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Abstract

Aerial surveying is a key tool for effective wildlife man-

agement. However, the high costs associated with large

scale surveys means that this tool is often underutilized. We

believe that computer vision can be used to dramatically

decrease the costs associated with surveying, while at the

same time improving the consistency of results. We present

the Aerial Elephant Dataset, a challenging dataset to en-

able research on game detection under real-world condi-

tions. The dataset consists of 2101 images containing a to-

tal of 15 511 African bush elephants in their natural habi-

tats, imaged with a consistent methodology over a range

of background types, resolutions and times-of-day. A base-

line algorithm for elephant detection is trained and tested

to demonstrate the feasibility of the proposed task. The al-

gorithm is used in a larger system, where false positive re-

jection and counting of densely spaced individuals is aided

by a human-in-the-loop. We evaluate the performance of

this system against traditional methods by performing sur-

veys in tandem with professional human surveying crews

and comparing results in terms of detections missed, man-

hours spent and cost.

1. Introduction

Wildlife population monitoring is crucial to general con-

servation, sustainable wildlife use and managing human

wildlife interactions. Aerial surveying is an effective tool

for monitoring populations within large areas.

However, such surveys are often expensive and arduous

to conduct. Most aerial surveys still rely on the same meth-

ods devised five decades ago [26, 40]. Since then, digital

cameras have become more affordable and computer vision

software has advanced to such a state that those aerial sur-

vey methods can be augmented with these technologies to

reduce costs and risk to human life while improving results.

Towards realizing this possibility, we have developed a

low-cost image acquisition rig that can be used to gather

Figure 1. Example of a typical image from the dataset with 11

elephants present. Elephants are circled in blue and in cases of

clusters containing multiple elephants in a single circle, the count

is indicated. Zoomed views of two cow-calf groups are also pro-

vided.

geolocated aerial images of large areas with off-nadir angles

of 35 degrees or less at rates of up to 240 km2 per hour when

capturing at 10 cm ground sample distance resolution. This

rig is entirely self-contained and can easily be mounted in

any aircraft with an observation aperture.

Having the ability to gather huge amounts of aerial data

is meaningless if we do no also have the ability to process

it. As a proof of concept we developed the Elephant Sur-

vey System (ESS) that allows for the semi-automated aerial

surveying of African bush elephants (Loxodonta Africana).

The same basic processing flow could be used to survey any

species that is generally visible from the air during daytime.

In the process of developing and testing this system we

have collected a large dataset of aerial images of various dif-

ferent ecosystems. We have also produced a large number
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of annotations of elephants that are present in these images.

We believe that this is a challenging dataset to test object de-

tection algorithms against, as the target object is extremely

scarce, fairly small in pixel terms, often partially occluded

and generally appears against highly cluttered backgrounds

with many natural distractors.

To show the viability of the problem we present a base-

line network and evaluate its performance.

Lastly we present results from real-life comparison sur-

veys where the ESS was evaluated head-to-head against

two highly experienced aerial game surveying teams, us-

ing two different methodologies against two different back-

ground types. We show that ESS based surveying pro-

duces results that are comparable to or better than man-

ual surveys at a fraction of the cost. In addition, ma-

chine vision based surveys will continue to improve as re-

search progresses. It is in the hope of supporting such re-

search that the Aerial Elephant dataset is released publicly

at http://innoventix.co.za/AED.

2. Related work

For decades, the field of aerial animal surveys has seen

very little change. Recently, this has started changing

rapidly due to four drivers:

• widespread availability of high quality digital cameras,

• availability of affordable unmanned aerial vehicles,

• crowdsourcing and

• advances in computer vision.

High quality digital cameras make it possible to photo-

graphically record huge areas and analyze it at a later stage

instead of having to carry an entire observation team on

board every flight. This makes aerial wildlife surveys more

viable as fewer personnel are required to be present on the

actual flights in locations that are often remote and may

place them in harm’s way. The availability of unmanned

aerial systems or drones extend this trend further and dra-

matically lowers cost for small scale surveys, although reg-

ulatory barriers and the limited endurance and payload ca-

pabilities of contemporary drones often mean that manned

aircraft are still preferred for large scale surveys.

These two factors have caused the cost of data acquisi-

tion to plummet in recent years, often with the effect that

organizations can gather more data than they can realisti-

cally process. Luckily recent trends in crowdsourcing and

computer vision have made inroads toward providing a sim-

ilar dramatic reduction in the cost of processing.

It has long been known that a group of non-expert indi-

viduals can be as accurate as an expert for certain tasks if

their responses are aggregated in a suitable manner[13, 17].

The so-called ’wisdom of crowds’ [49] means that as more

individuals estimate some quantity of interest, random er-

rors are suppressed and only systematic errors remain.

Crowdsourcing has been used in a number of studies to di-

vide a task over a large number of volunteers or workers and

arrive at a reliable result.

However, while crowdsourcing can dramatically reduce

the cost of manual processing, the scale of certain prob-

lems mean that automation is required. Wildfowl counts

done by Gilmer et al. [18], Bajzak and Piatt [3] and Cun-

ningham et al. [14] are examples of early attempts to use

automated methods to count animals from images. Ma-

chine vision has since been successfully applied in a num-

ber of contexts where animals are highly aggregated and ap-

pear with reasonable contrast against a simple background

[50, 20, 23, 46, 7, 8, 19, 6, 29, 1, 11] or where the ma-

chine vision system is used in concert with crowdsourced

inputs [2]. However, these limitations prevent the use of

computer vision in large scale minimally constrained sur-

veys. These are still performed [9] using techniques which

are essentially unchanged from those proposed forty years

ago [26, 40].

Finally, advances in machine learning due to improved

techniques[28, 21, 43, 32, 42], massively increased process-

ing power and huge annotated databases [15, 31, 16] has

brought us to the point where the use of computer vision no

longer needs to be limited to relatively simple cases. Recent

work has seen modern machine learning methods applied to

great effect to count dugong [35]and wildebeest [51].

2.1. Related datasets

The vast majority of publicly available aerial and satellite

imagery datasets are focused on urban areas. In such areas,

typical tasks include building detection or segmentation[34,

10, 52, 36], road extraction [52, 47] and detection of people

and common man-made landscape-features or objects [53,

44, 5, 39].

In satellite imagery specifically, there are also datasets

focusing on cloud[38, 37] and ship[27] detection as well as

some tackling the land-cover classification problem [48, 55,

54, 12, 22, 4, 25].

To the best of the authors’ knowledge the only public

dataset for animal detection in aerial imagery available to-

day is the NOAA arctic seal dataset[41]. This data set con-

tains about one million thermal/RGB image pairs, repre-

senting a 2016 aerial survey of sea ice habitat in U.S. waters

of the Chukchi Sea, conducted by NOAA fisheries. Anno-

tations indicate the locations of approximately 7000 seals in

these images.

The NOAA dataset is similar to the aerial elephant

dataset in also being an extremely imbalanced data set.

Unlike the proposed set however, the backgrounds are ex-

tremely simple and thermal images are available to support

detection. In our initial experiments long wave infrared



Figure 2. A photo of the acquisition rig mounted in a BushCat light

sport aircraft.

thermal images were collected, but it soon became appar-

ent that these would be all but useless for daytime animal

detection on the African savanna.

3. Acquisition methodology

The images were gathered using Canon 6D consumer

oriented digital single-lens reflex cameras. Consumer

DSLRs were preferred over professional aerial survey

equipment since the goal was to maximize affordability.

Equipment failure, especially mechanical shutter failure,

was an initial concern. However, after 5 years of oper-

ation and in excess of 500 000 total shutter activations,

we have yet to experience a single failure. These cameras

were mounted in a SkyReach BushCat light sport aircraft by

means of a purpose built frame, and capture images through

an aperture in the fuselage.

The frame accommodates three bodies, each equipped

with an 85 mm lens. One camera is pointed straight down,

while the other two are tilted to the left and right respec-

tively by 20 degrees each. This arrangement maximizes the

width of the imaged strip underneath the plane, while main-

taining the viewing angle at 35 degrees from nadir or below.

The cameras are controlled via their USB interfaces by

a Raspberry Pi single board computer running custom soft-

ware that triggers synchronous captures at a programmable

frequency. The capture process can be started or stopped

using a mechanical switch mounted in the cockpit or via a

web-interface.

The cameras have built in GPS receivers, so each image

is automatically GPS-tagged in the EXIF metadata. These

GPS tags are used to reconstruct the path of the survey air-

craft during analysis and to remove any images which were

not taken on transect legs (for example during turns) from

the data to be processed.

The cameras as well as the controlling computer are

powered from a Li-ion battery which can power the rig

for more than 5 hours. The rig initially drew power from

the aircraft supply, but after experiencing problems due to

conducted EMI, was modified to be entirely self-contained.

This means that only mechanical integration is required

when mounting the rig in a new carrier aircraft.

We have found empirically that elephants can be reliably

detected in imagery with a ground sample distance (GSD)

of about 10 cm. Our setup allows us to acquire such im-

ages from a height of about 4000 feet above ground level

(AGL). At this height, the effective search strip width is just

in excess of 1500 m on the ground. This is dramatically

larger than the strip width that can realistically be searched

by human observers from any height.

In practice we have found that the neural net performs

well on data at this resolution, but human observers (es-

pecially inexperienced ones) start to experience significant

ambiguity when verifying the results. For this reason, we

would often prefer to operate at 3000 feet, reducing both

the GSD and the search strip width by a factor 0.75.

In some cases cloud cover has forced us to operate at

even lower altitudes, so the dataset contains imagery at a

variety of resolutions. Images are provided at their orig-

inal resolution, with GSD specified in the metadata, so

both multi-scale and single scale approaches can be experi-

mented with.

4. Processing methodology

The ESS software is used to filter the set of images to be

processed, removing images that were taken during initial

positioning, returning to the landing strip or during turns

between transect legs. Next the software calculates a set

of detections for all of the selected images by using a deep

neural net that will be described in more detail in Section 6.

As mentioned before, due to the massive discrepancy in

base rates for the elephant and background classes, we typ-

ically end up with more false positives than true positives.

These are filtered out by human operators. While this task

may consume several hours for a large survey, it would be

completely unfeasible without the help of the neural nets

to reduce the data to a manageable volume. In practice we

have found that the neural net reduced the amount of data

that had to be manually inspected by more than two orders

of magnitude.

Elephants are well known to be social animals that

mostly occur in herds (lone bulls being the exception). We

exploit this a-priori knowledge by inspecting the images

with confirmed elephants closely, to verify that no addi-

tional elephants were missed in these images. This ensures

that the resulting dataset is clean and boosts the accuracy of

the final count for very little additional effort (since the vast

majority of images do not contain any elephants).

Acquired images overlap slightly in the transverse direc-

tion and significantly in the flight direction. Due to this, it is

necessary to register images relative to one another and use



the resulting transform to ensure that elephants appearing

in multiple images are not counted multiple times. The ESS

software suite contains functionality to support this regis-

tration task.

Once these tasks have been completed we can query the

system for the total number of elephants seen and the loca-

tions of these observations.

5. Dataset description

The dataset consists of 2101 images containing a total of

15 511 elephants. It is split into training and test subsets

with 1649 images containing 12455 elephants in the train-

ing set and 452 images containing 3056 elephants in the

test set. The resolution of the images varies between 2.4

cm/pixel and 13 cm/pixel, but the nominal resolution for

each image is specified in the accompanying metadata, so it

is a simple matter to resample images to a consistent GSD.

Because acquired images often overlap, the same individ-

uals may sometimes be seen in 2 or 3 consecutive images.

Care has been taken with the train/test split to ensure that

such clusters of related images are not split, thus maintain-

ing independence of the training and test sets.

These images were acquired over the course of 8 separate

campaigns in different environments. These environments

are

• Hluluwe-iMfolozi Park and Phinda Private Game Re-

serve in central KwaZulu-Natal, South Africa (Multi-

ple flights spread over September 2014 to May 2015)

• The Northern Tuli Game Reserve in the Tuli block,

Botswana (September 2015)

• NG26 concession in the Okavango Delta, Botswana (2

campaigns, September 2015 and July 2018.

• Bwabwata and Mudumu national parks in the Zambezi

strip, Namibia (2 campaigns: August 2016 and Febru-

ary 2018)

• Madikwe game reserve in the North-West province,

South Africa (2 campaigns: July 2017 and November

2018)

The dataset represents both dry-season and wet-season

backgrounds in a variety of environments and captured over

the full day from sunrise to sunset.

6. Baseline network

The class imbalance inherent in the game surveying

problem means that false positives are a major problem.

Even with extremely low false alarm rates, we typically end

up with more false positives than true positives. This means

that some manual verification will be needed before the data

can be used.

Figure 3. A selection of elephants from the dataset. The elephants

in the top two rows were missed by the detector, while those in

the bottom two rows were successfully detected. Note the large

amount of variation in appearance, scale and background type.

The missed elephants tend to be those where the image quality is

very poor due to small scale, image blur or other sensor artifacts.

During manual verification we present a small crop

(400x400 pixels) of the image, centered on the neural net-

work’s detection, and the operator is asked to mark the ele-

phants present in the crop, or reject the detection if no ele-

phants are present.

To evaluate the performance of a classifier we use the

mean average precision (mAP). However, to have our figure

of merit accurately reflect the real-world cost of verification

we consider an elephant to have been successfully detected

if it occurs within a Chebyshev distance of 200 pixels of

the detection coordinate. This means that a single detection

may include several elephants.

We generally expect some deterioration in performance

near the edges of the image, as some of these elephants may

only be partially included in the image and even if the sub-

ject elephant is completely inside the image, the network

may be affected by the presence of padding in its nominal

receptive field. For these reasons we exclude the outer edge

(128 pixels) of each image from the analysis. Our evalua-

tion code that computes our slightly customized mAP per-

formance metric on the test set, given a set of detections is

included with the dataset.

To perform detection we use a Mobilenet architecture

[24] which has been modified to be fully convolutional as

formalized in [33]. This net can do inference on an image



Figure 4. The precision-recall curve of the baseline network on the

evaluation set.

of any size and produce a dense heatmap of classification

results corresponding to strided locations within the input

image. We subsequently perform connectivity on the re-

gions with a threshold of 0.8 in the heatmap and report the

center of each region as a single detection with a score equal

to the maximum response within the region. We also check

that regions have Chebyshev radii smaller than 200 pixels

(i.e. the entire region falls inside the presented crop) and

split them until this condition is satisfied.

Training is also performed in a fully convolutional man-

ner, but all outputs within a guard region around known ele-

phants are treated as ’don’t care’ outputs i.e. they are not

back propagated. These outputs will contain the elephant

image within their receptive fields, but it will not be cen-

tered. Since we do not want to waste resources trying to

learn this arbitrary and noisy distinction, we only enforce

our minimum requirements, which is that the closest out-

put to the elephant center report a detection, while outputs

with no elephant center within their receptive fields do not.

The exact shape of the transition between these two states

is of little importance to us. We use a focal loss [30] for

the background class to focus the training effort on the hard

examples.

We train on random crops of the source image chosen to

be maximal squares. Data augmentation consists of random

mirroring and random rotations in 90 degree increments, as

well as some standard color perturbations.

The achieved precision-recall curve is shown in 4. We

attain an average precision of 0.89 on the test set. Note that

while this may appear quite high, the base rate discrepancy

in the test-set is roughly a factor 50 smaller than in a typ-

ical survey in a high elephant density area where only 2%

of images will contain elephants as opposed to 100% of the

images in the test set. In a low density area the class imbal-

ance will be even worse.

7. Comparison against human crews

The ESS system was benchmarked against the perfor-

mance of human surveying teams on two separate occasions

against two different experienced human survey teams us-

ing two different counting methodologies.

7.1. Fixed wing sample survey in Okavango Delta,
Botswana

The first comparison was against a human crew from

Elephants Without Borders performing a sample survey of

elephants using a Cessna 206 in the NG26 concession in the

Okavango delta in Botswana. This method requires 4 crew

members (a pilot, a recorder and one observer on each side

of the plane). Crew members count elephants within 200 m

wide strips on the ground on either side of the plane, while

ignoring any elephants outside this strip. The strip is visu-

ally delineated by two carefully placed rods attached to the

wing struts. They are also equipped with digital cameras on

fixed mounts which are used to take photos when herds are

too large to be reliably counted in-flight.

Differences in aircraft performance meant that we could

not closely synchronize the two surveys. Therefore we

could only compare the estimated elephant densities yielded

by the two methods rather than checking whether individ-

ual sightings correspond. In the two sorties that were evalu-

ated, the ESS estimated density was respectively 1.98% and

5.32% higher than the density estimated by the human ob-

servers. It is a known result that manual aerial surveys miss

an estimated 13% of elephants [45] so a natural interpre-

tation is that the use of the ESS has reduced this miss rate

somewhat. However, the sample size is not large enough to

make this conclusion definitive.

7.2. Rotary wing full count in NorthWest province,
South Africa

The second comparison was against another very expe-

rienced human crew, put together by Bassair aviation per-

forming a full count of all large mammals in the Madikwe

game reserve in South Africa using a Bell Jet Ranger III

helicopter.

This count also involved flying a pre-planned set of tran-

sects, but in a full survey, unlike in a sample survey, the

craft may deviate from transect legs and hover over or orbit

around animals when necessary to obtain an accurate count.

They would also fly low over dense thickets to flush out an-

imals that are not clearly visible. This requires that they fly

much lower (often below 100 feet) and slower and search a

fairly narrow strip. Unlike the sample survey team, they do

not have a clearly delineated strip, but since their transect

legs are spaced 500 m apart, this requires that they visually

search at least 250 m out on either side of the helicopter.

They try to count an entire herd as an atomic unit at all



times and note location, numbers and herd composition. By

tracking this information carefully and keeping all transect

legs relatively short, they can avoid counting the same herd

twice during a single sortie. However, the slow search rate

implies that it takes multiple days to complete a count of

any park of appreciable size.

Wherever possible, geographic features that impede an-

imal movement are used as the boundaries for each day’s

search area, but it is impossible to reliably avoid some over-

or under-counting due to inter-day movement of herds. To

build confidence in the resulting numbers, the reserve is typ-

ically surveyed several times and the final counts compared.

These factors conspire to make this a very expensive form

of game counting.

In this comparison exercise, we took care to synchro-

nize the two surveys to within a few minutes (by having

the BushCat circle after each leg until the helicopter could

complete the leg. This allowed us to do direct comparisons

of sightings. We found that the ESS system had not missed

a single herd detected by the human observers, and missed

only 2 lone bulls, neither of which could be found in our

imagery, so these misses are assumed to be due to visibil-

ity bias (an elephant standing directly underneath a large

tree would be invisible from our point of view, but not nec-

essarily from the point of view of the human observers in

the low-flying helicopter). On the other hand, we detected

some 8 lone bulls as well one herd of 9 elephants that were

missed by the human crew.

In many cases where the same herds were spotted, our

count of individuals would differ from that produced by the

human team, but since they took no photos of these obser-

vations, we have no way of pinpointing whether the error is

an over-count by the human team or visibility bias on the

part of ESS.

Despite these differences, final counts on the two sorties

compared came out to within 7.1% and 1.6% respectively.

While the verification and registration steps by human

operators does still consume a significant amount of time,

in all four sorties where comparisons were made we cal-

culated that fewer man-hours were spent overall to obtain

the ESS result than were spent to obtain the manual result,

despite the fact that the ESS search strip is typically about

3 times wider. It is hoped that further research on this de-

tection problem will reduce the time and expenditure in the

verification phase even further.

8. Conclusion

This paper introduces the Aerial Elephant dataset, a chal-

lenging new benchmark for animal detection in aerial sur-

veys. We also proposed a baseline algorithm and demon-

strated that a system built around this algorithm is al-

ready capable of outperforming experienced human spot-

ters. More work on this application has the potential to rev-

olutionize aerial animal surveys by radically reducing costs

and improving both precision and accuracy.
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