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Abstract

The author inspects the optimal way to extract geomet-

ric facade features of windows from aerial texture files of

CityGML models. The following method can be integrated

and used for aerial texture modifications or 3D modeling

details of 3D CityGML models. The author uses the Mask

R-CNN with different configurations and backbone graphs

to be tested on two data sets. As to improve the scores on

the data sets, two traditional solutions to adjust the results

are used: The author tests to integrate the more traditional

approach of dbscan clustering to correct the results. Fur-

ther the author also uses the texture coordinates available

from the 3D CityGML file to correct our predictions.

As those 3D model textures origin from aerial photos, but

are essentially smaller crops of a bigger image, facing typ-

ical challenges associated with low-level vision problems

and bad image resolution and quality. This application

can detect windows and facades from the Berlin CityGML

model, extract the windows and doors and adjust the 3D

model to integrate those. In addition, it is possible to

replace the original windows and doors and insert black

counterparts or standard models. The latter procedure will

play a crucial role in privacy, as those elements might re-

veal private objects or persons next to the windows and can

be automatically replaced.

1. Introduction

A complete list of 26 international cities has been pub-

lishing their city 3D models online to be available for pub-

lic, most of them available in CityGML format as estab-

lished in [7]. While several of those also contain textures,

the 3D city models have a simplified shape: in CityGML

terms they are at LOD2, providing the basic shape of the

build but omitting facade details.

The idea of window detection and facade segmentation

originates from the idea of automatically integrating the 3D

features into the 3D models. In order to do so, it is nec-

essary to analyze the given texture images through image

segmentation.

Due to the strong correspondence of the texture files of the

Berlin 3D model of [4] with satellite images, the results of

this paper can also be applied to satellite or drone captures.

This is especially interesting since satellite images are pro-

vided in super resolution and need to be cropped into suit-

able parts. In contrast to those ”selected crops”, the crops of

the CityGML model are determined in advance and cannot

be rearranged to a whole image.

In order to segment the facade and analyze the windows,

the author proposes to use a semantic neural network. The

network’s main components are a masking part of the fa-

cade and a facade segmentation. While this structure has

been deployed in the Mask R-CNN [8] originally to de-

tected humans and deliver fast region proposal for semantic

segmentation, the author transfers the usage to a different

area of application. The original ”mask” was deployed on

the image to suggest regions faster and more accurate object

detection, here the ”mask” is used to build a facade aware

segmentation to find windows.

2. Related Work

Since 2015, semantic image segmentation has been tack-

led as one of the main parts of neural networks. Segnet [2]

was one of the first to tackle the problem of semantic seg-

mentation of the whole image. Up to this year, several im-

plementations for image segmentation exist. Recent chal-

lenges of this year deal with the semantic segmentation of

satellite data. The winning networks of the satellite changes

were mostly combined neural networks, which assign dif-

ferent task to different neural networks in pipelines. In gen-

eral, image segmentation tasks can be more accurate when

separately training networks for the objects and then com-

bining those networks together, see [10].

As an applied example of semantic segmentation, facade

segmentation has been studied in several works. Facade

segmentation from street view style photos has been re-

duced to the task of finding repetitive objects or grid struc-

tures on the facade, depending on the architectural style.

Major works were done by [13] and [11].

More traditional approaches that feature regularity con-

strains on traditional image recognition algorithsm for fa-

cade detection have been evaluted by [12] and [15]. Both of

those works are provided however are provided with more
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Figure 1. Three sample aerial images from the 256 Data set in original quality slightly shrunken

information than pure texture images, the first with com-

plete satelite images and the latter with additional street

views of the same object.

More recently this year, the DeepGlobe challenge [3], a set

of three contests for satellite data object recognition, has

been started. Whereas segmentation methods such as the

SegNet proposed a single network with one training data

set, those recent DeepGlobe solutions offer higher flexibil-

ity and directed training towards weak points of the object

recognition.

The current state-of-the-art neural network for semantic

segmentation for detection of the exact shape of humans

is the Mask R-CNN, which shows both improvements in

speed as well as a very good accuracy. Its main components

are a Region Proposal Network (RPN) for recommending

appropriate regions in the image and the main detection and

segmentation network, which segments the image into ob-

jects pixel-wise. It is the extension of Fast R-CNN [6] and

Faster R-CNN [14], which have been focusing on region

detection enhancement.

On the other hand, there has been a recent work on inte-

grations of 3D CityGML modeling and machine learning,

most of all recently a paper on ’A Data-driven Approach for

Adding Facade Details to Textured LoD2 CityGML Mod-

els’ [16]. However, unlike this work, the author proposes

to use the original texture image from the CityGML file, in-

stead of rendered building facades, that are orthogonal to

the facade. Using original texture images is a challenge, as

the perspective distortion varies within each image and the

texture may as well contain a lot of undesired information,

such as neighboring houses, trees, roof tops, that will lower

the prediction quality.

3. Texture image analysis

In this section, the author evaluates the image quality

and properties as far as possible through data. A subsec-

tion of the Berlin CityGML data set with 203211 texture

images has been selected. The author’s main motivation for

restricting our work to one district was to select buildings

Figure 2. Average color values for RGB channels on selected

region

that are not extravagant, i.e. monuments or buildings with

specific architecture. Of those texture images, the average

width and height per texture are 163px and 181px respec-

tively. The average (rounded) RGB color value is 160 160

160.The average histogram over all of those texture images

can be seen in figure 2. There is a slight valley in around 90,

and a strong bias towards the left side of the graph, i.e. the

black values. In order to check for color and lightening set-

tings, the average HSV histogram has been plotted in figure

3. While the value channel is as indicated before relatively

equal with a peak around value 90, the hue and saturation

channels show high fluctuations. The saturation curve is

strongly shifted towards the left side, indicating weak satu-

ration.

The texture image files show the following variations:

1. Varying exposure settings (Figure 3)

2. Perspective distortion

3. No fixed orientation( i.e. the roof top of the building

can be on any side of the aerial image)
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Figure 3. Average values for HSV channels on selected region

While technically perspective distortion can be calculated

and inverted, it is non trivial to do so in combination with

varying exposure and no fixed orientation. In Figure 1, a

subset of windows is displayed. For highly underexposed

or overexposed images, the border of the windows is lost.

All together, those issues pose already significant problems

for human eyes to spot the windows. The analysis of possi-

ble window candidates can only be confirmed by detecting

features on the image, i.e. rooftop tiles or facades. While

facades are basically a grid of windows, windows are part

of the facade. While it is clear that the set of all windows of

a house define the facade and the facade contains the set of

all windows, the given input images will leave neither one

or the either completely resolved.

4. Method

In this section, the author states initial assumptions and

challenges on the aerial image data set and the detection of

windows and doors and will explain methods to find a so-

lution to those challenges. The author will discuss methods

to check for the following assumptions:

A1 The number of possible features to be retrieved from

the data set is restricted, hence the depth of the neural

network is not required to be very deep

A2 The windows on the facade of those areal textures can

be described as a cluster

A3 The lack of features is a cause for a low recall value

Each of the following subsection will try to to evaluate one

of those assumptions and try to find the reasoning behind

it with statistical experiments. The author is aware that, as

much as neural networks in general only provide statistical

experiments or scores to ”prove” claims, our argumentation

is valid at first for this specific data set and the aerial images

as described in the pages before. Whether or not our claims

can be generalized to all aerial images needs to be proven,

even though there is a strong indication that this could be

the case.

4.1. Data sets and format

In the process of optimizing the trained network, the

training set has been constantly adjusted and modified. Two

different data sets of images of fixed size have been labeled

and been used for experimenting with the neural network.

While the texture image size is between 100px and 300px,

the author chose to select images which can be cropped to

size 128 and 256 respectively. (Sizes are in terms of the

power of two as the convolutional blocks halve the size of

the input and double the features.)

Data set 128 The first data set contains crops of the texture

images of size 128x128. The author has labeled the whole

texture file and then cropped them adaptively such that each

cropped image has a maximal overlay of 10% with the pre-

vious one. Those results have been normalized with respect

to the histogram. Further augmentation has been done in

terms of 90 degrotations without loss of quality. Further, the

images have been randomly shuffled and divided into the

dataset for training, validation and testing with ratio 6:2:2.

Overall this data set contains around 6,000 images.

Data set 256 The second data set contains adaptive crops

of hand-labeled images of size 256x256. The authors have

selected the best texture files from a set of more than 1,000

images in terms of resolution, image dimensions and expo-

sure settings. Most of those chosen images are not much

larger in terms of side length than 300px. While the same

adaptive cropping and augmentation as in the 128 data set

has been used, the resulting training and evaluation set is

slightly smaller in terms of the total number of images. Ac-

cordingly, the augmented images were divided randomly

into training, validation and test sets the same way as the

other data set.

The data set contains 1,000 images.

4.2. Detection process

In order to detect windows from the labeled data sets,

the author chose to use masked detections in contrast to

more general box detection outputs, for the following rea-

sons: For one, even though windows typically do have a

box shaped outline, the perspective distortions are relatively

high, i.e. the area of the bounding box often appears one

third bigger than the area of the window element itself.

Therefor mask detection can be much more accurate. For

the other, masks are useful for future enhancements, mask

detections add new possibilities to the interpretation of out-

put and adjustment of aerial textures, as in the case of cover-

ing objects in the window for privacy reasons for example.

The author first started with using the standard Mask R-
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Figure 4. Modified backbone structure, originating from

Resnet101, seperated into stages one to four, but with a cut off

fourth stage and the fully connected layers in the end

CNN [8] in combination with the Resnet101 backbone [9]

and the standard Imagenet weights. Then configuration set-

tings have been adjusted piece by piece: those include the

region proposal parameters, the anchor parameters, the de-

tection threshold, the loss weights and the region proposal

depth. Later on the author changed even the basic structure

of the network graph and the depth of the network, changing

from the typical deep Resnet101 network to a more shallow

structure. The main motivation for using the Resnet struc-

ture from the start was the basic structure of the identity

modules, that will prevent deeper layers from collapsing to

zero. That is to say, even though not expecting the best pos-

sible outcome, the high depth of the network would not, at

least, worsen the prediction results.

Due to our initial assumption that there is a restricted

number of possibly recognizable features, the author tested

to trim the Resnet101 backbone significantly. More than

22 identity blocks have been removed, but the first layers

and their structure has been preserved, modifying the graph

from stage 4 on, see figure 4.

4.3. Facade elements as clusters

As first results show that the trained network still has

a high imbalance between precision and recall, the author

checked possible error sources through threshold changes

and considered traditional clustering as an approach to filter

predictions from the output of the network.

As proposed in various papers, regularity constrains can

be used to filter facade elements. Our approach is to test

regularity assumptions that were made in the work of Wolff

[15] for our data. In this approach, the facade regularity is

detected by comparing aerial and street view image of the

same building. As this data set consists of aerial images

containing only partial facades,the regularity of the window

facade is not as strong as used by Wolff, but the author de-

cides to test the window detection on a cluster filter. The

clustering is based on the assumption that common facade

architectures are regular and in fact windows often lie on a

regular grid structure. This test checks whether or not the

perspective distortions still allow a minimal improvement

through clustering. As this work is on aerial texture images

from a huge over all data set, it is not suitable to check for

image dependent (user input requiring) approaches but to

look for global parameters to adjust the overall results.

Evaluating the correctness of Assumption two, namely that

a facade can be expressed as a cluster, the author is test-

ing cluster methods to detect outliers and wrong detections.

There is a subset of aerial texture images that contains both

a roof and a facade. This might be either the roof from

the neighboring house that is covering the facade partially

or the roof of the same house. However, inspection of the

detections reveals that most of the wrong detections origin

in window detection on windows and chimneys on the roof

top. When the author initially labeled the data set, the roof

top windows appeared to be of slightly different shape and

successful detection was not expected.

That is why our data sets do not contain roof windows at

this point in time, nor chimneys.

Seeing that a facade consists of several windows, with a cer-

tain regularity in their distance to each other and side length,

clustering seemed a natural approach to try.

The author has used the DBSCAN algorithm as proposed by

[5] provided through the python package scikit learn. It’s

crucial parameters include the minimal number of points

per cluster and the maximal distance points can be apart to

be still considered in one cluster (epsilon distance). Dif-

ferent configurations were used on either one,two or three

points per window. The one point configuration uses the

center point, the two point configuration uses opposite

edges and the three point configuration uses both center and

opposite attaches for the cluster criteria.

The other close at hand approach to improve the output was

to consider the facade labeling as provided through the code

of the CityGML file and is described in section 4.4.
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Figure 5. Illustration of an aerial texture image (bold border) with

texture coordinates labeling a facade (thin border)

4.4. Texture coordinate retrieval as a facade label

While the inspection results show several wrong detec-

tions of windows on roof tops, chimneys and other rect-

angular elements, restricting the prediction results through

data available through the CityGML file was an intuitive

step to take. Technically, one building consists of several

surfaces. A roof surface, a wall surface and a ground sur-

face. Each surface is described by a sequence of points in

3D space. The ordering of those points is crucial to the ori-

entation of the surface. Assuming ordinary polygonal sur-

faces, a surface is closed if the last and the first point of

this sequence are equal. Textures in CityGML are defined

on so called Ring Surfaces, i.e. closed surfaces with a cer-

tain degree of topological simplicity, i.e. orientable surfaces

with measurable surface area. For an image with width w

and height h, can define texture coordinates as 2D points,

where each coordinate is in the range of 0 and 1. For a Ring

Surface with a sequence P1, P2, P3, · · · , Pn of n points and

texture with texture coordinates T1, T2, T3, · · · , Tn the tex-

ture mapping projects the texture onto the object by project-

ing edge points of the image to the edge points of the surface

and the interior accordingly. An illustration of a texture co-

ordinate labeling can be seen in Figure 5.

The detections masked with the polygon mask obtained

from the points T1, T2, T3, · · · , Tn through point-wise mul-

tiplication of the texture coordinate mask.

5. Results

For the assumptions made in Section 4, this section will

provide the test results to verify or disprove those state-

ments.

A1 In Section 5.3, the author has tested a much shallower

version of a backbone. Despite instability during the

training processed, the results achieved an average pre-

cision only three percent lower than with the original

backbone with 101 layers. This is a strong argument

for the fact that the depth as provided by the ”standard

backbone” is not required.

A2 In Section 5.4, the possibility of using clustering to im-

prove the prediction outcome was discussed. The au-

thor tested various parameters on the test data set, but

are unable to find one set of parameters that matches all

aerial texture images. As the distance from the camera

to the buildings itself is not significantly different per

building, the perspective needs to be incorporated as a

parameter for successful clustering.

A3 While the assumption on the restricted number of fea-

tures is hard to prove or disprove, the author concludes

that either using a completely different model or tus-

ing another training data set is the only solution to

possibly further improve the prediction results. The

author has tested different parameters, different con-

figurations (Section 5.1), different backbone structures

(Section 5.3), output clustering (Section 5.4) and tex-

ture coordinates output filtering (Section 5.6) but still

failed to significantly improve the recall value.

The author used slightly different hardware and software

for the section 5.1 (GTX 1070s and Ubuntu 16) and 5.4 /

5.6 (GTX 1080s and Ubuntu 18), which explains the slight

decrease in score from section 5.1.

5.1. Training and accuracy scores

The author originially started with training the Mask

R-CNN [1] on the pre-trained Resnet101 backbone [9]

modifying parameters such as anchors, region proposals

and more parameters, having run more than 30 configu-

rations of the neural network. Out of those, the author

selected the best five parameter configurations for each data

set. The following results are discussed on the training of

two epochs and fine tuning of 3 epochs, where one epoch

contains all training set data and validation steps are set to

the number of validation images.

Configurations and Test Recall Precision AP@IoU0.5

A. 128 - standard 0.53 0.85 0.85

B. 128 - optimised 0.60 0.82 0.87

C. 256 - standard 0.51 0.94 0.91

D. 256 - optimised 0.58 0.90 0.93
Table 1. Models and scores

In order to use the networks inference results for detect-

ing windows and analysing the architecture of a facade, the

main tasks lie in detecting every existing window as well as

reducing the number of wrongly detected windows.

In other words, the recall is a crucial value to improve. As

can be seen in Table 1, the optimisation of the AP goes hand
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Data set ∆ Recall ∆Precision ∆ AP@IoU50

A. 128 0.07 -0.02 0.02

B. 256 0.07 -0.04 0.02
Table 2. Overview of improvements made through configuration

and parameter optimisation

in hand with the optimisation of the recall. However, the au-

thor has also realised that for any type of recall and AP im-

provement, the precision value has slightly decreased by at

least 0.02, see Table 2. In none of the AP improved configu-

rations has the author seen an improvement of the precision,

however the recall has always been higher by at least 0.01

and at most 0.07. During the configuration testing, the au-

thor has tried to increase the precision by changing the loss

function parameters such that the mask score is three times

higher than the other scores. However, this approach did not

improve the precision. Henceforth suggesting that the pre-

cision of the mask results depends strongly on the complete

structure of the network and each layer and feature size. It

is likely that the lack of information in the image in terms of

image size and resolution leads to a restriction in the possi-

ble features and hence a threshold for the possible precision

values.

While the results in table 1 show a high precision score, the

recall value is low. As it is common to consider the detec-

tion threshold as the origin for a bad balance between preci-

sion and recall, testing on the score was also done on thresh-

olds other than the used 0.7. For all the tests of threshold

0.6, 0.5 and 0.4, the recall has not been improved by more

than one percent.

The author therefor argues that the bad recall and precision

ratio arises from either the quality of the images (missing

information in terms of low vision problems) or the mask

detection model itself. The author therefor implemented a

significantly shorter version of the network graph, dropping

a lot of identity layers of the Resnet101 network in the sec-

ond next section.

5.2. Anchors, ROIs and AP scores

Due to the small image and object size, the anchor size

of region proposal in the neural network has been modified

in most of the configurations. The author has chosen signif-

icantly smaller anchor scales and different anchor ratios.

Another crucial parameter to the improvement of the

AP@IoU50 score is the number of trained regions per im-

age. The author found out that adjusting the number of

trained regions per image to reflect the number of windows

per image improves the recall values. If chosen improperly,

several windows are either not detected at all or windows

are double detected, i.e. several regions span over one win-

dow and classify it as three objects. An example of missing

windows is shown in Figure 6.

Regarding the Region Proposal Network (RPN), the num-

ber of regions for training showed a correlation to the recall

value and the under and over fit of the network with respect

to a single image evaluation. In our test case, the missing

windows often occur towards the center of the image and

the dimension of the window as were not indifferent from

other detected windows.

Figure 6. Window labeling (left) and detection results (right) for

wrong parameter selection in terms of region proposal threshold

filtering, leading to ”missing windows”

5.3. Network depth and precision

Data set Recall Precision AP@IoU50

256 0.5278 0.9135 0.8927
Table 3. Scores for the modified graph of Figure 4

The modified graph was tested on the best configuration

of the previous result, see Table 3. While the author also

planned on translating all the results on the ”normal back-

bone” to the cut off version. However, he training process

was found to be unstable and required to minimize the size

of training steps in order to save the weights in between.

The author tried different configurations, however found

the specific best configuration 256 too unstable to complete

successful training. Overall, the best network and configu-

ration achieved an average precision score of 89%. Given

the fact that more than two third of all identity blocks from

the network were removed, only around three percent in av-

erage precision AP@IoU50 were lost.

5.4. Clustering Improvements

The author expected two and three point configurations

to be more effective in clustering, as otherwise there will

be no awareness w.r.t. the window area: small windows far

apart from each other and large windows with center points

far away but actually close will both be excluded/included

in the same manner. However, this was not the case. As

shown in Figures 7 and 8, the graphs for the two and three

point approach per window are nearly identical in terms of

AP score and maximal distance epsilon.

Without doubt one could tune the clustering parameters

on each image separately, but all test parameters were per-

formed on the whole set of test images at once. Our results
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Clustering set Recall Precision AP@IoU50

No Clustering 0.5418 0.9181 0.9175

Center point 0.5358 0.9237 0.9186

Opposite edges 0.5358 0.9237 0.9185

Three point 0.5357 0.9191 0.9237
Table 4. Overview of improvements made through dbscan cluster-

ing

Figure 7. AP score variation with respect to the maximal cluster el-

ement distance epsilon (in px) for the two point model, each graph

for a cluster with minimum of 3 to 10 window elements according

to the label

Figure 8. AP score variation with respect to the maximal cluster

element distance epsilon (in px) for the three point model, each

graph for a cluster with minimum of 3 to 10 window elements

according to the label

as seen in table 4 show, that for neither configuration a re-

markable improvement was achieved.

The author observed that while improving and removing un-

necessary predictions for on image, the same configuration

will remove actual windows in other test images. The over-

Figure 9. Floor estimation through PCA example; selection of five

windows on one line, that lead to a prediction of five floors

all best AP improvement has been made in the configuration

of three points, however with a total improvement of less

than one percent, the author suggests that this improvement

does not proof the general assumption that there is a com-

mon clustering methods for all the aerial texture images.

5.5. Application: Floor estimation

Using PCA component analysis over the resulting labels,

it is possible to determine the maximal number of floors

(visible) on the facade. Even though having a quadratic

runtime, this is an interesting feature to extend or adjust 3D

models level wise.

Given the set of center’s c of predictions, look for the line

that contains the largest amount of center points with maxi-

mal error ǫ. Assuming a correct prediction, this will lead to

the maximal number of windows per line, which would be,

for a regular facade, either the number of windows per floor

or the number of levels, whichever is larger.

Given that it is possible to estimate the facade orientation

and the top of the facade, one can constrain the lines on the

set of all lines to those that lie between two angles α1, α2,

where those two angles are the angles of the rectangle of uv

coordinates that intersect with the top line.

An application of those estimations is shown in Figure 9.

The correctness of the prediction of the number of levels

depends on the correctness of the prediction itself. Under

the assumption that there is one or two wrong predictions in

the image,it is possible to estimate the number of floors by

the largest number of points per line that occurs at least in

three lines (instead of one line). However, the estimation of

number of floors purely visible on the photo is non trivial,

as buildings are covering each other and a lot of those do

not allow to see the first floor.
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Figure 10. Overlay of texture mapping on a facade texture with

roof parts covering the bottom

Figure 11. Detection results before (top) and after applying texture

masks (bottom)

Configuration Recall Precision AP@IoU50

256 standard 0.5418 0.9181 0.9175

256 w/ texture mask 0.5354 0.9261 0.9293
Table 5. Overview of improvements made through texture masks

5.6. Texture coordinates for enhanced prediction

While expecting a significant improvement of the recall

values by using the texture coordinates as masks on the re-

sults, the author did not encounter any significant change in

the scores, as seen in Table 5.

Looking at sample images, one can see that some facades

have a slightly better prediction and the roof windows are

left out, see Figure 11, but this is not the case for all of the

images. In fact, several facades, that are either covered by

trees or other buildings, still contain the building or tree in

the texture mask area, see Figure 10, where he bottom part

of the building is covered by a roof and that roof is part of

the mask.

6. Future Work

Neural Network adjustments As the author has tested

results of a significantly shorter backbone and hence an

easier to train network and those first results yielded a

mere three percent difference in mean average precision

and would like to encourage further studies on determining

optimal depth and structure of networks for accurate yet

minimal graph structure.

Facade element extension There is a huge selection

of other objects / facade features that can be extracted from

those texture images. This especially concerns objects on

the roof. Given that our solution does detect windows on

roof texture images, the author can imagine that combining

window recognition and chimney recognition will provide

optimal outcome for enhancing 3D models.

Application for privacy preserving images This model

can be easily applied to automatically detect and replace

windows with standard photos, such that the details of

curtains, the objects on the window sill and other private

property can be automatically removed. For some glass

facades, that the interior of those has already been replaced

manually and the author would like to propose to test

automatic privacy protection.

Detailed 3D modeling from aerial images While

most recent work focuses on either constructing basic

housing models from aerial images, there is a huge oppor-

tunity in going from aerial images over simple models to

complex building models. As such, the author’s work can

be integrated into simple building models.
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