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Abstract

Despite the notable progress in stereo disparity estima-

tion, algorithms are still prone to errors in challenging con-

ditions. Thus, heuristic disparity refinement techniques are

usually deployed to improve accuracy. Moreover, state-

of-the-art methods rely on complex CNNs requiring power

hungry GPUs not suited for many practical applications

constrained by limited computing resources. In this pa-

per, we propose a novel technique for disparity refinement

leveraging on confidence measures and a novel, automatic

learning-based selection method to discard outliers. Then,

a non-local strategy infers missing disparities by analyzing

the closest reliable points. This framework is very fast and

does not require any hand-tuned thresholding. We assess

the performance of our Non-Local Anchoring (NLA), stan-

dalone refinement techniques and methods leveraging on

confidence measures inside the stereo algorithm. Our eval-

uation with two popular stereo algorithms shows that our

proposal significantly ameliorates their accuracy on Mid-

dlebury v3 and KITTI 2015 datasets. Moreover, since our

method relies only on cues computed in the disparity do-

main, it is suited even for COTS stereo cameras coupled

with embedded systems, e.g. nVidia Jetson TX2.

1. Introduction

Stereo is one of the most popular technique to infer

depth from two or more images and challenging datasets,

such as KITTI [5, 17] and Middlebury [28], clearly empha-

sized that it is still an open problem. State-of-the-art algo-

rithms [3, 12] require expensive and power-hungry GPUs

to run in a reasonable amount of time, making them un-

suited for many practical applications constrained by hard-

ware resources or energy consumption. Conventional (i.e.

pre-deep learning) algorithms still achieve accurate results

leveraging on multi-step pipelines, each one contributing to

increasing the overall effectiveness with different degrees of

reliability. A notable example is the Semi-Global Matching

algorithm (SGM) [7], implemented in many variants thanks

(a) (b) (c) (d)
Figure 1. Non-Local Anchoring framework applied to three Mid-

dlebury v3 stereo pairs. From top to bottom: MotorcycleE, Pi-

anoL, Teddy. (a) Detail of left image, (b) raw disparity map, (c)

set of reliable pixels according to an ideal confidence measure, (d)

refined disparity map.

to its trade-off between accuracy and complexity, that usu-

ally deploy interpolation and refinement steps on estimated

disparity maps. In their seminal work, Zbontar and Le-

Cun [43] showed how plugging deep learning into a con-

ventional stereo SGM pipeline yielded very accurate results

on KITTI and Middlebury datasets not far from end-to-end

networks [3, 12].

One of the steps involved, referred to as disparity re-

finement, attempts to recover errors from the disparity

map. While some refinement procedures rely on simple

filters (e.g., median or bilateral filters) others exploit cues

from the disparity map and the input stereo pair. Con-

fidence measures allow to detect unreliable matches pro-

duced by stereo algorithms and, recently, strategies based

on machine-learning achieved state-of-the-art results [26].

Confidence measures have been deployed in different steps

of stereo pipelines, with the aim to further improve the over-

all accuracy. In this paper, we propose Non-Local Anchor-

ing (NLA), a novel disparity refinement method relying on

confidence measures, outlined in Figure 1. Given a dispar-

ity map generated by any stereo algorithm, the confidence
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Figure 2. NLA in action on KITTI 2015 dataset [17]. (a) Left frame from stereo pair 000027, (b) raw disparity map computed by the

Block-Matching algorithm (BM) algorithm, (c) sparse disparity map containing assumed reliable points RP, (d) refined disparity map with

our proposal.

measure allows us to detect and removing erroneous pixels.

Then, for each discarded pixel, among the remaining reli-

able points (RP) a subset of anchors, not necessarily in a

close neighborhood of the examined pixel, is chosen to in-

fer, according to both spatial and color information from the

reference image, a new disparity value. Moreover, a CPU-

friendly machine-learning framework based on a random

forest classifier is proposed to deal with automatic iden-

tification of unreliable disparity assignments by analyzing

local and global properties of the confidence on the whole

image. This novel strategy allows us to remove the need for

a heuristic selection of a confidence threshold often carried-

out in this field [31, 29].

To assess the effectiveness of our proposal, we re-

port an extensive evaluation on the Middlebury v3 dataset

comparing our framework to conventional disparity refine-

ment methodologies as well as with recently proposed

confidence-based approaches, acting on the Disparity Space

Image (DSI) [27] also referred to as the cost-volume. Dif-

ferently, NLA acts in the disparity domain hence does not

require at all the cost volume that might be not available

in some circumstances, e.g. when dealing with a commer-

cial off-the-shelf (COTS) stereo camera. Factors like the

number of anchors deployed and a further local aggrega-

tion strategy included in our proposal will be discussed and

compared. Moreover, we evaluate our framework also on

KITTI 2015 dataset [17] to further confirm the effective-

ness of our method on indoor and outdoor data. Figure 2

shows the outcome of our proposal on the frame 166 of the

KITTI 2015 dataset deploying the disparity map generated

by the popular Block-Matching (BM) algorithm.

Finally, we point out how the proposed strategy works by

acting in the disparity domain only with reduced computa-

tional complexity, fitting very well with COTS stereo cam-

eras and in general with embedded devices, such as nVidia

Jetson TX2 used to measure runtime in our experiments.

2. Related work

Confidence measures The confidence measure litera-

ture is relevant to our work. Initially Hu and Mordohai

[8] carried out an extensive taxonomy and evaluation of

confidence measures, categorizing them according to the

processed cues. They also proposed a common metric to

compare the effectiveness of different confidence measures

and assess their performance to detect uncertain disparity

assignments. More recently, machine learning techniques

have been used to infer more effective confidence measures.

Hausler et al. [6] deployed, for the first time, a random for-

est combining different (as much as possible) orthogonal

measures and features aimed at classifying each pixel as a

correct or wrong match. Improved methods based deploy-

ing a random forest were proposed in [31, 20, 23]. Recent

works deployed CNNs to infer confidence as well. In par-

ticular in [24] by only processing the left disparity map, in

[29] using as input cue the left and right maps and in [36]

exploiting local and global cues. Finally, confidence mea-

sures have been effectively deployed as cues to improve the

overall accuracy of stereo within conventional pipelines as

recently shown in [29, 23, 20, 31]. Poggi et al. [26] evalu-

ated conventional and learning-based confidence measures

highlighting how the learned-ones are much more effective.

Finally, we point out that unsupervised learning of confi-

dence measures has been tackled in [18] and [37].

Pre-deep learning stereo. The extensive literature con-

cerning stereo has been enriched, in the years, by several

contributions and novel methodologies. Despite that, the

majority of them (with rare exceptions such as [16]) can

be still categorized according to the taxonomy proposed
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Figure 3. Overview of NLA on Playtable image from Middlebury

v3. (a) Disparity map containing reliable RP points only, (b) refer-

ence image. For each unreliable pixel (red), anchors (yellow) are

selected as the closest RPs along different directions.

by Scharstein and Szeliski [27], which also lists common

steps: cost computation, cost aggregation, disparity compu-

tation and disparity refinement. Algorithms focusing on the

first two steps are referred to as local while global methods

mainly rely on the optimizing steps. The latter ones are usu-

ally more effectively but computationally more expensive.

Semi-Global Matching (SGM) proposed by Hirschmuller

[7] represents a good trade-off between performance and

accuracy making it one of the most deployed solutions to in-

fer dense disparity maps in practical applications. Disparity

refinement techniques are usually deployed on top of tra-

ditional stereo pipelines to push accuracy toward optimal-

ity further. Common approaches consist of image filtering

operations, like median filter [21], weighted median filter

[44], guided filter [40], bilateral filter [33] or the recent fast

bilateral solver [2]. One of the most effective and used re-

finement technique consists in a left-right consistency check

to detect both occlusions and mismatches, interpolating the

former points with the background and the latter ones with a

median from nearby disparity. Such strategy [7, 43] is often

coupled with median and bilateral filters.

Deep learning stereo. The recent spread of deep learn-

ing was applied to stereo as well, with [42, 43] being the

first one to tackle matching cost computation employing a

Convolutional Neural Network (CNN) working on image

patches. Other authors followed this path addressing effi-

ciency [4, 13]. In [22] a CNN is deployed to combine mul-

tiple out-of-the-box stereo matchers to obtain more accu-

rate results, inspired by the work of Spyropolous and Mor-

dohai [32] which carried it out by using a random forest.

Conversely, Mayer et al. [16] proposed DispNet, the first

deep architecture for end-to-end stereo computation, com-

pletely departing from conventional stereo methodologies.

Although this method is not the most accurate one on KITTI

and Middlebury datasets, it represents a ground-breaking

approach to tackle stereo. Since then, the study of end-to-

end architectures for dense stereo matching became domi-

nant. Kendall et al. [10] introduced 3D CNNs to regular-

ize a volume obtained through concatenation between left

and right features on the disparity axis. Further works im-

prove the results of this approach [3, 39, 11] or 2D networks

[19, 12], optionally learning stereo jointly with other tasks

[38, 30, 9]. Some works addressed domain shift issues af-

fecting the aforementioned frameworks, by either adapting

to new environments offline [34] or online [35], as well as

leveraging the guide sourced by external sensors [25].

Although CNNs represent the preferred choice in terms

of accuracy for both stereo and confidence estimation, of-

ten their hardware requirements overwhelm the resources

available in many embedded systems.

3. Non-Local Anchoring

In this section, we introduce the proposed NLA frame-

work, that given a disparity map D and a confidence map C
encoding the uncertainty of each pixel (the higher the con-

fidence, the better the assumed reliability), infers a com-

pletely dense and more accurate map. It starts by classify-

ing each disparity point belonging to D in two categories:

reliable and unreliable points, for short RP and UP respec-

tively. In literature [31, 29], this task is accomplished by

setting a threshold value ξ and considering as RP the points

with a confidence value higher than ξ. That is,

RP = {p ∈ D, C(p) ≥ ξ} (1)

consequently, the remaining ones are considered UP,

UP = {p ∈ D, C(p) < ξ} (2)

A new disparity map D′ is then obtained by removing

from D the UP set. The resulting D′ map is characterized

by a lower error rate, ideally 0, at the cost of a sparser dis-

tribution of pixels compared to D.

Afterward, the full density of D′ is restored by looking

at reliable information within the RP set. To do so, given a

pixel p and a 2D vector d, we first define a subset of pixels

P (p, d) as the path on which p lays according to the direc-

tion of d:

P (p, d) = {q ∈ D, α ∈ N, q = p+ αd} (3)

For a pixel u ∈ UP, we define its anchor along direction

d, as the closest pixel to u laying on path P (u, d):

a(u, d) = {v ∈ RP,min
v

|u− v|} (4)

Given a set of paths on which u lays, a set A(u) of an-

chors will contribute to computing the new disparity value

for such pixel. In particular, each anchor a ∈ A(u) spreads

its disparity to u, weighting it according to a similarity func-

tion between features I(u) and I(a) as follows:

w(u, a) = G(|I(u)− I(a)|) · G(|u− a|) (5)
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Figure 4. RP selection. (a) Noisy disparity map computed by Block-Matching algorithm (BM) on stereo pair 000027 of the KITTI dataset,

(b) O1 [23] confidence map, (c) set of RP (white) and UP (black) according to O1, (d) refined disparity map with our proposal.

The cues collected by each anchor A(u) are used to build

a weighted histogram, on which each w(u, a) increases the

index corresponding to disparity hypothesis of pixel a. Fi-

nally, the weighted median is computed among the col-

lected contributions:

D(u) = min
k

k∑

i=0

w(u, ai) ≥
1

2

n∑

i=0

w(u, ai) (6)

We rely on a Gaussian function G to encode the similar-

ity between the unreliable pixel and one of its anchor points

and on color intensity I(u) in the reference image. This

strategy, coupled with the weighted median, enables edge-

preserving disparity propagation. Figure 3 shows an exam-

ple of anchoring for an unreliable pixel (red), receiving the

contribution from a set of anchors (yellows).

Computational complexity for NLA is extremely low,

as all the anchors of each unreliable pixel and their corre-

sponding weights can be processed on a single image scan

for each path in constant time. It only depends on the size

of the image and the number of paths deployed for anchor-

ing. It is worth observing that our proposal, conversely from

other methods, is not constrained to a restricted area (i.e.,

local patches). Moreover, differently from recent method-

ologies exploiting confidence to improve stereo accuracy

[31, 20, 23, 29], our framework acts on the disparity do-

main hence not requiring any information from the DSI thus

enabling, for instance, its deployment with COTS devices.

Optionally, before replacing the unreliable pixel u ac-

cording to the outlined strategy, a further local aggregation

step can improve the effectiveness of the information gath-

ered from nearby points. This optional phase can be carried

out by building a DSI with the w(u, ak) weights and fil-

tering it according to the same similarity function G. This

step enables the collection of additional contributions from

nearby UP pixels qk, which set of anchors A(qk) is different

from A(u).

4. Threshold-free RP selection

According to the description reported in Section 3, clas-

sifying the disparity values in UP and RP plays a key-role

for NLA to achieve optimal performance. Thus, choos-

ing the confidence threshold ξ is of paramount importance.

This strategy is common to other successful attempts to ex-

ploit confidence measures inside stereo algorithms [31, 29]

or, in general, when we want to remove erroneous matches

from the disparity map. For such tasks, proper tuning of the

threshold ξ is required to achieve the best results.

To address this issue, we propose a second level frame-

work to effectively distinguish pixels into RP and UP ac-

cording to features extracted from the confidence map with-

out any manual tuning. To this aim, we fed to a random for-

est, trained in classification mode, the following local and

global features computed from the confidence map:

• Cp, the confidence value for pixel p

• µN (Cp), the average confidence computed on a local

window N , centered in p and made of ¯̄N pixels

µC
N (p) =

1
¯̄N

∑

q∈N

Cq (7)

• σN (Cp), the variance of confidence on a local window

N , centered in p and made of ¯̄N pixels

σC
N (p) =

1
¯̄N

∑

q∈N

[Cq − µN (Cp)]
2 (8)



Stereo All Non-occ

algorithm bad 1(%) bad 2(%) RMSE MAE bad 1(%) bad 2(%) RMSE MAE

BM 35.13 32.32 14.32 6.85 26.37 23.54 10.94 4.49

+ FBS [2] 33.47 28.60 12.79 5.28 24.67 19.59 8.32 2.93

+ MF [21] 27.43 23.99 10.14 4.32 18.42 14.95 5.82 2.17

+ WMF [44] 26.22 22.92 10.08 4.18 17.22 13.91 5.56 2.00

+ WMF + GF [40] 26.33 22.92 11.27 4.75 17.41 14.04 7.59 2.86

+ WMF + JBF [40] 28.03 24.93 10.95 4.68 18.86 15.75 6.87 2.44

+ LRI [43] 27.99 24.99 19.10 6.97 20.64 17.81 14.93 4.51

+ LRI + MF + BF [43] 26.02 21.53 15.78 5.94 18.68 14.23 11.18 3.58

+ LC [14] 24.23 20.00 11.68 4.74 16.30 12.23 7.93 2.65

+ NLA + O1 22.90 19.86 9.36 3.63 14.08 11.20 5.33 1.71

+ NLA + opt. 6.23 4.07 3.06 0.85 2.20 1.21 1.77 0.44

Table 1. Experimental results averaged on Middlebury v3 with BM algorithm. Best results are in bold.

• δµ(p), or deviation from average confidence, the ab-

solute difference between C(p) and the average confi-

dence over the entire disparity map D (i.e., µD(C))

δµ(p) = |Cp − µC
D(C)| (9)

• δσ(p), or deviation from variance of confidence, the ab-

solute difference between C(p) and the average confi-

dence over the entire disparity map D (i.e., σD(C))

δσ(p) = |Cp − σC
D(C)| (10)

Concerning µ and σ, we process these features three

times with increasing size of the local window N , respec-

tively Ω = 3 × 3, Θ = 7 × 7 and Γ = 11 × 11. As result,

we obtain the following feature vector f9(p)

f9(p) = {Cp, µ
C
Ω(p), µ

C
Θ(p), µ

C
Γ(p), σ

C
Ω(p), σ

C
Θ(p),

σC
Γ(p), δµ(p), δσ(p)} (11)

We train on such feature vector a random forest, made of

10 trees, maximum depth equal to 15 and a minimum num-

ber of samples in each node to split equal to 12, in order to

achieve an automatic RP selection without any hand-chosen

threshold. Figure 4 shows a qualitative example of RP se-

lection. Given a disparity map (a) and a confidence map (b),

the reliable pixels are selected (c) and plugged into the NLA

framework to obtain the final map (d).

5. Experimental results

In this section, we evaluate the effectiveness of the pro-

posed NLA framework with disparity maps obtained, on

challenging datasets, by two stereo algorithms:

• Block Matching (BM), a local method computing

matching costs on a 5 × 5 census transformed image

[41], locally aggregated by a 5× 5 box filter

• SGM [7], using as data term the normalized aggregated

costs as BM algorithm and penalty parameters P1 and

P2 tuned to 0.2 and 0.5

The choice was driven by the fast inference enabled by the

two algorithms. Embedded stereo cameras with onboard

processing (e.g., [1] or [15]) can run both BM and SGM at

more than 30 FPS, sourcing disparity estimates in real-time

with limited power consumption. In such a scenario, NLA

can further improve the overall accuracy with low complex-

ity, making it suited for embedded systems.

To exhaustively assess the effectiveness of our proposal,

we compare it to state-of-the-art disparity refinement meth-

ods acting in the disparity domain. Moreover, since NLA

relies on a confidence measure, we also compare it with re-

cent methodologies exploiting confidence prediction to im-

prove stereo accuracy [20, 23, 29] acting in the DSI domain.

We also evaluate for NLA the effect yielded by a different

number of anchors and by the optional aggregation step out-

lined. Moreover, we validate the effectiveness of UP/RP

selection module by reporting comparison with the manual

optimal choice of the ξ value by cross-validation. We eval-

uate all these aspects on the Middlebury v3 [28] training

dataset and then we evaluate the effectiveness of the overall

NLA framework also on KITTI 2015 [17].

5.1. Evaluation on Middlebury v3

In this section, we provide exhaustive experimental re-

sults concerning the full NLA framework (i.e., deploying

the random forest for threshold-free RP selection and lo-

cal aggregation step) and other refinement methods on the

Middlebury v3 training dataset1.

Comparison with other refinement strategies. In ta-

bles 1 and 2 we report results achieved by the following

disparity refinement methods: fast bilateral solver (FBS

[2]), median filter (MF [21]), weighted median filter (WMF

1We process Middlebury v3 stereo pairs at quarter resolution. All the

results reported in this paper have been computed at such resolution on

training split.



Stereo All Non-occ

algorithm bad 1% bad 2% RMSE MAE bad 1% bad 2% RMSE MAE

SGM [7] 24.38 22.00 13.18 5.33 14.52 12.14 7.96 2.49

+ FBS [2] 25.06 21.55 12.05 4.51 15.46 11.93 6.80 2.10

+ MF [21] 23.13 20.44 11.20 4.43 13.45 10.74 5.95 1.91

+ WMF [44] 21.88 19.29 11.32 4.34 12.26 9.67 5.69 1.74

+ WMF + GF [40] 22.22 19.56 12.54 4.96 12.72 10.10 7.96 2.68

+ WMF + JBF [40] 22.25 19.80 11.94 4.61 12.46 10.02 6.45 1.91

+ LRI [43] 21.46 18.77 14.12 4.84 13.24 10.74 8.63 2.34

+ LRI + MF + BF [43] 22.01 17.68 13.26 4.81 14.09 9.81 7.80 2.40

+ LC [14] 20.39 16.60 10.56 3.98 12.59 9.05 6.56 1.95

+ Lev.stereo∗ [20] 22.22 19.52 12.45 4.60 13.38 10.73 7.39 2.20

+ Lev.stereo [20] 21.69 18.66 13.63 3.74 13.63 10.05 6.13 1.96

+ Smart-SGM [23] 22.67 19.71 11.51 4.33 13.57 10.78 6.54 2.05

+ PBCP∗ [29] 23.97 21.56 19.36 6.54 14.12 11.72 12.07 3.10

+ PBCP [29] 23.72 21.31 18.79 6.34 13.89 11.49 11.47 2.97

+ NLA + O1 18.68 15.44 7.16 2.65 11.94 9.29 4.59 1.45

+ NLA + opt. 7.72 5.18 3.50 0.99 3.24 1.81 2.01 0.49

Table 2. Experimental results averaged on Middlebury v3 with SGM [7] algorithm. Best results are in bold. Algorithms marked with ∗ use

the original confidence measure proposed in the paper.

Stereo All Non-occ

algorithm bad 1(%) bad 2(%) RMSE MAE bad 1(%) bad 2(%) RMSE MAE

SGM [7] 24.38 22.00 13.18 5.33 14.52 12.14 7.96 2.49

+ NLA + O1 (ξ = 0.4) 18.90 15.86 8.06 2.99 11.44 8.77 4.63 1.44

+ NLA + O1 (ξ-less) 18.68 15.44 7.16 2.65 11.94 9.29 4.59 1.45
Table 3. Experimental results on Middlebury v3 with SGM, comparing results obtained by NLA when using a threshold or the random

forest classification of the RP. Best results in bold.

[44]), weighted median filter together plus guided filter

(WMF + GF [40]), weighted median filter plus joint bi-

lateral filter (WMF + JBF [40]) and local consistency fil-

ter (LC [14]). All of these methods process only disparity

map and the reference image. For each of these methods

the patch size is set to 15 × 15. Moreover, we include left

right interpolation (LRI) and the full refinement pipeline de-

ployed in [43] (LRI + MF + BF) using authors’. We re-

port, for each method, the amount of pixels having a dispar-

ity error larger than 1 and 2 (bad 1% and bad2%), as well

as root mean square error (RMSE) and mean average error

(MAE). In the same tables, we show results concerning the

NLA framework with 16 anchors (i.e., from horizontal, ver-

tical, diagonal and half-diagonal directions) using the state-

of-the-art O1 [23] confidence measure. It is obtained by

training a random forest framework to process 20 features

extracted from the disparity map, that are Disparity Agree-

ment (DA), Disparity Scattering (DS), Median Deviation of

Disparity (MDD), Median disparity (MED) and Variance of

disparity (VAR) on four windows of size 5× 5, 7× 7, 9× 9
and 11 × 11 [23]. Its effectiveness drove the choice of this

measure in the estimation of correct matches and by the aim

of our framework, working in the disparity domain only and

possibly running on constrained architectures, for which

deep learning approaches [24, 29, 36] would not be suited.

We followed implementation notes, hyper-parameters tun-

ing and code provided by the authors [23], training on a sub-

set of images from KITTI 2012 dataset (the first 20 images)

as in [26]. Since the effectiveness of the confidence measure

is crucial for our method, we also report in the final row the

results achieved by NLA processing an optimal confidence

measure, capable of ideally distinguish between RP and UP.

This represents the lower bound for the error rate with NLA.

The automatic selection method proposed was trained on

the 13 additional images available in Middlebury v3 dataset

[28] for each of the two considered algorithms. Table 1 re-

port the effectiveness of disparity refinement methods with

the BM algorithm. We can notice how the proposed NLA

outperforms all of the considered refinement methods. In

particular, compared to the second best method LC, NLA

is more effective by nearly 2% on both all pixels and non-

occluded. The last row highlights how, if an ideal confi-

dence measure is deployed, our framework is capable of re-

ducing the error rate from over 35% of wrong pixels in the

image to almost 6%. Table 2 shows the results with SGM

[7]. Since our SGM implementation is based on BM al-

gorithm to obtain the data term, we first highlight how the

results obtained by processing maps by NLA are very sim-

ilar (even better in this case) to those obtained by running

SGM optimization on the entire DSI (without applying any
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bad1: 14.59%

bad1: 15.33%

bad1: 15.79%
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Figure 5. Qualitative results on Motorcycle stereo pair. First row:

reference image and ground-truth disparity. Then, from top to bot-

tom, disparity maps with overimposed bad1 rate and error maps

for, respectively, SGM [7], SGM+Lev.stereo [20], Smart-SGM

[23], SGM+PBCP [29] and SGM+NLA. All methods use O1 as

confidence measure.

additional post-processing step, not deployed on our base-

line SGM). This proves the effectiveness of our proposal

when compared to more complex approaches such as SGM.

Moreover, the DSI of the filtering map is not required with

NLA, while SGM necessarily needs such information. In

these experiments, we also deploy three additional method-

ologies relying on confidence measures to improve the re-

sults of SGM. The first one is a confidence-based modula-

tion of the DSI carried-out before the SGM optimization,

referred to as Lev.stereo [20]. The second one is a weighted

24,38

20,61 20,44 19,92

19,5 19,75
18,68

15

20

25

30

35

SGM NLA - 4

anchors

NLA - 8

anchors

NLA - 16

anchors

Without Local Aggregation

With Local Aggregation

Figure 6. Experimental results on the entire Middlebury v3 dataset,

varying the number of anchors and enabling/disabling local aggre-

gation with NLA framework, SGM algorithm + O1.

sum of the contribution of the different scanlines, according

to confidence, referred to as Smart-SGM [23]. The last one

consists of a dynamic setting of the smoothness terms P1

and P2 according to confidence, referred to as PBCP [29].

We included them as representative state-of-the-art method-

ologies relying on confidence measures to improve the ac-

curacy of stereo and we report results obtained when pro-

cessing the confidence measures they were proposed with

(marked with ∗ in the table) as well as with the same one

deployed by NLA for a fair comparison. We can observe

how the NLA framework outperforms all of them, obtain-

ing its best accuracy deploying the O1 measure. Moreover,

our proposal works in the disparity domain, not requiring

intermediate results from the SGM pipeline and it is thus a

general-purpose technique suited for any stereo algorithm.

Figure 5 shows a qualitative comparison between consid-

ered approaches and NLA.

Evaluation of RP selection. Once confirmed the superi-

ority of the full NLA framework, in this section we inquire

about the effectiveness of the threshold-free RP selection

enabled by the random forest classifier. Table 3 shows com-

parison between the results achieved by the manually se-

lected threshold through k-fold cross-validation, highlight-

ing how the random forest selection strategy increases, on

average, the accuracy of the refined disparity maps when

considering all pixels, while it performs slightly worse on

non-occluded pixels, thus mainly improving selection and

refinement occluded regions.

Ablation studies on NLA and runtime. To better un-

derstand the key factors enabling for such improvements,

we report results concerning the use of a different amount

of anchors as well as without the optional local aggregation

step, deployed during the previous evaluations. Figure 6

plots the error rate as a function of the number of anchors



Figure 7. Qualitative results on KITTI 2015 dataset [17]. From top to bottom, stereo pairs 085, 186 and 197. From left to right, reference

frame and disparity maps from SGM [7] or refined with NLA.

Stereo bad 3% - All

algorithm BM SGM

Baseline 37.30 10.78

MF [21] 19.95 8.73

WMF [44] 21.03 8.81

LRI [43] 25.29 10.12

LRI +MF + BF [43] 18.90 9.11

LC [14] 14.92 9.72

+ Lev.stereo∗ [20] - 10.10

+ Lev.stereo [20] - 9.52

+ Smart-SGM [23] - 8.47

+ PBCP∗ [29] - 10.63

+ PBCP [29] - 10.62

NLA + O1 11.42 7.68
Table 4. Experimental results averaged on KITTI 2015 with BM

and SGM [7] algorithms. Best results are in bold.

(4, 8 and 16) of the vanilla NLA framework (blue) and NLA

with local aggregation (orange). It shows how the aggrega-

tion step enables a notable improvement, reducing the error

rate by about 1% on SGM. About runtime, on a Jetson TX2

CPU (Arm v8), NLA runs in 1.82s without aggregation, ris-

ing up to 6.39s with full (not optimized) aggregation.

5.2. Evaluation on KITTI 2015

In this section, we report experimental results concerned

with the KITTI 2015 training dataset [17], depicting out-

door environments very different from the Middlebury in-

door scenes. We deploy for these experiments our full

pipeline with 16 anchors, local aggregation and threshold-

free selection of RP. Table 4 reports experimental results

when refining disparity maps obtained by BM and SGM al-

gorithms. We report the amount of pixels having a disparity

error larger than 3 (bad 3%). Since KITTI 2015 dataset

is very different compared to Middlebury v3, we tuned P1

and P2 smoothing penalties to 0.3 and 3 in order to obtain

the most accurate results from the original SGM algorithm.

We compare our results with best methods MF, WMF and

LC approaches. We can observe how, even on this very

different dataset, the NLA framework can reduce the error

rate of the raw disparity maps by nearly 26% (BM) and by

more than 3% (SGM), notably outperforming the other re-

finement techniques. Since the scene contents depicted by

KITTI 2015 are more smooth compared to indoor scenes

considered before (e.g., large road planes), the smooth-

ing constraint enforced by SGM is stronger than the non-

local refinement processed by NLA, being nonetheless ca-

pable of reaching with BM a comparable degree of accuracy

with significantly lower computational efforts. Focusing

entirely on SGM results, we report, as for the Middlebury

v3 evaluation, the improvements yielded by state-of-the-art

confidence-based cost modulations proposed in [20, 23, 29].

Similarly to Middlebury v3, we evaluated the three previous

strategies with their originally proposed confidence mea-

sures as well as with the same plugged into NLA for a fair

comparison. The trend previously highlighted is confirmed

on KITTI 2015 as well. Figure 7 shows additional qualita-

tive results on KITTI 2015, comparing raw disparity maps

by BM and SGM with those refined through NLA.

6. Conclusions

In this paper, we proposed a fast, yet accurate, non-local

disparity refinement technique based on confidence mea-

sures. It jointly enables the benefits of techniques acting in

the disparity domain and the power of confidence measures

extracted from the same domain. Conversely from other

similar techniques, leveraging on confidence measures and

designed for specific algorithms, our proposal acts outside

the stereo pipeline, making it a general purpose alternative,

hence totally agnostic to the stereo algorithm generating

disparity maps. Experimental results on popular datasets

confirmed the superiority of NLA compared to known tech-

niques when dealing with disparity maps obtained from al-

gorithms suited for deployment on embedded devices.



References

[1] Intel Real Sense camera. https://realsense.

intel.com/. 5

[2] T. Barron and B. Poole. The fast bilateral solver. In Proceed-

ings of the 14th European Conference on Computer Vision,

ECCV, 2016. 3, 5, 6

[3] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018. 1, 3

[4] Zhuoyuan Chen, Xun Sun, Liang Wang, Yinan Yu, and

Chang Huang. A deep visual correspondence embedding

model for stereo matching costs. In Proceedings of the IEEE

International Conference on Computer Vision, pages 972–

980, 2015. 3

[5] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets

robotics: The kitti dataset. Int. J. Rob. Res., 32(11):1231–

1237, sep 2013. 1

[6] R. Haeusler, R. Nair, and D. Kondermann. Ensemble learn-

ing for confidence measures in stereo vision. In CVPR. Pro-

ceedings, pages 305–312, 2013. 1. 2

[7] Heiko Hirschmuller. Stereo processing by semiglobal match-

ing and mutual information. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 30(2):328–341,

feb 2008. 1, 3, 5, 6, 7, 8

[8] Xiaoyan Hu and Philippos Mordohai. A quantitative evalua-

tion of confidence measures for stereo vision. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (PAMI),

pages 2121–2133, 2012. 2

[9] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas

Brox. Occlusions, motion and depth boundaries with a

generic network for optical flow, disparity, or scene flow es-

timation. In 15th European Conference on Computer Vision

(ECCV), 2018. 3

[10] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter

Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.

End-to-end learning of geometry and context for deep stereo

regression. In The IEEE International Conference on Com-

puter Vision (ICCV), Oct 2017. 3

[11] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh

Kowdle, Julien Valentin, and Shahram Izadi. Stereonet:

Guided hierarchical refinement for real-time edge-aware

depth prediction. In 15th European Conference on Computer

Vision (ECCV 2018), 2018. 3

[12] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei

Chen, Linbo Qiao, Li Zhou, and Jianfeng Zhang. Learning

for disparity estimation through feature constancy. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018. 1, 3

[13] W. Luo, A. G. Schwing, and R. Urtasun. Efficient Deep

Learning for Stereo Matching. In Proc. CVPR, 2016. 3

[14] Stefano Mattoccia. A locally global approach to stereo cor-

respondence. In Computer Vision Workshops (ICCV Work-

shops), 2009 IEEE 12th International Conference on. IEEE,

ICCV, 2009. 5, 6, 8

[15] Stefano Mattoccia and Matteo Poggi. A passive rgbd sensor

for accurate and real-time depth sensing self-contained into

an fpga. In Proceedings of the 9th International Conference

on Distributed Smart Cameras, pages 146–151. ACM, 2015.

5

[16] Nikolaus Mayer, Eddy Ilg, Philip Häusser, Philipp Fischer,
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