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Abstract

The author inspects the optimal way to extract geomet-

ric facade features of windows from aerial texture files of
CityGML models. The following method can be integrated
and used for aerial texture modifications or 3D modeling
details of 3D CityGML models. The author uses the Mask
R-CNN with different configurations and backbone graphs
to be tested on two data sets. As to improve the scores on
the data sets, two traditional solutions to adjust the results
are used: The author tests to integrate the more traditional
approach of dbscan clustering to correct the results. Fur-
ther the author also uses the texture coordinates available
from the 3D CityGML file to correct our predictions.
As those 3D model textures origin from aerial photos, but
are essentially smaller crops of a bigger image, facing typ-
ical challenges associated with low-level vision problems
and bad image resolution and quality. This application
can detect windows and facades from the Berlin CityGML
model, extract the windows and doors and adjust the 3D
model to integrate those. In addition, it is possible to
replace the original windows and doors and insert black
counterparts or standard models. The latter procedure will
play a crucial role in privacy, as those elements might re-
veal private objects or persons next to the windows and can
be automatically replaced.

1. Introduction

A complete list of 26 international cities has been pub-
lishing their city 3D models online to be available for pub-
lic, most of them available in CityGML format as estab-
lished in [7]. While several of those also contain textures,
the 3D city models have a simplified shape: in CityGML
terms they are at LOD2, providing the basic shape of the
build but omitting facade details.

The idea of window detection and facade segmentation
originates from the idea of automatically integrating the 3D
features into the 3D models. In order to do so, it is nec-
essary to analyze the given texture images through image
segmentation.

Due to the strong correspondence of the texture files of the

Berlin 3D model of [4] with satellite images, the results of
this paper can also be applied to satellite or drone captures.
This is especially interesting since satellite images are pro-
vided in super resolution and need to be cropped into suit-
able parts. In contrast to those ”selected crops”, the crops of
the CityGML model are determined in advance and cannot
be rearranged to a whole image.

In order to segment the facade and analyze the windows,
the author proposes to use a semantic neural network. The
network’s main components are a masking part of the fa-
cade and a facade segmentation. While this structure has
been deployed in the Mask R-CNN [&] originally to de-
tected humans and deliver fast region proposal for semantic
segmentation, the author transfers the usage to a different
area of application. The original “mask” was deployed on
the image to suggest regions faster and more accurate object
detection, here the “mask” is used to build a facade aware
segmentation to find windows.

2. Related Work

Since 2015, semantic image segmentation has been tack-
led as one of the main parts of neural networks. Segnet [2]
was one of the first to tackle the problem of semantic seg-
mentation of the whole image. Up to this year, several im-
plementations for image segmentation exist. Recent chal-
lenges of this year deal with the semantic segmentation of
satellite data. The winning networks of the satellite changes
were mostly combined neural networks, which assign dif-
ferent task to different neural networks in pipelines. In gen-
eral, image segmentation tasks can be more accurate when
separately training networks for the objects and then com-
bining those networks together, see [10].

As an applied example of semantic segmentation, facade
segmentation has been studied in several works. Facade
segmentation from street view style photos has been re-
duced to the task of finding repetitive objects or grid struc-
tures on the facade, depending on the architectural style.
Major works were done by [13] and [11].

More traditional approaches that feature regularity con-
strains on traditional image recognition algorithsm for fa-
cade detection have been evaluted by [12] and [15]. Both of
those works are provided however are provided with more



information than pure texture images, the first with com-
plete satelite images and the latter with additional street
views of the same object.

More recently this year, the DeepGlobe challenge [3], a set
of three contests for satellite data object recognition, has
been started. Whereas segmentation methods such as the
SegNet proposed a single network with one training data
set, those recent DeepGlobe solutions offer higher flexibil-
ity and directed training towards weak points of the object
recognition.

The current state-of-the-art neural network for semantic
segmentation for detection of the exact shape of humans
is the Mask R-CNN, which shows both improvements in
speed as well as a very good accuracy. Its main components
are a Region Proposal Network (RPN) for recommending
appropriate regions in the image and the main detection and
segmentation network, which segments the image into ob-
jects pixel-wise. It is the extension of Fast R-CNN [6] and
Faster R-CNN [14], which have been focusing on region
detection enhancement.

On the other hand, there has been a recent work on inte-
grations of 3D CityGML modeling and machine learning,
most of all recently a paper on ’ A Data-driven Approach for
Adding Facade Details to Textured LoD2 CityGML Mod-
els’ [16]. However, unlike this work, the author proposes
to use the original texture image from the CityGML file, in-
stead of rendered building facades, that are orthogonal to
the facade. Using original texture images is a challenge, as
the perspective distortion varies within each image and the
texture may as well contain a lot of undesired information,
such as neighboring houses, trees, roof tops, that will lower
the prediction quality.

3. Texture image analysis

In this section, the author evaluates the image quality
and properties as far as possible through data. A subsec-
tion of the Berlin CityGML data set with 203211 texture
images has been selected. The author’s main motivation for
restricting our work to one district was to select buildings

Figure 1. Three sample aerial images from the 256 Data set in original quality slightly shrunken
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Figure 2. Average color values for RGB channels on selected
region

that are not extravagant, i.e. monuments or buildings with
specific architecture. Of those texture images, the average
width and height per texture are 163px and 181px respec-
tively. The average (rounded) RGB color value is 160 160
160.The average histogram over all of those texture images
can be seen in figure 2. There is a slight valley in around 90,
and a strong bias towards the left side of the graph, i.e. the
black values. In order to check for color and lightening set-
tings, the average HSV histogram has been plotted in figure
3. While the value channel is as indicated before relatively
equal with a peak around value 90, the hue and saturation
channels show high fluctuations. The saturation curve is
strongly shifted towards the left side, indicating weak satu-
ration.

The texture image files show the following variations:

1. Varying exposure settings (Figure 3)
2. Perspective distortion

3. No fixed orientation( i.e. the roof top of the building
can be on any side of the aerial image)
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Figure 3. Average values for HSV channels on selected region

While technically perspective distortion can be calculated
and inverted, it is non trivial to do so in combination with
varying exposure and no fixed orientation. In Figure 1, a
subset of windows is displayed. For highly underexposed
or overexposed images, the border of the windows is lost.
All together, those issues pose already significant problems
for human eyes to spot the windows. The analysis of possi-
ble window candidates can only be confirmed by detecting
features on the image, i.e. rooftop tiles or facades. While
facades are basically a grid of windows, windows are part
of the facade. While it is clear that the set of all windows of
a house define the facade and the facade contains the set of
all windows, the given input images will leave neither one
or the either completely resolved.

4. Method

In this section, the author states initial assumptions and
challenges on the aerial image data set and the detection of
windows and doors and will explain methods to find a so-
lution to those challenges. The author will discuss methods
to check for the following assumptions:

Al The number of possible features to be retrieved from
the data set is restricted, hence the depth of the neural
network is not required to be very deep

A2 The windows on the facade of those areal textures can
be described as a cluster

A3 The lack of features is a cause for a low recall value

Each of the following subsection will try to to evaluate one
of those assumptions and try to find the reasoning behind
it with statistical experiments. The author is aware that, as
much as neural networks in general only provide statistical
experiments or scores to ’prove” claims, our argumentation
is valid at first for this specific data set and the aerial images

as described in the pages before. Whether or not our claims
can be generalized to all aerial images needs to be proven,
even though there is a strong indication that this could be
the case.

4.1. Data sets and format

In the process of optimizing the trained network, the
training set has been constantly adjusted and modified. Two
different data sets of images of fixed size have been labeled
and been used for experimenting with the neural network.
While the texture image size is between 100px and 300px,
the author chose to select images which can be cropped to
size 128 and 256 respectively. (Sizes are in terms of the
power of two as the convolutional blocks halve the size of
the input and double the features.)

Data set 128 The first data set contains crops of the texture
images of size 128x128. The author has labeled the whole
texture file and then cropped them adaptively such that each
cropped image has a maximal overlay of 10% with the pre-
vious one. Those results have been normalized with respect
to the histogram. Further augmentation has been done in
terms of 90 degrotations without loss of quality. Further, the
images have been randomly shuffled and divided into the
dataset for training, validation and testing with ratio 6:2:2.
Overall this data set contains around 6,000 images.

Data set 256 The second data set contains adaptive crops
of hand-labeled images of size 256x256. The authors have
selected the best texture files from a set of more than 1,000
images in terms of resolution, image dimensions and expo-
sure settings. Most of those chosen images are not much
larger in terms of side length than 300px. While the same
adaptive cropping and augmentation as in the 128 data set
has been used, the resulting training and evaluation set is
slightly smaller in terms of the total number of images. Ac-
cordingly, the augmented images were divided randomly
into training, validation and test sets the same way as the
other data set.

The data set contains 1,000 images.

4.2. Detection process

In order to detect windows from the labeled data sets,
the author chose to use masked detections in contrast to
more general box detection outputs, for the following rea-
sons: For one, even though windows typically do have a
box shaped outline, the perspective distortions are relatively
high, i.e. the area of the bounding box often appears one
third bigger than the area of the window element itself.
Therefor mask detection can be much more accurate. For
the other, masks are useful for future enhancements, mask
detections add new possibilities to the interpretation of out-
put and adjustment of aerial textures, as in the case of cover-
ing objects in the window for privacy reasons for example.
The author first started with using the standard Mask R-
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Figure 4. Modified backbone structure, originating from
Resnet101, seperated into stages one to four, but with a cut off
fourth stage and the fully connected layers in the end

CNN [8] in combination with the Resnet101 backbone [9]
and the standard Imagenet weights. Then configuration set-
tings have been adjusted piece by piece: those include the
region proposal parameters, the anchor parameters, the de-
tection threshold, the loss weights and the region proposal
depth. Later on the author changed even the basic structure
of the network graph and the depth of the network, changing
from the typical deep Resnet101 network to a more shallow
structure. The main motivation for using the Resnet struc-
ture from the start was the basic structure of the identity
modules, that will prevent deeper layers from collapsing to
zero. That is to say, even though not expecting the best pos-
sible outcome, the high depth of the network would not, at
least, worsen the prediction results.

Due to our initial assumption that there is a restricted
number of possibly recognizable features, the author tested
to trim the Resnet101 backbone significantly. More than
22 identity blocks have been removed, but the first layers
and their structure has been preserved, modifying the graph
from stage 4 on, see figure 4.

4.3. Facade elements as clusters

As first results show that the trained network still has
a high imbalance between precision and recall, the author
checked possible error sources through threshold changes
and considered traditional clustering as an approach to filter
predictions from the output of the network.

As proposed in various papers, regularity constrains can
be used to filter facade elements. Our approach is to test
regularity assumptions that were made in the work of Wolff
[15] for our data. In this approach, the facade regularity is
detected by comparing aerial and street view image of the
same building. As this data set consists of aerial images
containing only partial facades,the regularity of the window
facade is not as strong as used by Wolff, but the author de-
cides to test the window detection on a cluster filter. The
clustering is based on the assumption that common facade
architectures are regular and in fact windows often lie on a
regular grid structure. This test checks whether or not the
perspective distortions still allow a minimal improvement
through clustering. As this work is on aerial texture images
from a huge over all data set, it is not suitable to check for
image dependent (user input requiring) approaches but to
look for global parameters to adjust the overall results.
Evaluating the correctness of Assumption two, namely that
a facade can be expressed as a cluster, the author is test-
ing cluster methods to detect outliers and wrong detections.
There is a subset of aerial texture images that contains both
a roof and a facade. This might be either the roof from
the neighboring house that is covering the facade partially
or the roof of the same house. However, inspection of the
detections reveals that most of the wrong detections origin
in window detection on windows and chimneys on the roof
top. When the author initially labeled the data set, the roof
top windows appeared to be of slightly different shape and
successful detection was not expected.

That is why our data sets do not contain roof windows at
this point in time, nor chimneys.

Seeing that a facade consists of several windows, with a cer-
tain regularity in their distance to each other and side length,
clustering seemed a natural approach to try.

The author has used the DBSCAN algorithm as proposed by
[5] provided through the python package scikit learn. It’s
crucial parameters include the minimal number of points
per cluster and the maximal distance points can be apart to
be still considered in one cluster (epsilon distance). Dif-
ferent configurations were used on either one,two or three
points per window. The one point configuration uses the
center point, the two point configuration uses opposite
edges and the three point configuration uses both center and
opposite attaches for the cluster criteria.

The other close at hand approach to improve the output was
to consider the facade labeling as provided through the code
of the CityGML file and is described in section 4.4.
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Figure 5. Illustration of an aerial texture image (bold border) with
texture coordinates labeling a facade (thin border)

4.4. Texture coordinate retrieval as a facade label

While the inspection results show several wrong detec-
tions of windows on roof tops, chimneys and other rect-
angular elements, restricting the prediction results through
data available through the CityGML file was an intuitive
step to take. Technically, one building consists of several
surfaces. A roof surface, a wall surface and a ground sur-
face. Each surface is described by a sequence of points in
3D space. The ordering of those points is crucial to the ori-
entation of the surface. Assuming ordinary polygonal sur-
faces, a surface is closed if the last and the first point of
this sequence are equal. Textures in CityGML are defined
on so called Ring Surfaces, i.e. closed surfaces with a cer-
tain degree of topological simplicity, i.e. orientable surfaces
with measurable surface area. For an image with width w
and height h, can define texture coordinates as 2D points,
where each coordinate is in the range of 0 and 1. For a Ring
Surface with a sequence Py, P», Ps, - - - , P,, of n points and
texture with texture coordinates 74,75, 15, - - - , T}, the tex-
ture mapping projects the texture onto the object by project-
ing edge points of the image to the edge points of the surface
and the interior accordingly. An illustration of a texture co-
ordinate labeling can be seen in Figure 5.

The detections masked with the polygon mask obtained
from the points 71,715,735, - - - , T, through point-wise mul-
tiplication of the texture coordinate mask.

5. Results

For the assumptions made in Section 4, this section will
provide the test results to verify or disprove those state-
ments.

A1l In Section 5.3, the author has tested a much shallower
version of a backbone. Despite instability during the
training processed, the results achieved an average pre-
cision only three percent lower than with the original
backbone with 101 layers. This is a strong argument

for the fact that the depth as provided by the standard
backbone” is not required.

A2 In Section 5.4, the possibility of using clustering to im-
prove the prediction outcome was discussed. The au-
thor tested various parameters on the test data set, but
are unable to find one set of parameters that matches all
aerial texture images. As the distance from the camera
to the buildings itself is not significantly different per
building, the perspective needs to be incorporated as a
parameter for successful clustering.

A3 While the assumption on the restricted number of fea-
tures is hard to prove or disprove, the author concludes
that either using a completely different model or tus-
ing another training data set is the only solution to
possibly further improve the prediction results. The
author has tested different parameters, different con-
figurations (Section 5.1), different backbone structures
(Section 5.3), output clustering (Section 5.4) and tex-
ture coordinates output filtering (Section 5.6) but still
failed to significantly improve the recall value.

The author used slightly different hardware and software
for the section 5.1 (GTX 1070s and Ubuntu 16) and 5.4 /
5.6 (GTX 1080s and Ubuntu 18), which explains the slight
decrease in score from section 5.1.

5.1. Training and accuracy scores

The author originially started with training the Mask
R-CNN [I] on the pre-trained Resnetl01 backbone [9]
modifying parameters such as anchors, region proposals
and more parameters, having run more than 30 configu-
rations of the neural network. Out of those, the author
selected the best five parameter configurations for each data
set. The following results are discussed on the training of
two epochs and fine tuning of 3 epochs, where one epoch
contains all training set data and validation steps are set to
the number of validation images.

Configurations and Test Recall Precision AParouo.5
A. 128 - standard 0.53 0.85 0.85
B. 128 - optimised 0.60 0.82 0.87
C. 256 - standard 0.51 0.94 0.91
D. 256 - optimised 0.58 0.90 0.93

Table 1. Models and scores

In order to use the networks inference results for detect-
ing windows and analysing the architecture of a facade, the
main tasks lie in detecting every existing window as well as
reducing the number of wrongly detected windows.

In other words, the recall is a crucial value to improve. As
can be seen in Table 1, the optimisation of the AP goes hand



Dataset A Recall APrecision A APar.uso
A. 128 0.07 -0.02 0.02
B. 256 0.07 -0.04 0.02

Table 2. Overview of improvements made through configuration
and parameter optimisation

in hand with the optimisation of the recall. However, the au-
thor has also realised that for any type of recall and AP im-
provement, the precision value has slightly decreased by at
least 0.02, see Table 2. In none of the AP improved configu-
rations has the author seen an improvement of the precision,
however the recall has always been higher by at least 0.01
and at most 0.07. During the configuration testing, the au-
thor has tried to increase the precision by changing the loss
function parameters such that the mask score is three times
higher than the other scores. However, this approach did not
improve the precision. Henceforth suggesting that the pre-
cision of the mask results depends strongly on the complete
structure of the network and each layer and feature size. It
is likely that the lack of information in the image in terms of
image size and resolution leads to a restriction in the possi-
ble features and hence a threshold for the possible precision
values.

While the results in table 1 show a high precision score, the
recall value is low. As it is common to consider the detec-
tion threshold as the origin for a bad balance between preci-
sion and recall, testing on the score was also done on thresh-
olds other than the used 0.7. For all the tests of threshold
0.6, 0.5 and 0.4, the recall has not been improved by more
than one percent.

The author therefor argues that the bad recall and precision
ratio arises from either the quality of the images (missing
information in terms of low vision problems) or the mask
detection model itself. The author therefor implemented a
significantly shorter version of the network graph, dropping
a lot of identity layers of the Resnet101 network in the sec-
ond next section.

5.2. Anchors, ROIs and AP scores

Due to the small image and object size, the anchor size
of region proposal in the neural network has been modified
in most of the configurations. The author has chosen signif-
icantly smaller anchor scales and different anchor ratios.
Another crucial parameter to the improvement of the
APajouso score is the number of trained regions per im-
age. The author found out that adjusting the number of
trained regions per image to reflect the number of windows
per image improves the recall values. If chosen improperly,
several windows are either not detected at all or windows
are double detected, i.e. several regions span over one win-
dow and classify it as three objects. An example of missing
windows is shown in Figure 6.

Regarding the Region Proposal Network (RPN), the num-
ber of regions for training showed a correlation to the recall
value and the under and over fit of the network with respect
to a single image evaluation. In our test case, the missing
windows often occur towards the center of the image and
the dimension of the window as were not indifferent from
other detected windows.

Figure 6. Window labeling (left) and detection results (right) for
wrong parameter selection in terms of region proposal threshold
filtering, leading to “missing windows”

5.3. Network depth and precision

Data set Recall Precision AParouso

256 0.5278 0.9135 0.8927
Table 3. Scores for the modified graph of Figure 4

The modified graph was tested on the best configuration
of the previous result, see Table 3. While the author also
planned on translating all the results on the “normal back-
bone” to the cut off version. However, he training process
was found to be unstable and required to minimize the size
of training steps in order to save the weights in between.
The author tried different configurations, however found
the specific best configuration 256 too unstable to complete
successful training. Overall, the best network and configu-
ration achieved an average precision score of 89%. Given
the fact that more than two third of all identity blocks from
the network were removed, only around three percent in av-
erage precision A Pqj,.u50 were lost.

5.4. Clustering Improvements

The author expected two and three point configurations
to be more effective in clustering, as otherwise there will
be no awareness w.r.t. the window area: small windows far
apart from each other and large windows with center points
far away but actually close will both be excluded/included
in the same manner. However, this was not the case. As
shown in Figures 7 and 8, the graphs for the two and three
point approach per window are nearly identical in terms of
AP score and maximal distance epsilon.

Without doubt one could tune the clustering parameters
on each image separately, but all test parameters were per-
formed on the whole set of test images at once. Our results



Clustering set Recall Precision APajouso
No Clustering ~ 0.5418  0.9181 0.9175
Center point 0.5358  0.9237 0.9186
Opposite edges  0.5358  0.9237 0.9185
Three point 0.5357 09191 0.9237

Table 4. Overview of improvements made through dbscan cluster-
ing

09

08

07

AP score

06

os{ \ | '

04 ul

1
' L '
R L

-
153

03

0 2 30 4 W e 0 8

epsilon distance
Figure 7. AP score variation with respect to the maximal cluster el-
ement distance epsilon (in px) for the two point model, each graph
for a cluster with minimum of 3 to 10 window elements according
to the label
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as seen in table 4 show, that for neither configuration a re-
markable improvement was achieved.

The author observed that while improving and removing un-
necessary predictions for on image, the same configuration
will remove actual windows in other test images. The over-

Figure 9. Floor estimation through PCA example; selection of five
windows on one line, that lead to a prediction of five floors

all best AP improvement has been made in the configuration
of three points, however with a total improvement of less
than one percent, the author suggests that this improvement
does not proof the general assumption that there is a com-
mon clustering methods for all the aerial texture images.

5.5. Application: Floor estimation

Using PCA component analysis over the resulting labels,
it is possible to determine the maximal number of floors
(visible) on the facade. Even though having a quadratic
runtime, this is an interesting feature to extend or adjust 3D
models level wise.

Given the set of center’s ¢ of predictions, look for the line
that contains the largest amount of center points with maxi-
mal error €. Assuming a correct prediction, this will lead to
the maximal number of windows per line, which would be,
for a regular facade, either the number of windows per floor
or the number of levels, whichever is larger.

Given that it is possible to estimate the facade orientation
and the top of the facade, one can constrain the lines on the
set of all lines to those that lie between two angles o, oz,
where those two angles are the angles of the rectangle of uv
coordinates that intersect with the top line.

An application of those estimations is shown in Figure 9.
The correctness of the prediction of the number of levels
depends on the correctness of the prediction itself. Under
the assumption that there is one or two wrong predictions in
the image,it is possible to estimate the number of floors by
the largest number of points per line that occurs at least in
three lines (instead of one line). However, the estimation of
number of floors purely visible on the photo is non trivial,
as buildings are covering each other and a lot of those do
not allow to see the first floor.
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Figure 11. Detection results before (top) and after applying texture
masks (bottom)

Configuration Recall Precision AParouso
256 standard 0.5418  0.9181 0.9175
256 w/ texture mask  0.5354  0.9261 0.9293

Table 5. Overview of improvements made through texture masks

5.6. Texture coordinates for enhanced prediction

While expecting a significant improvement of the recall

values by using the texture coordinates as masks on the re-
sults, the author did not encounter any significant change in
the scores, as seen in Table 5.
Looking at sample images, one can see that some facades
have a slightly better prediction and the roof windows are
left out, see Figure 11, but this is not the case for all of the
images. In fact, several facades, that are either covered by
trees or other buildings, still contain the building or tree in
the texture mask area, see Figure 10, where he bottom part
of the building is covered by a roof and that roof is part of
the mask.

6. Future Work

Neural Network adjustments As the author has tested
results of a significantly shorter backbone and hence an
easier to train network and those first results yielded a
mere three percent difference in mean average precision
and would like to encourage further studies on determining
optimal depth and structure of networks for accurate yet
minimal graph structure.

Facade element extension There is a huge selection
of other objects / facade features that can be extracted from
those texture images. This especially concerns objects on
the roof. Given that our solution does detect windows on
roof texture images, the author can imagine that combining
window recognition and chimney recognition will provide
optimal outcome for enhancing 3D models.

Application for privacy preserving images This model
can be easily applied to automatically detect and replace
windows with standard photos, such that the details of
curtains, the objects on the window sill and other private
property can be automatically removed. For some glass
facades, that the interior of those has already been replaced
manually and the author would like to propose to test
automatic privacy protection.

Detailed 3D modeling from aerial images While
most recent work focuses on either constructing basic
housing models from aerial images, there is a huge oppor-
tunity in going from aerial images over simple models to
complex building models. As such, the author’s work can
be integrated into simple building models.
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