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Abstract

Deploying deep learning based face detectors on edge

devices is a challenging task due to the limited computation

resources. Even though binarizing the weights of a very tiny

network gives impressive compactness on model size (e.g.

240.9 KB for IFQ-Tinier-YOLO), it is not tiny enough to fit

in the embedded devices with strict memory constraints. In

this paper, we propose DupNet which consists of two parts.

Firstly, we employ weights with duplicated channels for the

weight-intensive layers to reduce the model size. Secondly,

for the quantization-sensitive layers whose quantization

causes notable accuracy drop, we duplicate its input feature

maps. It allows us to use more weights channels for con-

volving more representative outputs. Based on that, we pro-

pose a very tiny face detector, DupNet-Tinier-YOLO, which

is 6.5× times smaller on model size and 42.0% less complex

on computation and meanwhile achieves 2.4% higher detec-

tion than IFQ-Tinier-YOLO. Comparing with the full preci-

sion Tiny-YOLO, our DupNet-Tinier-YOLO gives 1,694.2×
and 389.9× times savings on model size and computation

complexity respectively with only 4.0% drop on detection

rate (0.880 vs. 0.920). Moreover, our DupNet-Tinier-YOLO

is only 36.9 KB, which is the tiniest deep face detector to

our best knowledge.

1. Introduction

Deep neural networks have demonstrated impressive ac-

curacy in many computer vision applications such as image

classification, object detection and recognition, semantics

segmentation, etc. However, their increasing computation

cost leads to the requirement of high-end devices such as

GPU for real-time inference. It has been a challenging task

to deploy the deep network based face detector on the edge
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Figure 1. Strategies for DupNet. We duplicate the input feature

maps of the quantization-sensitive layers which usually locate in

the lower part of a network to improve the accuracy. Besides, to

compress the overall model size, it employs duplicated weights for

weight-intensive layers that usually locate in the upper part.

devices due to their limited resources (e.g. memory size

and computation power). To deploy the deep models on the

edge devices, lots of approaches have been proposed, such

as network pruning [8, 14], efficient architecture design

(e.g. MobileNet [9, 29]) and quantized networks [23, 1].

Especially, for the embedded devices, quantized networks

are particularly attractive because of their impressive com-

pression ratio (e.g. 32× times savings on model size) and

easy conversion for fixed-point representation. For instance,

IFQ-Net [6] designs a tiny fixed-point face detector (240.9

KB) through slimming, quantizing and fixed-point convert-

ing the layers of Tiny-YOLO network [31]. Even though the

fixed-point converting is lossless, the accuracy drop caused

by slimming and quantizing is still notable.

In this paper, to compress the model size and meanwhile

improve the accuracy of a quantized network, we propose

DupNet as shown in Figure 1. Firstly, to compress the

model size, DupNet employs weights with duplicated chan-

nels for weight-intensive layers which usually are the upper

layers. On the other hand, to improve the accuracy, Dup-

Net duplicates the input feature maps and thus uses more

weights channels for the quantization-sensitive layers (usu-

ally locate in the lower part of the network) whose quanti-

zation causes significant accuracy drop. In details, to fur-

ther compress a quantized network, we force the weights



of weight-intensive layers to have identical channels. As

shown in Figure 2, to generate such identical channels, we

employ template weights Wt which has less channels than

input feature maps and duplicate it to Wdup for proper con-

volution. During inference time, Wdup can be restored from

the template weights Wt. Consequently, model size savings

can be easily achieved by only storing Wt.

Another major issue of the quantized network is that the

accuracy is usually downgraded by a large margin. For ex-

ample, in XNOR-Net [23], binarizing both weights and fea-

ture maps of AlexNet [13] leads to 12% accuracy drop on

ImageNet dataset [28]. In the case of face detection, we ob-

serve that the accuracy drop is mainly caused by the quan-

tization of several specific layers, named as quantization-

sensitive layers (see Section 4.2). Usually, they are the

lower layers which only have small amount of output fea-

ture maps. Thus, quantizing them into extremely low-bits

severely harms the representative power of the output fea-

tures. To address the problem, one may simply employ

more feature maps or quantize them into higher bits, both of

which would increase the memory usage on feature maps.

In this paper, we propose to further duplicate the input

feature maps of the quantization-sensitive layers to improve

its accuracy (Figure 2). It is true that simply duplicating the

feature maps does not introduce extra information. How-

ever, it allows us to use weights with more channels (not

identical) for convolving more representative outputs. The

advantage of our method is that it does not require extra

memory on feature maps which is a critical issue for the em-

bedded devices. Nevertheless, it does increase the memory

usage on weights. However, as will be demonstrated in Sec-

tion 4.2, we experimentally found out that the quantization-

sensitive layers are usually the lower layers of a network

which only have small amount of weights. Consequently,

such memory increase does not affect the network much.

In summary, we propose DupNet which employs dupli-

cated weights for the weight-intensive layers and duplicates

the input feature maps for the quantization-sensitive layers

of a quantized network. The benefits of our proposal are

two-folds: 1) it reduces the model size of a quantized net-

work by duplicated weights for weight-intensive layers; 2)

it increases the accuracy through duplicating the input fea-

ture maps of its quantization-sensitive layers. Based on the

DupNet, we design a very tiny quantized CNN with im-

pressive improvement on accuracy for face detection. The

model size of our network is only 36.9 KB which is the tini-

est deep learning based face detector to our best knowledge.

2. Related Work

2.1. Face Detection

Two main approaches, namely one-stage and two-stage

methods, have been successfully inherited from object de-

tection domain for face detection. Two-stage methods fol-

low a common two steps pipeline: 1) generates a set of

region proposals with their local features; 2) pass them to

a network for classifying detected objects and regressing

their bounding boxes. For example, Faster-RCNN [27] pro-

poses an efficient Region Proposal Network (RPN) to gen-

erate region proposals and then use Fast-RCNN network to

refine the proposals. To improve the speed of Faster R-

CNN, RFCN [4] proposes to share RPN network and Fast-

RCNN network. In order to further improve the speed, Li et

al. [17] proposes Light Head RCNN, which employs light

weight head network to reduce the computation complexity.

To speedup the R-FCN network for detecting 3000 object

classes, Singh et al. [30] propose to only employ position-

sensitive feature maps for several predefined super-classes.

On the other hand, one-stage approaches usually employ

a single network to classify and regress the objects [18, 25,

26]and thus usually can run faster. For example, YOLO [25]

predicts 2 bounding boxes in each of the 7×7 grids for VOC

object detection [5]. Furthermore, YOLOv2 [26] employs

fully convolution network that results in m × n grids (m,

n are the width and height of the output feature) and uses

predefined anchors to better predict the bounding boxes of

the objects. In [16], Li et al. propose a backbone network

to improve the accuracy by maintaining high resolution for

feature maps and reduce the computation complexity by de-

creasing the width of upper layers.

In spite of the enormous progresses for reducing the

complexity of two-stage methods, such region proposal

based frameworks may be expensive for embedded devices

because they usually need to store the features from previ-

ous layers. Therefore, following [6], we employ the widely

used one-stage pipeline YOLOv2 for our face detector.

2.2. Deep Network Compression

To reduce the computation cost of the deep models,

many approaches have been studied. One way is to de-

sign novel efficient architectures. For example, by re-

placing a standard convolution layer by the combination

of a depth-wise and a point-wise (1×1) convolution layer,

MobileNets [9] reduces the weights and computation by

8×∼9× times. Similarly, LBCNN [12] employs predefined

binary patterns for the depthwise convolution and shares

those patterns over multiple layers for further compression.

Another direction for designing a compact model is to

compress the network through pruning, quantization, etc.

Pruning methods eliminate the less important connections

and fine-tune the pruned network to narrow down the accu-

racy drop. For example, in [32], Wei et al. reduce the input

and output channels of each layer of VGG by 32 times and

design a very small detector whose size is only 132KB. In

contrast, quantization approaches aim to quantize the float

data of a network into low-bits data. For example, XNOR-



Net [23] and HWGQ-Net [1] achieves 32× times savings

on model size via binarizing (1-bit) the network weights. In

addition to the quantized weights, further quantizing feature

maps into low-bits data can reduce the feature maps mem-

ory usage and meanwhile increase the inference speed. For

example, XNOR-Net which quantizes both weights and fea-

ture maps into 1-bit is theoretically 64× times faster than

its full precision counterpart. Furthermore, for embedded

devices such as FPGA and ASIC, quantization network is

particularly attractive because it leads to higher throughput

and lower power consumption through converting the net-

work into a fixed-point one.

One interesting topic is about further exploring the re-

dundancy and compressing the quantized network. For ex-

ample, in [22], various networks (VGG16, MobileNet) are

firstly quantized to 8-bit data and then further pruned by

24%. Similarly, Li and Ren [15] explores the redundancy of

a Binarized Neural Network (BNN) and further compresses

the model size by 3.9× times through bit-level data pruning.

Different with methods that explore the redundancy

through carefully tuned strategies, we propose to simply

employ duplicated weights which contain lots of identi-

cal channels for the weight-intensive layers. Since the du-

plicated weights can be easily restored from the template

weights which contain all the non-identical channels, it is

sufficient to only store the template weights in the memory

during inference time.

2.3. Accuracy Improvement for Quantized Network

Even though quantizing the network into low-bits data

leads to promising reduction on computation cost, accu-

racy drop is usually observed. As demonstrated in [10, 19],

quantizing the network data into 8-bits only leads to mi-

nor accuracy drop on ImageNet classification task [28].

Nevertheless, quantizing the network into lower bits usu-

ally results in notable accuracy degradation. For example,

XNOR-Net [23] which quantizes both its weights and fea-

ture maps into 1-bit and thus observes a 12.6% accuracy

drop (56.8% vs. 44.2%). Based on that, HWGQ-Net [1]

gains 8.2% accuracy back through using 2-bits on its fea-

ture maps (52.4% on ImageNet). Additionally, for object

detection tasks, 3%∼5% drop is observed in [21].

To improve the accuracy of quantized networks, lots of

efforts have been done on better strategies for training the

networks. INQ [34] proposes to incrementally quantize

the weights and achieves more accurate quantized networks

through iterative fine-tuning. Similarly, in [35], the weights

and activations are firstly quantized to 16-bits, then to 4-

bits and at the end to 2-bits. PACT [3] optimizes the clip-

ping thresholds for better quantization on feature maps. Be-

sides, knowledge distillation technology additionally uses

the knowledge from teacher network to guide the training

process of student network [32].

To narrow down the accuracy drop caused by the net-

work quantization, we propose to duplicate the feature maps

of its quantization-sensitive layers which allows us to use

weights with more channels for convolving more repre-

sentative features. The advantage of our method is that it

gives significant accuracy improvement without increasing

the feature maps memory usage.

3. Our Approach: DupNet

To further compress the model size and improve the ac-

curacy of a quantized network for face detection, we pro-

pose to employ weights with duplicated channels in the

weight-intensive layers and duplicate the input feature maps

of its quantization-sensitive layers.

3.1. Duplicated Weights for Model Compression

As discussed in [15], even though the network data is

quantized into very low-bits data, redundancy still exists. In

this section, we will illustrate our method which employs

template weights with less channels and thus less redun-

dancy. During convolution process, we duplicate the tem-

plate weights to get required channels to convolve with the

input feature maps.

We assume the quantized network only employs a2w1
convolution which means that the input feature maps and

weights are quantized to 2-bits and 1-bit respectively.

We represent its weights and feature maps as W ∈
{−1,+1}c×3×3 and X ∈ {0, 1, 2, 3}c×h×w, where c, h, w
are the number of channels, the width and height of input

feature maps, 3 × 3 is the kernel size of the convolution1.

To compress the model size, we define a weights template

Wt ∈ R
c′×3×3 which has less channels (c′ < c). However,

it can not be used to convolve with X since they have differ-

ent number of channels. To solve such problem, we dupli-

cate the channels of template weights into required number

and obtain duplicated weights Wdup ∈ R
c×3×3.

During training process, it is straightforward to com-

pute the gradient of duplicated weights ∂L
∂Wdup

by employ-

ing standard convolution, where L represents the loss of the

network for given training samples. As shown in Figure 2,

to compute the gradient of template weights ∂L
∂Wt

, we aver-

age the corresponding channels of the ∂L
∂Wdup

. Specifically,

we assume that c = 512 and c′ = 128 for 4× times com-

pression, and the 0th, 128th, 256th and 384th channels of

Wdup are duplicated from the 0th channel of Wt. In order to

compute the 0th channel of the gradient ∂L
∂Wt

, we element-

wisely average the 0th, 128th, 256th and 384th channels

of ∂L
∂Wdup

. Such gradient averaging process is repeated for

computing the 1∼127th channels of ∂L
∂Wt

. At the end, the

1Even though we use 3× 3 for explanation, our method is also able to

compress the convolution with other kernel size (e.g. 1× 1 and 5× 5).
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Figure 2. Illustration of the forward and backward pass for both duplicated weights and feature maps duplication.

template weights Wt can be learned by iteratively updating

it with its gradients ∂L
∂Wt

using SGD optimization.

Since the duplicated weights Wdup can be easily restored

from the templates weights Wt, it is only necessary to store

Wt. Thus, c/c′ times model size reduction can be achieved.

Nevertheless, our compression method may harm the ac-

curacy because the duplicated weights contains less non-

identical channels. Considering that the model size is usu-

ally dominated by the weight-intensive layers, we only ap-

ply our compression method on these layers to prevent sig-

nificant accuracy drop.

Furthermore, given the fact that many channels of the

duplicated weights are identical, we can reduce the compu-

tation complexity as follows. We split duplicated weights

Wdup into W1,W2,W3,W4 while each of them is iden-

tical with the template weights Wt. Similarly, the feature

maps X can also be accordingly split into X1,X2,X3,X4

which are non-identical. We use ⊗ and Concat(, )
to represent convolution operation and a function that

concatenate its members along channel axis respectively.

Then, Wdup ⊗ X = Concat(W1,W2,W3,W4) ⊗
Concat(X1,X2,X3,X4) = W1 ⊗ X1 + W2 ⊗ X2 + W3 ⊗
X3+W4⊗X4 = Wt⊗(X1+X2+X3+X4). Consequently,

the convolution Wdup⊗X can be alternatively computed by

Wt⊗Xsum, where Xsum = X1+X2+X3+X4. The overall

computation complexity of Wt ⊗ Xsum and Xsum is much

smaller than Wdup ⊗ X.

3.2. Duplicate Feature Maps to Improve Accuracy

The quantized networks quantize their full precision data

into low-bits data thus usually leads to notable accuracy

drop. In the following, we further improve the degraded

accuracy for a very tiny quantized face detector.

As discussed in Section 1, the accuracy degradation of

quantized face detector is mainly caused by the weak rep-

resentation power of the quantized output feature maps of

its quantization-sensitive layers. To enhance the representa-

tive power of their output features, one straightforward way

is to simply make these layers wider (more input feature

maps). However, it significantly increases the memory us-

age on feature maps. Besides, observing that these layers

usually locate in the lower part of a network, such mem-

ory increase may cause critical issue because their feature

maps hold high resolution (h × w). In contrast, the num-

ber of channels (c) is usually small and thus their weights

(c×3×3) is small too. Consequently, we propose to dupli-

cate the input feature maps and employ more weights chan-

nels for better output features. As shown in Figure 2, the

input feature maps are duplicated 4× times and thus the

weights size is also increased to 4c × 3 × 3. For the back-

ward pass during training time, to obtain the gradients ∂L
∂X

,

we firstly compute the gradients of duplicated feature maps
∂L

∂Xdup
, and then average every 4 of its corresponding chan-

nels that are identical in Xdup. At the end, the gradients ∂L
∂X

are propagated back to its previous layers.



Comparing with the strategy that simply uses more input

feature maps, our method does not require extra memory

for feature maps. Thanks to the increased channels of input

feature maps, we can employ more channels of weights (c
vs. 4c). Consequently, the input feature maps are convolved

with more patterns and thus leads to more representative

power on the resulted features. Even though our method in-

creases the weights size, such cost increase has limited in-

fluence on the overall model cost because the weights size

of these layers are usually very small (see Table 1). Similar

with the theory that is explained in Section 3.1, one also can

achieve speedup by replacing W ⊗ Xdup with Wsum ⊗ X,

where Wsum can be obtained by summing the correspond-

ing channels of W.

4. Experimental Results

To design a very tiny CNN for face detection, we borrow

the compression ideas from IFQ-Tinier-YOLO [6] which

compresses Tiny-YOLO network by 260× times through

halving the filter numbers of all convolution layers, replac-

ing one 3×3 layer which contains massive parameters by

1×1 kernels and binarizing the weights in all layers. More-

over, we further halve their filter number and apply the

proposed duplicated weights for its weight-intensive layers

(Conv6∼Conv8) and achieve 6.7× times further savings on

model size. Besides, we will demonstrate that duplicating

the input feature maps of its quantization-sensitive layers

can significantly improve the accuracy.

We employ WiderFace [33] training images to train our

models using Darknet framework [24]. For fair compar-

ison, all the models are trained with the same strategies

which are: 1) training the models by 100k iterations with

SGD optimization method; 2) the learning rate is initially

set to 0.01 and downscaled by a factor of 0.1 at the 30k-

th, 60k-th, 80k-th and 90k-th iteration respectively; 3) all

the models are trained from scratch. Furthermore, we use

FDDB [11] benchmark which contains 5,171 faces within

2,845 test images to evaluate the accuracy of our face de-

tectors. Inheriting from [6], we use the detection rate when

284 false positive faces are reached (averagely allowing 1

false positive in every 10 images) as the evaluation metric.

4.1. Model Compression

To further compress model size of IFQ-Tinier-YOLO,

we analyze the weights size for each of its layer. Mean-

while, to measure the computation complexity, we borrow

the term #FLOPs2 (Floating-point operations) which is gen-

erally used for full precision networks [20]. Nevertheless, it

2As stated in [23], for the 64-bit based computing devices, 64 Multi-

Adds of the a1w1 convolution are equivalent to 1 FLOP. Similarly, we

assume that 32 Multi-Adds of the a2w1 convolution and 8 Multi-Adds of

the a8w1 (Conv1) equal to 1 FLOP respectively.

is worthy to point out that our network can be lossless con-

verted to fixed-point network and thus does not require any

floating-point operation.

Table 1. IFQ-Tinier-YOLO inference costs in terms of weights size

and #FLOPs (million) for measuring computation complexity.

Kernel
size (W)

Feature
size (X)

#FLOPs
(million)

Weights

size (KB)

Conv1 8× 3× 3 608× 608 10.0 < 0.1
Conv2 16× 3× 3 304× 304 3.3 0.1

Conv3 32× 3× 3 152× 152 3.3 0.6

Conv4 64× 3× 3 76× 76 3.3 2.3

Conv5 128× 3× 3 38× 38 3.3 9

Conv6 256× 3× 3 38× 38 13.3 36

Conv7 512× 3× 3 38× 38 53.2 144

Conv8 512× 1× 1 38× 38 11.8 32

Conv9 30× 3× 3 38× 38 6.2 8.44

Overall 107.9 240.9

As shown in Table 1, the weight-intensive layers of

IFQ-Tinier-YOLO model are Conv6∼Conv8 layers. Con-

sequently, to further compress the model size, we apply two

techniques for these layers: halving the filters number and

employing duplicated weights. Regarding to the duplicated

weights, we casted experiments that employ 2× or 4× or

8× times duplication to figure out the optimal trade-off be-

tween high compression ratio and low detection rate.

Figure 3. Comparison of the detection rate for the models with

various compression ratio on Conv6∼Conv8 layers.

We first halve the filter number of the weight-intensive

layers and thus reduce its model size from 240.9 KB to

82.4 KB (marked as “1×” in Figure 3). Meanwhile, it

achieves 0.837 on detection rate which is very close to IFQ-

Tinier-YOLO (0.84 [6]). Additionally, as shown in Fig-

ure 3, employing 2× or 4× times duplicated weights gives

further reduction on model size without detection rate drop.

More specifically, with the help of halved filter number and

4× times duplicated weights, we reduce the model size of

IFQ-Tinier-YOLO from 240.9 KB to 35.9 KB indicating a

6.7× times reduction. Furthermore, when compressing the



Conv6∼Conv8 by 8× times, the accuracy only decreases by

2.1% while the compression ratio increases to 8.5× times.

The reason that our compression method does not give

notable accuracy drop is that the redundant connections ex-

ist in those three layers. However, one may argue that fur-

ther reducing the number of their filters also can reduce

the model size. Consequently, we compare such method

(marked as “Filter slimming”) with our method in Fig-

ure 4. For fair comparison, we reduce the filter numbers

of Conv6∼Conv8 to make them have similar model size

with our duplicated weights models. For example, to com-

pare with our model with 4× times compression on all

Conv6∼Conv8 layers, we instead halve their filter numbers

resulting in a 2×, 4× and 2× times compression for these

three layers respectively. As demonstrated in Figure 4, for

different compression ratios, our weights duplication based

method generally outperforms the filter slimming method.

Figure 4. Performance of our duplicated weights based method

and the filter slimming method for model compression.

In the above, we have demonstrated that our duplicated

weights based compression is very effective for the quan-

tized network whose precision is a2w1. To demonstrate the

generalization ability of our method, we further test it on the

networks that are quantized into different precisions. As

shown in Table 2, our method with 4× times weights du-

plication also gives no accuracy drop for the a2w2, a4w4
and a8w8 networks. When further compressing them by

8× times, slight degradation is observed. One interesting

observation is that the higher precision the network is, the

less accuracy drop is caused. For example, with 8× times

compression, the detection rate drop for a2w2 network is

3.8% while it is only 2.0% for a4w4 and 0.6% for a8w8.

We think it is because that the more accurate the network is,

the more redundancy usually exists in its connections.

4.2. Accuracy Improvement

The accuracy of quantized networks usually is notably

lower than their full precision counterparts. For exam-

ple, the quantized network based face detector, IFQ-Tinier-

YOLO leads to ∼6% drop on detection rate [6]. On the

Table 2. Performance of our compression method on the face de-

tectors with various quantization precision.

Weights

duplication
Network precision

a2w1 a2w2 a4w4 a8w8

1× 0.837 0.866 0.892 0.906

2× 0.841 0.862 0.888 0.907

4× 0.844 0.865 0.890 0.900

8× 0.819 0.828 0.872 0.892

other hand, quantizing different layers leads to widely-

varied performance loss [36]. To improve the accuracy, we

first locate the quantization-sensitive layers of a quantized

face detector through layer-wise quantization strategy.

Table 3. Layer-wise quantization to locate the source of accuracy

drop.

Quantized Conv. layers #FLOPs
(million)

Model
size(KB)

Detection
rate1st 2nd-3rd 4th-8th 9th

1,338.9 2,637.3 0.902

X 422.2 366.6 0.880

X X 215.9 344.8 0.858

X X X 146.0 344.0 0.845

X X X X 49.3 82.4 0.837

As shown in Table 3, we firstly quantize Conv4∼Conv8

convolution layers of a full precision counterpart of IFQ-

Tinier-YOLO network but with halved filter number in

Conv6∼Conv8. In this subsection, to demonstrate the ac-

curacy improvement effect of duplicating the input feature

maps, the duplicated weights based compression is not ap-

plied. As shown in Table 3, quantizing Conv4∼Conv8 leads

to 3.2× and 7.2× times reduction on MFLOPs (million of

FLOPs) and model size respectively while the detection rate

only drops by 2.2%. Nevertheless, progressively quantiz-

ing the Conv3∼Conv2 and then Conv1 causes 2.2%, 1.3%

accuracy drop respectively but gives much less reductions

on inference cost. Thus, we define the Conv1∼Conv3 as

quantization-sensitive layers of the network. We think the

reason is that they only contain limited number of feature

maps. Consequently, quantizing them severely damages

the representative power of their output features. At the

end, quantizing Conv9, resulting in a fully quantized Tinier-

YOLO model, further gives remarkable savings on compu-

tation cost while the accuracy is only decreased by 0.8%.

To improve the accuracy of the fully quantized Tinier-

YOLO, we firstly duplicate the input feature maps of Conv2

and Conv3 by 4× and 2× times respectively. As shown in

Table 4, it gives 3.0% increase on detection rate while the

model size and computation complexity are only increased

by 1.2% and 27.0% respectively. Furthermore, additionally

duplicating the feature maps of Conv1 by 4× times gives

0.5% increase on detection rate while the model size only

increases 0.1KB. However, its computation complexity is



Table 4. Illustration of performance improvement for progres-

sively duplicating the input feature maps of the Conv2-3, Conv1

and Conv9 of fully quantized Tinier-YOLO face detector.

Feature maps duplication? #FLOPs
(million)

Model
size(KB)

Detection
rateConv1 Conv2 Conv3 Conv9

49.3 82.4 0.837

X X 62.6 83.4 0.867

X X X 92.6 83.5 0.872

X X X X 95.7 91.9 0.890

increased from 62.6 MFLOPs to 92.6 MFLOPs (47.9% in-

crease). At the end, we further duplicate the feature maps of

Conv9 by 2x and achieve 1.8% improvement on detection

rate at the price of 3.3% and 10.1% increase on #FLOPs and

model size respectively.

Table 5. Comparison between our method and the quantization

precision increasing method on improving the detection rate.

Quantization precision
Detection rate

Conv1 Conv2 Conv3

a8w1 a2w1(4×) a2w1(2×) 0.867

a8w1 a2w3 a2w2 0.850

a8w1(4×) a2w1(4×) a2w1(2×) 0.872

a8w3 a2w3 a2w2 0.860

On the other hand, employing more bits for the weights

of quantization-sensitive layers can also improve the accu-

racy. For fair comparison, in the case of 4× times dupli-

cation (e.g. Conv2), we use 3-bits on weights (“a2w3”) to

compare it with our method (“a2w1(4×)”) which can be

computed by Wsum⊗X where Wsum ∈ {−4,−2, 0, 2, 4}3

that can be represented using 3-bits. As shown in Table 5,

our methods generally gives more than 1.0% improvement

on detection rate. Furthermore, our method is more attrac-

tive for hardware design in three aspects: 1) it use less in-

formation (only 5 values vs. 8 values) which makes the

coding-based further compression easier (e.g. Huffman cod-

ing [7] and RLC [2]); 2) lots of its weights are 0 thus the

corresponding computation can be optimized; 3) our model

can be computed only using a2w1 convolution4 which can

make the hardware design simpler.

4.3. Face Detectors Comparison

As demonstrated in the previous experiments, employing

duplicated weights gives remarkable compression without

obvious accuracy drop. On the other hand, duplicating the

feature maps for the quantization-sensitive layers improves

the detection rate by a large margin. In this section, we com-

bine these two technique to design DupNet-Tinier-YOLO

3Each elements of Wsum is the summation of four binary elements

(either -1 or +1) from four corresponding channels (see Section 3.2).
4The a8w1 convolution (Conv1) can be computed by the accumulation

of four a2w1 convolutions.

which is a very tiny quantized face detector with improved

accuracy. In details, we employ 4× times compression for

weight-intensive layers (Conv6∼Conv8) and duplicate the

input feature maps of Conv2∼Conv3. We initially choose

not to duplicate the input feature maps of Conv1 in DupNet-

Tinier-YOLO to avoid notable increase on #FLOPs. Re-

garding to the model size, 4× times weights compression

reduces the model size from 82.4KB to 35.9 KB and dupli-

cating the input feature maps increase it to 36.9 KB.

Table 6. Comparison of the face detectors in terms of the compu-

tation complexity (#FLOPs), model size and detection rate.

Models
#FLOPs
(million)

Model
size(KB)

Detection
rate

Tiny-YOLO 24,407 62,516 0.920

Tinier-YOLO 3,213 7,707 0.902

IFQ-Tinier-YOLO [6] 107.9 240.9 0.835

DupNet 62.6 36.9 0.859

DupNet+PACT 62.6 36.9 0.880

DupNet-L 95.7 45.4 0.884

DupNet-L+PACT 95.7 45.4 0.906

Figure 5. Comparison on the performance of the face detectors in

terms of ROC curves of FDDB dataset [11].

As shown in Table 6, comparing with the IFQ-Tinier-

YOLO [6], our DupNet-Tinier-YOLO (represented as

“DupNet”) gives 6.5× times savings on model size and

42.0% less MFLOPs. Meanwhile, it also gives 2.4% im-

provement on detection rate. To further improve the detec-

tion rate with acceptable cost increase, we design DupNet-

Tinier-YOLO-L (marked as “DupNet-L”) which addition-

ally duplicates the input feature maps fo Conv1 and Conv9

by 4× and 2× respectively. As shown in Table 6, DupNet-

Tinier-YOLO-L further gives 2.5% higher detection rate.

Nevertheless, the model size and #FLOPs are increased to

45.4 KB and 95.7 MFLOPs respectively, both of which are

still smaller than IFQ-Tinier-YOLO.

Furthermore, we employ PACT [3] to train optimal

clipping thresholds for feature maps quantization to im-



Figure 6. Qualitative results of the proposed DupNet-Tinier-YOLO-L face detector on Wider Face dataset [33].

prove the accuracy. As illustrated in Table 6, PACT al-

gorithm improves the DupNet-Tinier-YOLO and DupNet-

Tinier-YOLO-L by 2.1% and 2.2% respectively. Compar-

ing with Tiny-YOLO network, our DupNet-Tinier-YOLO

achieves 389.9× and 1694.2× times reduction on #FLOPs

and model size respectively while the detection rate is only

decreased by 4.0%. On the other hand, the accuracy of

DupNet-Tinier-YOLO-L is only decreased by 1.4% while

the inference cost reduction is kept impressive. Besides, we

compare their accuracy in terms of ROC curves in Figure 5.

To demonstrate the performance of our detector on more

challenging faces, we also test DupNet-Tinier-YOLO-L on

WiderFace testing dataset [33]. As shown in Figure 6, our

model also gives excellent detection quality in various chal-

lenging scenarios such as tiny size, low-illumination, severe

occlusion and degraded coloring, etc.

In summary, we proposed DupNet-Tinier-YOLO face

detector, which is quantized, very tiny and accurate. By

employing duplicated weights for the weight-intensive lay-

ers, we reduced the model size and #FLOPs of IFQ-Tinier-

YOLO by 6.5× times and 42.0% respectively. Meanwhile,

we increased its detection rate by 4.5% by using the pro-

posed DupNet and the PACT [3] technique. Moreover, we

demonstrated that our DupNet can be flexibly adjusted for

different inference cost (e.g. DupNet-Tinier-YOLO-L has

higher cost and is more accurate).

5. Conclusions

In this paper, we proposed DupNet which employs du-

plicated weights for the weight-intensive layers of a quan-

tized CNN to compress its model size. Furthermore, we

observe that the degraded accuracy of the quantized CNN is

mainly caused by quantization-sensitive layers which have

poor representative power on their quantized output fea-

ture maps. Hence, DupNet also duplicates the input fea-

ture maps of these layers and employ more weights chan-

nels to improve their output features. Through the experi-

ments on FDDB dataset, we demonstrated that our DupNet-

Tinier-YOLO face detector can significantly compress the

model size and meanwhile impressively improve the detec-

tion rate. Moreover, our DupNet-Tinier-YOLO face detec-

tor can be lossless converted into fixed-point network [6]

and thus can be easily implemented on embedded devices.

Additionally, our DupNet can be combined with other

algorithms that are proposed to improve the performance of

compressed networks such as knowledge distillation. More-

over, despite we only test our method on face detection, it

is also applicable for other tasks such as object detection or

even face recognition or semantic segmentation, etc.
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