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Abstract

Existing Earth Vision datasets are either suitable for se-

mantic segmentation or object detection. In this work, we

introduce the first benchmark dataset for instance segmen-

tation in aerial imagery that combines instance-level object

detection and pixel-level segmentation tasks. In comparison

to instance segmentation in natural scenes, aerial images

present unique challenges e.g., a huge number of instances

per image, large object-scale variations and abundant tiny

objects. Our large-scale and densely annotated Instance

Segmentation in Aerial Images Dataset (iSAID) comes with

655,451 object instances for 15 categories across 2,806

high-resolution images. Such precise per-pixel annotations

for each instance ensure accurate localization that is essen-

tial for detailed scene analysis. Compared to existing small-

scale aerial image based instance segmentation datasets,

iSAID contains 15× the number of object categories and

5× the number of instances. We benchmark our dataset us-

ing two popular instance segmentation approaches for nat-

ural images, namely Mask R-CNN and PANet. In our exper-

iments we show that direct application of off-the-shelf Mask

R-CNN and PANet on aerial images provide suboptimal in-

stance segmentation results, thus requiring specialized so-

lutions from the research community.

1. Introduction

Given an image, the aim of instance segmentation is

to predict category labels of all objects of interest and lo-

calize them using pixel-level masks. Large-scale datasets

such as ImageNet [7], PASCAL-VOC [8], MSCOCO

[17], Cityscapes [6] and ADE20K [34] contain natural

scenes in which objects appear with upward orientation.

These datasets enabled deep convolutional neural networks

(CNN), that are data hungry in nature [14], to show

∗Equal contribution

(a) Original image (b) SS maps (c) IS maps

Figure 1: Some typical examples from iSAID containing

objects with high density, arbitrary shapes and orientation,

large aspect ratios and huge scale variation. SS and IS de-

note semantic segmentation and instance segmentation, re-

spectively.

unprecedented performance in scene understanding tasks

such as image classification [29, 11, 30], object detection

[27, 26, 19], semantic labeling and instance segmentation

[10, 18, 4]. However, the algorithms developed to solve

these tasks in regular images do not transfer well to over-

head (aerial) imagery. In aerial images, objects occur in

high density (Fig. 1, row 1), arbitrary shapes and orientation

(Fig. 1, row 2), large aspect ratios (Fig. 1, row 3), and with

huge scale variation (Fig. 1, row 4). To accurately address
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the challenges of aerial images for high-level vision tasks,

tailor-made solutions on appropriate datasets are desired.

To encourage the advancements in aerial imagery for

earth observation, a few well-annotated datasets for ob-

ject detection [16, 32] and semantic labeling [21, 9] have

recently been introduced. However, they do not provide

per-pixel accurate labelings for each object instance in an

aerial image and are therefore unsuitable for instance seg-

mentation task (see Table 1). Publicly available instance

segmentation datasets [1, 31] typically focus on a single

object category; for example, [31] only contains building

footprints and [1] only has labelings for ships. To address

the shortcomings of these existing datasets, we introduce a

large-scale Instance Segmentation in Aerial Images Dataset

(iSAID). Our dataset contains annotations for an enormous

655,451 instances of 15 categories in 2,806 high-resolution

images. Having such large number of instances and class

count makes iSAID suitable for real-world applications in

complicated aerial scenes.

Compared to other aerial datasets for instance segmen-

tation, iSAID is far more diverse, comprehensive and chal-

lenging. It exhibits the following distinctive characteristics:

(a) large number of images with high spatial resolution, (b)

fifteen important and commonly occurring categories, (c)

large number of instances per category, (d) large count of

labelled instances per image, which might help in learning

contextual information, (e) huge object scale variation, con-

taining small, medium and large objects, often within the

same image, (f) Imbalanced and uneven distribution of ob-

jects with varying orientation within images, depicting real-

life aerial conditions, (g) several small size objects, with

ambiguous appearance, can only be resolved with contex-

tual reasoning, (h) precise instance-level annotations car-

ried out by professional annotators, cross-checked and val-

idated by expert annotators complying with well-defined

guidelines.

2. Related Work

Both in terms of historical context and recent times,

large-scale datasets have played a key role in progressing

the state-of-the-art for scene understanding tasks such as

image classification [29, 11, 30], scene recognition [33],

object detection [27, 26, 19] and segmentation [10, 18, 4].

For instance, ImageNet [7] is one of the most popular

large-scale dataset for image classification task, on which

the state-of-the-art methods [29, 11, 30] are able to reach

human-level performance. Similarly, large-scale anno-

tated datasets, such as MSCOCO [17], Cityscapes [6] and

ADE20K [34] for object detection, semantic and instance

segmentation have driven the development of exciting new

solutions for natural scenes. Introduction of datasets, that

are larger in scale and diversity, not only provide room

for new applications but also set new research directions.

Moreover, challenging datasets push research community

to develop more sophisticated and robust algorithms; thus

enabling their application in real-world scenarios.

There are numerous lucrative application areas of Earth

Vision research, including security and surveillance [28],

urban planning [22], precision agriculture, land type classi-

fication [2] and change detection [15]. In general, deep-

learning based algorithms show excellent performance

when provided with large-scale datasets, as demonstrated

for several high-level vision tasks [11, 10, 26] involving

conventional large-scale image datasets. A key limitation

towards building solutions for the Earth Vision applications

is the unavailability of aerial datasets resembling the scale

and diversity of natural-scene datasets (e.g. ImageNet [7]

and MSCOCO [17]). Specifically, existing overhead im-

agery datasets are significantly lagging in terms of cate-

gory count, instance count and the quality of annotations.

The advanced off-the-shelf methods trained on conventional

datasets when applied on aerial image datasets, fail to pro-

vide satisfactory results due to large domain shift, high den-

sity objects with large variations in orientation and scale.

As an example, an otherwise robust object detector SSD

[19] yields an mAP of just 17.84 on the dataset for object

detection in aerial images (DOTA) [32]. Recently, large-

scale aerial image datasets (DOTA [32] and xView [16])

have been introduced to make advancement in object de-

tection research for earth observation and remote sensing.

Both of these datasets [32, 16] are more diverse, complex,

and suitable for real-world applications than previously ex-

isting aerial datasets for object detection [5, 3, 23, 35, 20].

On the down side, these datasets do not provide pixel-level

masks for the annotated object instances.

Instance segmentation is a challenging problem that goes

one step ahead than regular object detection as it aims to

achieve precise per-pixel localization for each object in-

stance. Unlike aerial object detection, there exist no large-

scale annotated dataset for instance segmentation in aerial

images. A few publicly available datasets in this domain

only contain instances of just a single category (e.g., ships

[1] and buildings [31]). Owing to the significance of pre-

cise localization of each instance in aerial imagery, we in-

troduce a novel dataset, iSAID, that is significantly large,

challenging, well-annotated, and offers 15× the number of

object categories and 5× the number of instances than ex-

isting datasets [1, 31].

3. Dataset Details

3.1. Images, Classes and Dataset Splits

In order to create a dataset for instance segmentation

task, we build on the large-scale aerial image dataset:

DOTA [32], that contains 2,806 images. The images are col-

lected from multiple sensors and platforms to reduce bias.



Note that the original DOTA dataset only contains bounding

box annotations for object detection, thus cannot be used

for accurate instance segmentation. Furthermore, DOTA

[32] suffers with several aberrations such as incorrect la-

bels, missing instance annotations, and inaccurate bound-

ing boxes. To avoid these issues, our dataset for instance

segmentation is independently annotated from scratch,

leading to 655,451 instances compared to 188,282 instances

provided originally in DOTA [32] (a ∼ 250% relative in-

crease, see Fig. 2 for examples).

It is important to note that the our instance segmentation

dataset in aerial images has unique challenges compared to

regular image datasets (e.g., less object details, small size

and different viewpoints- see Fig. 3). On the other hand,

as summarized in Table 1, most of the existing aerial image

datasets are annotated with bounding boxes or point-labels

that only coarsely localize the object instances. Further-

more, these datasets are often limited to a small scale with

only a few object categories. In comparison, our proposed

iSAID dataset provides a large number of instances, pre-

cisely marked with masks denoting their exact location in

an image (Fig. 6). The two existing instance segmentation

datasets for aerial imagery only comprise of a single ob-

ject category (e.g., ships [1] or buildings [31]). In contrast,

iSAID has a diverse range of 15 categories and much larger

scale (∼5× more instances).

In order to select object categories we follow the experts

in overhead satellite imagery interpretation [32] and provide

annotations for the following 15 classes: plane, ship, stor-

age tank, baseball diamond, tennis court, basketball court,

ground track field, harbor, bridge, large vehicle, small vehi-

cle, helicopter, roundabout, swimming pool and soccer ball

field. Objects from these categories occur frequently and

are important for various real-world applications [5, 23, 35].

For dataset splits, we use half of the original images to form

train set, 1/6 images for validation set and 1/3 for test set.

Both images and ground-truth annotations for the train and

validation sets will be released publicly. In the case of test

set, we will publicly provide images without annotations.

The test set annotations will be used to set up an evalua-

tion server for fair comparison between the developed tech-

niques.

3.2. Annotation Procedure

We design a comprehensive annotation pipeline to en-

sure that annotations of all images are consistent, accurate

and complete. The pipeline includes the following steps:

developing annotation guidelines; training annotators; an-

notating images; quality checks and annotation refinement

until satisfaction. For annotation, a high-quality in-house

software named Haibei was used to draw instance segmen-

tation masks on images.

In order to obtain high-quality annotations, clear and

(a) DOTA (b) iSAID

Figure 2: Visualization of missing annotations from

DOTA [32] as compared to iSAID.

Figure 3: Ships, buses and cars from MSCOCO [17] (odd

columns) and iSAID (even columns). Notice the size varia-

tion and the angle at which images are taken.

thorough guidelines for annotators are of prime impor-

tance. Taking notes from previously proposed datasets

[32, 16, 17, 34, 8], we establish the following guidelines:

1) All clearly visible objects of the above-mentioned 15

categories must be annotated; 2) Segmentation masks for

each instance should match its visual margin in the image;

3) Images should be zoomed in or out, when necessary, to

obtain annotations with refined boundaries; 4) Cases of un-



Dataset Bounding Segmentation #Main #Fine-grain #Total #Instances #Images Image

box mask categories categories categories width

NWPU VHR-10 [5] horizontal ✗ 10 ✗ 10 3,651 800 ∼1,000

SZTAKI-INRIA [3] oriented ✗ 1 ✗ 1 665 9 ∼800

TAS [12] horizontal ✗ 1 ✗ 1 1,319 30 792

COWC [23] center-point ✗ 1 ✗ 1 32,716 53 2,000 ∼ 19,000

VEDAI [25] oriented ✗ 3 ✓ 9 3,700 1,200 512, 1,024

UCAS-AOD [35] horizontal ✗ 2 ✗ 2 6,029 910 ∼1,000

HRSC2016 [20] oriented ✗ 1 ✗ 1 2,976 1,061 300∼1,500

xView [16] horizontal ✗ 16 ✓ 60 1,000,000 1,127 700∼4,000

DOTA [32] oriented ✗ 14 ✓ 15 188,282 2,806 800∼13,000

Airbus Ship [1] polygon ✓ 1 ✗ 1 131,000 192,000 ∼800

SpaceNet MVOI [31] polygon ✓ 1 ✗ 1 126,747 60,000 900

iSAID (Ours) polygon ✓ 14 ✓ 15 655,451 2,806 800∼13,000

Table 1: Comparison between Aerial Datasets. Center-point represents those annotations for which only the center coordi-

nates of the instances are provided.

(a) (b) (c) (d)

Figure 4: Statistics of classes and instances in iSAID. (a) Histogram of the number of instances per class (sorted by fre-

quency). (b) Histogram of number of instances per image. (c) Histogram of number of classes per image. (d) Number of

instances vs. instances per image (comparison of our dataset with other large-scale conventional datasets). The size of the

circle denotes the number of categories, e.g., big circle represents the presence of large number of object categories.

clear/difficult objects should be reported to the team super-

visors and then discussed to get annotations with high con-

fidence; 5) All work should be done at a single facility using

the same software.

The images of proposed iSAID are annotated by the pro-

fessional annotators. The annotators were trained through

multiple sessions, even if they had prior experience in an-

notating datasets of any kind. During training phase, each

annotator was shown both positive and negative examples

containing objects from 15 categories. An assessment pro-

tocol was developed to shortlist the best annotators in the

following manner: annotators were asked to annotate sev-

eral sample images containing easy and difficult cases while

strictly adhering to the established guidelines. The quality

of annotations was crossed checked to evaluate their per-

formance. Only those annotators who passed the test were

approved to work on this particular project. In general, the

selected annotators were given training for approximately

4 hours before assigning them the task of annotating actual

aerial image dataset.

At the beginning of the annotation process, the supervi-

sory team distributes different sets of images among anno-

tators. The annotators were asked to annotate all objects

belonging to 15 categories appearing in the images. Due

to high spatial resolution and large number of instances, it

took approximately 3.5 hours for one annotator to finish la-

belling all objects present in a single image, resulting in 409

man-hours (for 2,806 images) excluding cross checks and

refinements.

Once the first round of annotations was completed, a

five-stage quality control procedure was put in place to en-

sure that the annotation quality is good. 1) The labelers

were asked to examine their own annotated images and cor-

rect issues like double labels, false labels, missing objects

and inaccurate boundaries. 2) The annotators reviewed the

work of other peers on rotational basis. In this stage, object

masks for each class were cropped and placed in one spe-

cific directory, so that the annotation errors could be eas-

ily identified and corrected. 3) The supervisory team ran-

domly sampled 70% images (around 2000) and analyzed

their quality. 4) A team of experts sampled 20% images

(around 500) and ensured the quality of annotations. In case

of problems, the annotations were iteratively send back to

the annotators for refinement until the experts were satisfied

by the labels. 5) Finally, several statistics (e.g., instance ar-

eas, aspect ratios, etc.) were computed. Any outliers were



Figure 5: Boxplot depicting the range of areas for each ob-

ject category. The size of objects varies greatly both among

and across classes.

double checked to make sure they are indeed valid and cor-

rect annotations.

3.3. iSAID Statistics

In this section we analyze the properties of iSAID and

compare it with other relevant datasets.

Image resolution. Images in natural datasets (e.g.,

PASCAL-VOC [8], ImageNet [7]) are generally of limited

dimensions, often reaching no more than 1000×1000 pix-

els. In contrast, aerial images have a very large resolu-

tion: for instance the width of some images in COWC [23]

dataset is up to 19,000 pixels. In our dataset, the spatial

resolution of images ranges from 800 to 13, 000 in width.

Applying off-the-shelf conventional object detection and in-

stance segmentation methods on such high-resolution aerial

images yield suboptimal results, as we shall see in the ex-

periment section.

Instance count. Our dataset comprises 655,451 annotated

instances of 15 categories. In Fig. 4a it is shown that there

are some infrequent classes with significantly less number

of instances than other more frequent classes. For exam-

ple, small vehicle and ground track field are the most fre-

quent and least frequent classes, respectively. Such a class

imbalance usually exists in both natural and aerial imagery

datasets and it is important for real-world applications [13].

Fig. 4c illustrates the image histogram in which multiple

classes co-exists; on average 3.27 classes appear in each

image of iSAID.

Another property, common in all aerial image datasets, is

the presence of large number of object instances per image

due to a large field of view. As shown in Fig. 4b, the in-

stance count per image in our dataset can reach up to 8,000.

Fig. 4d depicts that our dataset contains on average ∼239

instances per image, which is significantly higher compared

Figure 6: Comparison of DOTA [32] and our dataset

(iSAID) in terms of instances per category. iSAID contains,

in total, 3.5 times more number of instances than DOTA.

(a) (b)

Figure 7: Statistics of images and instances in iSAID. (a)

Ratio between areas of largest and smallest object shows

the huge variation in scale.(b) shows that instances in iSAID

exhibit large variation in aspect ratio.

to traditional large-scale datasets for instance segmenta-

tion: MSCOCO [17], Cityscapes [6], PASCAL-VOC [8],

ADE20K [34] and NYU Depth V2 [24] contain 7.1, 2.6,

10.3, 19.5, and 23.5 instances per image, respectively. In

aerial images, the densely packed instances typically appear

in scenes containing parking lots and marina.

Area of categories. In natural as well as aerial images, ob-

jects appear in various sizes. Therefore, an instance seg-

mentation method should be flexible and efficient enough to

deal with objects of small, medium and large sizes [32]. In

our dataset, we consider objects in the range 10 to 144 pix-

els as small, 144 to 1024 pixels as medium, and 1024 and

above as large. The percentage of small, medium and large

objects in iSAID is 52.0, 33.7 and 9.7, respectively. The

box plot in Fig. 5 presents statistics of area for each class of

iSAID. It can be seen that the size of objects varies greatly

both among and across classes. For instance, the ship cat-

egory contains small boats covering area of 10 pixels, as

well as, large vessels of sizes upto 1,436,401 pixels, depict-

ing a huge intra-class variation. Similarly, a small vehicle

can be as small as 10 pixels and a ground track field can be



Figure 8: Samples of annotated images in iSAID.

as large as 1,297,121 pixels, illustrating immense inter-class

variation. Fig. 7a shows the variation in scale when small

and large objects of same or different categories appear to-

gether, which is a very common case in aerial imagery. We

can notice that the ratio between the area of the largest ob-

ject and the smallest object can reach up to 20,000. Such

enormous scale variation poses an extreme challenge for in-

stance segmentation methods that need to handle both tiny

and very large objects, simultaneously.

Aspect ratio. In aerial images many objects occur with

unusually large aspect ratios, which is not the case in tra-

ditional ground images. Fig. 7b depicts the distribution of

aspect ratio for object instances in our proposed dataset. We

can notice that instances exhibit huge variation in aspect ra-

tios, reaching up to 90 (with an average of 2.4). Moreover, a

large number of instances present in our dataset have a large

aspect ratio.

4. Experiments

In this section, we test how general instance segmen-

tation methods, particularly developed for regular scene

datasets, perform on our newly developed aerial dataset

(some sample images are shown in Fig. 8). To this end, we

use MaskR-CNN [10] and PANet [18]: the former for its



Method AP AP50 AP75 APS APM APL

Mask R-CNN [10] 25.65 51.30 22.72 14.46 31.26 37.71

Mask R-CNN+ 33.41 56.77 34.66 35.83 46.50 23.93

PANet [18] 34.17 56.57 35.84 19.56 42.27 46.62

PANet+ 39.54 63.59 42.22 42.14 53.61 38.50

PANet++ 40.00 64.54 42.50 42.46 54.74 43.16

Table 2: Instance segmentation results using mask AP on

iSAID test set. PANet [18] and its variants outperform

Mask R-CNN [10] and its variants with significant margin.

PANet++ with backbone ResNet-152 performs best.

Method APbb APbb
50 APbb

75 APbb
S APbb

M APbb
L

Mask R-CNN [10] 36.50 59.06 41.27 26.16 43.10 43.32

Mask R-CNN+ 37.18 60.79 40.67 39.84 43.72 16.01

PANet [18] 41.66 60.94 46.62 26.92 47.81 50.95

PANet+ 46.31 66.90 51.68 48.92 53.33 26.52

PANet++ 47.0 68.06 52.37 49.48 55.07 27.97

Table 3: Object detection results using bounding box AP on

iSAID test set. Similar to instance segmentation case, PANet

[18] and its variants generate better results than Mask-RCNN

and its variants.

Method AP AP50 Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC

Mask R-CNN [10] 25.7 51.3 37.7 42.5 13.0 23.6 6.9 7.4 26.6 54.9 34.6 28.0 20.8 35.9 22.5 25.1 5.3

Mask R-CNN+ 33.4 56.8 41.7 39.6 15.2 25.9 16.9 30.4 48.8 72.9 43.1 32.0 26.7 36.0 29.6 36.7 5.6

PANet 34.2 56.8 39.2 45.5 15.1 29.3 15.0 28.8 45.9 74.1 47.4 29.6 33.9 36.9 26.3 36.1 9.5

PANet++ 40.0 64.6 48.7 50.3 18.9 32.5 20.4 34.4 56.5 78.4 52.3 35.4 38.8 40.2 35.8 42.5 13.7

Table 4: Class-wise instance segmentation results on iSAID test set. Note that short names are used to define categories:

BD-Baseball diamond, GTF-Ground field track, SV-Small vehicle, LV-Large vehicle TC-Tennis court, BC-Basketball court,

SC-Storage tank, SBF-Soccer-ball field, RA-Roundabout, SP-Swimming pool, and HC-Helicopter.

popularity as a meta algorithm and the latter for its state-of-

the-art results. Additionally, we make simple modifications

in the baseline models and report the results of these vari-

ants. For evaluation, we use the standard COCO metrics:

AP (averaged over IoU threshold), AP50, AP75, APS , APM

and APL, where S, M and L represent small (area: 10-144

pixels), medium (area:144 to 1024 pixels) and large objects

(area:1024 and above), respectively.

Implementation Details. Images with large resolution (e.g.

4000 pixels in width) are commonly present in iSAID. The

baseline methods [10, 18] cannot handle images with such

unusually large spatial dimension. Therefore, we opt to

train and test the baseline methods on the patches of size

800×800 extracted from the full resolution images with a

stride set to 200. In order to train baseline Mask R-CNN and

PANet models, we use the same hyper-parameters as in the

original papers [10, 18]. In the training phase, the cropped

patches are re-scaled with shorter edges as 800 pixels and

longer edges as 1400 pixels. During the cropping process,

some objects may get cut. we then generate new annotations

for the patches with updated segmentation masks. We use

mini-batch size of 16 for training. Our models are trained

on 8 GPUs for 180k iterations with an initial learning rate

of 0.025, that is decreased by a factor of 10 at 90k iteration.

We use weight decay of 0.0001 and momentum of 0.9.

In an effort to benchmark the proposed dataset, we con-

sider the original Mask R-CNN [10] and PANet [18] as

our baseline models, both using ResNet101-FPN as back-

bone. We do not change any hyper-parameter settings in

the baseline models. On top of these baselines, we make

three minor modifications to develop Mask R-CNN+ and

PANet+: (a) Since, large number of objects are present

per image, we consider the number of detection boxes to

be 1000 (instead of 100 considered by default in the base-

lines) during evaluation. (b) As high scale variation ex-

ists within aerial images, we use scale augmentations at six

scales (1200,1000,800,600,400). In comparison, the base-

line considers a single scale of 800 pixels (shorter side).

(c) An NMS (non-maximal suppression) threshold of 0.6 is

used instead of the 0.5 used for baseline. Lastly, for our best

model (PANet), we also try a heavier backbone (ResNet-

152-FPN) that results in the top performing models for in-

stance segmentation and bounding box detection. We term

this model as PANet++. Note that the modifications in base-

lines are minor, and we expect that more sophisticated algo-

rithmic choices might significantly improve the results.

4.1. Results

In Table 2, we report the results achieved by baselines

(Mask R-CNN [10] and PANet [18]) and their variants

for the instance segmentation task. It can be seen that

the PANet [18] with its default parameters outperforms the

Mask R-CNN [10] on iSAID. This trend is similar to the

performance of these baselines on the MSCOCO dataset for

instance segmentation in regular ground images. Moreover,

by making minor modifications in baselines to make them

suitable for aerial images, we were able to obtain marginal

improvements e.g., an absolute increment of 7.8 AP with

Mask R-CNN+ over baseline [10]. The best performance

is achieved by PANet++ which uses a stronger ResNet-152-

FPN backbone. To study the performance trend for different

classes, we also report class-wise AP in Table 4. Notably, in

the case of PANet++, we observe a significant performance

gain of ∼5 points or more in AP50 for some categories such

as baseball diamond, basketball court and harbour.

In addition to instance segmentation masks, we also



Method APbb APbb
50 Plane BD Bridge GTF SV LV Ship TC BC ST SBF RA Harbor SP HC

Mask R-CNN [10] 36.6 59.1 57.8 44.7 19.7 36.4 17.9 31.7 46.9 70.2 42.7 31.4 25.4 36.4 41.0 36.2 21.9

Mask R-CNN+ 37.2 60.8 58.5 38.5 18.6 32.7 20.8 36.8 51.4 72.9 43.1 32.0 26.7 36.0 29.6 48.8 29.6

PANet 41.7 61.0 62.8 47.5 19.3 44.3 18.3 35.0 50.3 77.4 48.5 30.9 35.3 40.4 46.6 40.4 27.9

PANet++ 47.0 68.1 68.1 51.0 23.4 44.2 27.3 42.1 61.9 79.4 53.8 38.1 39.1 43.4 53.6 47.1 32.4

Table 5: Class-wise object detection results on iSAID test set. The same short names for categories are used as in Table 4.

(a) Ground Truth (b) Mask R-CNN [10] (c) Mask R-CNN+ (d) PANet [18] (e) PANet++

Figure 9: Visual results on images from test set of iSAID. It can be noticed that the original Mask R-CNN [10] yields the

least accurate results, with missing object instances. Whereas, PANet++ produces significantly better results compared to its

original counter part [18], as well as Mask R-CNN and Mask R-CNN+.

compute bounding-box object detection results, as reported

in Tables 3 and 5. In this experiment, the horizontal

bounding-boxes are considered. For object detection, we

observe similar trends in methods’ ranking as they were for

instance segmentation. It is important to note that our re-

sults are inferior to those reported in [32], possibly due to

the large number of newly introduced object instances in

iSAID (655,451 vs 188,282 in DOTA).

Qualitative results for instance segmentation are shown

in Fig. 9. The results are shown for Mask R-CNN and

PANet baselines and their modified versions. We note that

with simple modifcations to these strong baselines, we were

able to significantly improve on extreme sized objects (both

very small and large objects). As expected from the quanti-

tative results, the PANet++ achieves most convincing quali-

tative results with accurate instance masks among the other

evaluated models.

5. Conclusion

Delineating each object instance in aerial images is a

practically significant and a scientifically challenging prob-

lem. The progress in this area has been limited due to

the lack of large-scale, densely annotated satellite image

dataset with accurate instance masks. To bridge this gap,

we propose a new instance segmentation dataset which en-

compasses 15 object categories and 655,451 instances in to-

tal. We extensively benchmark the dataset on instance seg-

mentation and object detection tasks. Our results show that

the aerial imagery pose new challenges to existing instance

segmentation algorithms such as a large number of objects

per image, limited appearance details, several small objects,

significant scale variations among the different object types

and a high class imbalance. We hope that our contribution

will lead to new developments on the instance segmentation

task in aerial imagery.
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