j . For clarity, only two out of eight transitive edges are

shown.

notation from this Figure to exemplary carve out optimiza-

tion constraints. The full constraint set holds all constraints

for all frame triples and all partner joints. Note that ei and

fi pose as indicator variables. If an edge is present, the vari-

able equals 1 and 0 otherwise.

The first set of constraints model mutual exclusivity be-

tween velocity edges: A detection of joint j in frame t can

not be connected to both joint j and joint ν(j) in frame

t+1 at the same time. Using the nomenclature from Figure

5, this translates to:

e1 + e2 ≤ 1

e3 + e4 ≤ 1
(7)

Both these constraints are violated if mutually exclusive

edges appear together in the set. This set of constraints

thereby guarantees that the ILP partitions the graph into sep-

arate joint trajectories.

The second set of constraints guarantees that the acceler-

ation edges matching a selection of velocity edges are con-

sidered. If, for instance, the ILP considers edges e1 and e5
for the joint trajectory in one partition, then the transitive

edge f1 has to be added to the path. This constraint is mod-

eled as

e1 + e5 − f1 ≤ 1 (8)

These constraints model the necessary presence of transi-

tive edges, but they do not prevent the arbitrary inclusion of

other transitive edges, which automatically happens when

maximizing the objective function.

This motivates the third and last set of constraints for

mutual exclusivity of transitive edges. This constraint only

allows two transitive edges per partner pairing and frame

triple to be included in the final solution. It follows that

8∑

i=1

fi ≤ 2. (9)

All constraints allow for the ILP to yield a feasible partition

of the graph and thereby a trajectory for each partner joint.

4.1.4 Edge Conflation

The edge set described in the previous paragraphs can be

reduced to sets with smaller cardinality by capitalizing the

fact that we only argue over partner joints, i.e., pairs of two

joint types. Consider both wrist detections in frames t and

t + 1 in Figure 5. If we assume that detection d
(t)
j is con-

nected to d
(t+1)
j via edge e1, then it automatically follows

that d
(t)
ν(j) is connected to d

(t+1)
ν(j) via e4. Edges e2 and e3

would be deleted from the graph in this scenario. Then

again, if e2 and e3 had larger probabilities, then they would

connect the detections and e1 and e4 would be excluded

from the solution. This binary characteristic of the problem

allows for merging edges in the graph. For example, edges

e1 and e4 can be merged into a new edge with its weight be-

ing set to the sum of both old edge weights. This edge now

represents that no swap occurs from frame t to frame t+ 1.

The same can be done by merging edges e2 and e3, yield-

ing an edge representing a possible swap. This procedure

can be implemented for all velocity and acceleration edges

in the graph, reducing the number of weighted edges and

associated constraints by half, leading to a more compact

optimization problem which can be solved faster.

4.1.5 Optimization

In this work, objective 1 is solved using the Embedded

Conic Solver (ECOS, [7]) and modeled with the convex

optimization modeling language CVXPY [2]. The test se-

quences in the experimental section do not exceed 100

frames, for which the optimization of the kinematic graph is

still tractable. For evaluating longer sequences, as necessary

for video processing, the sequence of poses can be split into

subsequences of length 100, overlapping with three frames.

The ILP is solved for each subsequence, and the edges for

the first frames are fixed to the solution obtained from the

preceding subsequence.

4.2. Locally Robust Joint Trajectory Regression

While the focus of this work lies on the optimization of

joint partner graphs for finding and rectifying joint trans-

position, we do not want to completely neglect outlier and

joint residual variance. To that, we utilize the algorithm

for locally robust regression and data-dependent filtering

as proposed in [29]. They propose modifications to the

LOWESS [6] algorithm for performing locally weighted re-

gression by minimizing the L1-norm of residuals for strode

and weighted subwindows of joint time series. We found

this procedure to work decently well for smoothing our joint

trajectories and interpolating outliers in the signal.



5. Experiments

free back fly breast

# sequences 24 32 26 28

# pose annotations 1883 2665 2100 2281
Table 1. Number of pose configurations per style.

Competitive swimming covers four different swimming

styles: breaststroke (breast), butterfly (fly), freestyle (free)

and backstroke (back). The first two are termed symmet-

rical styles, because both halves of the body perform the

same motion at all times. The latter two are denoted anti-

symmetrical as the left half of the body performs a motion

that is mirrored approximately half a cycle later by the right

half of the body and vice versa. If viewed from the side,

one body half in symmetric styles is mostly indistinguish-

able due to self-occlusion, hence joint swaps appear to a

lesser extent. On the other side, anti-symmetrical styles are

affected by joint swaps and outliers. This may change with

camera perspective. However, we only consider a side view

of athletes in this work.

Dataset. Our dataset is comprised of swimming chan-

nel footage. All sequences and videos depict swimmers of

different age, stature, gender and body size in two differ-

ent swimming channels. The athletes are filmed from a side

view through a glass wall, hence the whole body - above and

below the water surface - is always visible. We distinguish

between two overlap-free datasets in our experiments. The

first set contains 104 fully annotated sequences of human

poses with 50 to 100 consecutive images each, giving us a

total of 8532 annotated video frames. Table 1 summarizes

the dataset size and the number of annotations available for

our experiments.

Metrics. For the quantitative evaluation of pose esti-

mates, we apply the Percentage of Correct Keypoints (PCK,

[21]) measure. PCK counts a joint as correctly localized if

the Euclidean distance to the ground truth annotation does

not exceed a fixed fraction α of the upper body size, which

is defined by the Euclidean distance between right shoulder

and left hip. Commonly, thresholds α = 0.1 (PCK@0.1)
and α = 0.2 (PCK@0.2) are evaluated for comparing the

performance of pose estimation systems.

We additionally report the root mean square (RMS) er-

rors for prediction residuals to give a better understand-

ing of how different improvements translate to a decreasing

pixel location error. In order to compare different swim-

mer sizes, RMS values are always given for size normalized

athletes, where normalization is performed as described in

Section 4.1.2 with a reference upper body size sref = 100
pixels.

Joint Localization. We compare two state-of-the-art

pose estimation systems for joint localization: Convolu-

tional Pose Machines [26] with three refinement stages and

free back fly breast

Zecha et al. [29] 10.74 11.34 5.78 6.56

Mask R-CNN base 31.84 34.77 40.70 26.10

Mask R-CNN swap 28.91 32.02 - -

Mask R-CNN rect 19.15 20.18 33.31 16.49

CPM base 14.81 17.90 7.07 6.69

CPM swap 12.08 11.76 - -

CPM rect 9.13 9.55 5.77 6.65
Table 2. RMS values for Euclidean distances between prediction

and ground truth for all joints.

MaskRCNN [13] build on a ResNet-101 backbone. The

CPM model is initially pre-trained on the Leeds-Sports-

Pose dataset [17], the Mask R-CNN on the MSCOCO

dataset [18]. As we wish to compare the PCK of the rec-

tification pipeline with the baselines but only have a small,

fully annotated dataset of motion sequences available, we

have to evaluate the pipeline on our training data. There-

fore, we refine both the CPM and Mask R-CNN on each

swimming style by fine-tuning it on our fully annotated se-

quences using a 3-fold cross validation. Hereto, the data is

split into three partitions. One partition is kept as the test set

while the model is refined using the remaining partitions for

training and validation. Thereby, we obtain pose estimates

for each frame in our fully annotated pose sequences.

Baselines. The PCK on the initial estimates for both

networks serves as the baseline and is depicted in Figure 6

(dashed). We find that there is a difference in pose estima-

tion network performance, with CPM coming out on top of

Mask R-CNN. For the CPM, symmetrical swimming styles

already work very well: the PCK@0.1 is beyond 90%; al-

most all joints (>99.0%) are predicted within 0.2 of the

upper body size. The anti-symmetrical swimming styles

are more difficult to predict precisely, with a PCK@0.1 of

78.7% for freestyle and 82% for backstroke. Both hardly

exceed 95% PCK@0.2.

Full Rectification. For both tested network structures,

the whole optimization pipeline leads to consistent PCK

gain for all swim styles (continuous lines in Figure 6). The

Mask R-CNN shows surprising gains for freestyle swim-

mers (+4.8% PCK@0.2), but also for breaststroke and

butterfly swimming, especially compared to the marginal

CPM gains for these styles. This can be attributed to

larger volatility in Mask R-CNN predictions. We found that

between consecutive images with only very little change

in content, the joint predictions often jump unpredictably

around the ground truth. This also becomes evident when

comparing RMS values in Table 2, where the largest RMS

loss is caused by the second rectification stage. Neverthe-

less, the localization gain is consistent for all swimming

styles and both networks.

Partner Graph Ablation. To get a better understanding

of the importance of partner graph optimization, we per-



0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
normalized distance threshold

0.0

0.2

0.4

0.6

0.8

1.0
PC

K
swimstyle: freestyle

CPM base PCK@0.2: 0.951
CPM noLP PCK@0.2: 0.957
CPM rect PCK@0.2: 0.969
MaskRCNN base PCK@0.2: 0.825
MaskRCNN noLP PCK@0.2: 0.838
MaskRCNN rect PCK@0.2: 0.873

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
normalized distance threshold

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

swimstyle: backstroke

CPM base PCK@0.2: 0.959
CPM noLP PCK@0.2: 0.951
CPM rect PCK@0.2: 0.971
MaskRCNN base PCK@0.2: 0.875
MaskRCNN noLP PCK@0.2: 0.866
MaskRCNN rect PCK@0.2: 0.892

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
normalized distance threshold

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

swimstyle: breaststroke

CPM base PCK@0.2: 0.991
CPM rect PCK@0.2: 0.99
MaskRCNN base PCK@0.2: 0.93
MaskRCNN rect PCK@0.2: 0.939

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
normalized distance threshold

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

swimstyle: butterfly

CPM base PCK@0.2: 0.991
CPM rect PCK@0.2: 0.995
MaskRCNN base PCK@0.2: 0.869
MaskRCNN rect PCK@0.2: 0.887

Figure 6. Percentage of Correct Keypoints for all four major swimming styles. Mask R-CNN (orange) is compared to CPM (blue).

Dashed lined are raw pose prediction baselines, continuous lines depict the score after rectification. Dotted lines represent robust trajectory

approximation without partner graph optimization.

form a simple ablation study by applying robust joint re-

gression from Section 4.2 without optimizing the partner

graph from Section 4.1.1. The results are depicted as dot-

ted lines in Figure 6. For freestyle swimmers, the resulting

PCK of 95.7%(+0.5%) for the CPM and 83.8%(+1.3%)
for Mask R-CNN is slightly better than the baselines but

worse than the results of the full rectification pipeline. For

backstroke swimmers, the PCK drops to 95.1%(−0.6%) for

the CPM and 86.6%(−0.9%). We conclude that partner

graph optimization is not only beneficial to improving pose

estimates, it can also be necessary to avoid poor rectification

results.

Stage-wise Joint RMS. We evaluate each step in our

pose rectification pipeline separately.Again, due to the small

database of pose sequences, we apply a leave-one-out train-

ing scheme. One sequence is kept for testing, while the

pipeline is trained on the remaining sequences. The joint

transposition ILP and spatiotemporal regression scheme are

applied to all swimming styles, although model specific pa-

rameters are optimized for each style individually. These

include KDEs and number of clusters for directional offset

correction. Table 2 compares root mean square values of

squared Euclidean distances between prediction and ground

truth. Note that the RMS was measured for size normalized

poses as described in Section 4.1.1 with an reference upper

body size of sref = 100. The RMS consistently improves

for all swimming styles. Compared to [29], RMS values for

all styles but breaststroke improved.

6. Conclusion

We addressed the problem of false athlete pose predic-

tions from neural networks in aquatic training scenarios.

An ILP optimization problem for joint partner swap iden-

tification and rectification was proposed. We can show ex-

perimentally that this approach eliminates a considerable

amount of errors, leading to consistent performance gains.

As we found several very specific mixtures of error se-

quences that could not be solved with the proposed method-

ology, future efforts will be directed towards finding more

general formulations of the proposed solution strategy that

additionally address remaining error mixtures.
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