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Abstract

In remote sensing, Digital Terrain Models (DTM) gen-

eration is a long-standing problem involving bare-terrain

extraction and surface reconstruction to estimate a DTM

from a Digital Surface Model (DSM). Most existing methods

(including commercial software packages) have difficulty

handling large-scale satellite data of inhomogeneous qual-

ity and resolution, and often need an expert-driven man-

ual parameter-tuning process for each geographical type of

DSM. In this paper we propose an automated and versa-

tile DTM generation method from satellite data that is per-

fectly suited to large-scale applications. A novel set of fea-

ture descriptors based on multiscale morphological analy-

sis are first computed to extract reliable bare-terrain eleva-

tions from DSMs. This terrain extraction algorithm is ro-

bust to noise and adapts well to local reliefs in both flat and

highly mountainous areas. Then, we reconstruct the final

DTM mesh using relative coordinates with respect to the

sparse elevations previously detected, and induce preser-

vation of geometric details by adapting these coordinates

based on local relief attributes. Experiments on worldwide

DSMs show the potential of our approach for large-scale

DTM generation without parameter tuning. Our system is

flexible as well, as it allows for a straightforward integra-

tion of multiple external masks (e.g. forest, road line, build-

ings, lake etc.) to better handle complex cases, resulting in

further improvements of the quality of the output DTM.

1. Introduction

Achieving automatic 3D modeling from remote sensing

imagery in a robust and scalable way remains a challenge.

With the development of earth observation techniques, a

multitude of data sources are available for 2D semantic

understanding and 3D reconstruction. Satellite data, com-

pared to aerial data, offer a complete worldwide coverage

with a daily revisit frequency: massive, easily-accessible

archives of satellite data provide a scale of coverage that

aerial data can not deliver. In order to leverage these

existing datasets, automatic 3D modeling from satellite

images requires two critical tasks: the generation of

Digital Surface Models (DSM) and Digital Terrain Models

(DTM). DTMs can seemingly be generated from DSMs

(c) DSM closeup

(d) DTM closeup(a) input DSM (b) our generated DTM

Figure 1. DTM generation. Our approach was run on a DSM of

Rio de Janeiro (Brazil) with urban areas on reliefs: (a) DSM in 1

meter resolution from satellite imagery, (b) resulting DTM without

user interaction, (c) and (d) closeups in a zone with dense building

areas on low-amplitude reliefs.

by removing the above-ground objects and reconstruct the

bare-earth terrain; consequently, height information of 3D

models can be obtained by subtracting the DTM from the

DSM. However, DSMs computed from various satellites

in different conditions have inhomogeneous quality and

spatial resolutions, bringing significant challenges for

automatic and robust generation of high-quality DTM.

Contributions. In this paper we propose a large-scale

DTM generation method capable of handling a variety of

spatial resolutions (0.5 to 30 m), quality and noise levels of

typical DSMs, either fully automatically or with user guid-

ance. Fig. 1 shows an example of DTM generation demon-

strating the potential of our method. Our contributions are

threefold:

• A novel multiscale morphological analysis of a DSM is

formulated to construct feature descriptors, from which

one can extract ground elevations reliably and accurately,

even in the presence of noise;

• DTM generation from scattered elevations is achieved

via the least squares solution of a sparse linear system

based on affine-invariant local coordinates, avoiding the

artifacts of interpolation based on differential equations;

• Our scalable method can integrate semantic masks to fur-

ther improve the quality of the generated DTM, which is

desirable for various industrial applications.
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Figure 2. Comparisons. DTMs generated from DSMs (left) by our method, compared to a manually produced DTM and the USGS NED

DTM (1 meter). Difference maps (right) were computed by subtracting the reference DTM from our DTM, and shown with a color ramp.

2. Related work

DTM generation from satellite data sources consists of

two important steps: ground/above-ground classification,

followed by surface interpolation. Scattered elevations are

extracted from the classification, from which a DTM sur-

face can be reconstructed by interpolating/approximating

these known elevations. Related works can be roughly di-

vided into three categories: rule-based terrain extraction,

learning-based terrain extraction and surface interpolation.

Rule-based terrain extraction. Geospatial datasets

involve a huge variety of types of terrain and objects.

Many approaches [2, 18] apply rule-based methods to

classify ground/above-ground elevations from satellite

based DSMs. Most of these methods make two important

assumptions: (a) the terrain is continuous and rarely

contains sharp height differences locally; (b) the above-

ground objects (buildings, trees etc.) are usually not too

massive compared to the scale of terrain relief. Based

on these assumptions, different rules have been proposed

to classify ground/above-ground pixels by analyzing the

altitude difference with local neighbors, either through (a)

statistics of filtered results (e.g., through morphological

operations [16]) or (b) terrain propagation constrained by

a threshold on gradient values. Since filters are applied to

the whole scene, parameter tuning is usually painstakingly

difficult when various terrain types are present. Moreover,

the fact that the real terrain is not always flat or smooth

brings additional difficulties for pure rule-based methods.

Learning-based terrain extraction. With the rapid

development of deep learning techniques, learning-based

methods have become commonplace for object segmenta-

tion due to their impressive performance. For conceptually

well-defined tasks such as ”cats&dogs” [14] or object

instance segmentation [6], deep neural networks are able

to learn corresponding feature descriptors automatically

from high quality training data. In remote sensing,

particularly for DTM generation, deep-learning-based

algorithms have been formulated for LiDAR point clouds

[7], radiometric images (mostly aerial imagery) plus a

DSM raster [5, 20], and even for DSM tiles [13] to extract

ground/off-ground points—with decreasing performance

since less information is contained in a single satellite

DSM tile than in a dense LiDAR data. In sharp contrast to

object segmentation, current deep-learning-based terrain

extraction methods have not yet demonstrated superior

terrain extraction accuracy from satellite data [13, 20, 5].

Possible reasons include the lack of sharp contrast between

ground and above-ground regions, as well as the huge

variety of objects and relief types found in satellite DSMs.

Surface interpolation. Many interpolation methods such

as regularized splines [4], triangle-based piecewise cubic

polynomials [17], and ANUDEM (Australian National Uni-

versity Digital Elevation Modeling) [8, 9] are commonly

used for digital terrain surface reconstruction. In particu-

lar, ANUDEM applies an efficient morphological approach

to reconstruct a regular grid of elevations from scattered el-

evations. While a selection of streamlines is usually needed

to minimize terrain roughness, the approach is usually quite

robust to noise. Gridfit-based methods [12, 10, 3] generate a

surface approximation from a set of scattered points based

on a hierarchical partitioning of data space. However, re-

lying only on spatial regularization based on Laplacian (or

other differential operators) rarely results in a realistic as-

flat-as-possible DTM surface: even though a hierarchical

space partitioning operation can help reduce unwanted os-

cillations, the extreme sparsity of bare-terrain points often

leads to large artifacts in the reconstruction. In a very differ-

ent context, a recent approach to non-linear dimensionality

reduction proposed a new embedding approach from sparse

constraints: the spectral affine kernel embedding (SAKE)

method [1] uses a whole set of local relative coordinates of

points w.r.t. their closest neighbors to achieve an as-flat-as-

possible embedding robust to irregular sampling and noise,
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Figure 3. Multiscale morphological profiles. Examples of pro-

files based on {Ds

e} (left) and {Ds

op} (right); horizontal axis rep-

resents the 16 scales of analysis, vertical axis in meters.

yet only involving a sparse linear system—thus fitting the

requirements of DTM generation quite well.

In this paper, we introduce a new multiscale morpholog-

ical analysis to extract scattered ground elevations reliably,

followed by a modified SAKE interpolation (that we call

LAKE interpolation). We will show that this combination

of improvements over previous works offers a more flexible

and scalable DTM generation method that is adaptive to

different terrain types, thus allowing worldwide DTM

generation without user interaction.

3. Core foundations

Two core components of our approach – one for terrain

extraction, the other for interpolation – are introduced next.

3.1. Morphological operation

Morphology filters [19] are commonly used to remove

above-ground objects from DSM data [21]. Two basic op-

erations are involved in morphological filtering: erosion and

dilation. For a DSM raster denoted as D, its erosion is de-

noted as De while Dd represents its dilation. Eroded and

dilated rasters are easily evaluated as:

De(i) = min
j∈w(i)

D(j), Dd(i) = max
j∈w(i)

D(j), (1)

where i denotes a pixel index located at (xi, yi) in D, j de-

notes one of its neighbors with coordinates (xj , yj), and

w(i) denotes a fixed-size neighboring window around i.
The erosion (resp., dilation) extracts the minimum (resp.,

maxixum) from the set of values within the window around

a pixel. From these two simple operations, we can also gen-

erate an “opening” morphological operation defined as:

Dop = De ◦Dd. (2)

Since above-ground objects in a DSM raster (such as

trees and buildings) are usually higher than surrounding

elevations, an opening operation removes above-ground

objects whose size is smaller than the operation window

w. However, applying this morphological operation

negatively affects the mountain relief: any non-constant

local slope will be altered by such morphological filtering.

In this paper, we propose to apply De and Dop on a

sequence of window sizes to classify which DSM pixel is

ground-level and which is above-ground, instead of using

the eroded/dilated DSM to prevent elevation errors. A

multiscale approach removes the need for fine-tuning a

single window size of erosion/dilation, and provides rich

statistics on the topography even in the presence of noise.

3.2. Spectral affine­kernel embedding

A recent non-linear dimensionality reduction SAKE [1]

appraoh aims at embedding irregular and noisy data on

smooth low-dimensional manifolds. As it turns out, their

approach is particularly appropriate to construct a DTM as a

bare-terrain can be thought of as a smooth two-dimensional

embedding in 3D of a surface given as a few scattered el-

evations. Originally, SAKE formulates the 2D embedding

problem as a non-linear deformation that only requires the

construction of local affine-invariant coordinates, followed

by sparse matrix eigenanalysis. Spatial relationship be-

tween neighboring points is built through an affine-precise

linear combination of the singular vectors of a relative coor-

dinates matrix. More precisely, for a point pi with coordi-

nates Xi = (xi, yi) and its neighbors in a K-neighborhood

with coordinates Xjk = (xjk , yjk) for k ∈ [1,K], the rela-

tive coordinate matrix Ei is defined as

Ei = (Xj1 −Xi; Xj2 −Xi; ... XjK −Xi). (3)

The basis of the kernel of matrix Ei can be constructed

through Singular Value Decomposition (SVD): they are the

last K − 2 right singular vectors {wq ∈ R
2}q=1...K−2 of

unit lengths. Then by definition of the kernel, Xi can be

written as a linear combination of its neighbors Xj through
(

∑

j [w
q]j

)

Xi =
∑

j [w
q]jXj ∀q ∈ [1...K − 2],

where [wq]j represents the jth coordinate of the vector wq .

These weights can be understood as the generators of all

possible ways to express a point pi as a linear combina-

tion of its K-neighbors. The set of K − 2 linear com-

binations of neighbors summing up to the original point

can thus be written in a matrix form as LiX = 0, where

X=(Xi Xj1 Xj2 ... XjK )
T

and the matrix Li is written as:

Li=
(

∑

j [w
1]j

∑

j [w
2]j ...

∑

j [w
K−2]j

−w1 −w2 ... −wK−2

)T

. (4)

The authors of SAKE argued that using a basis of all such

combinations is more geometrically meaningful than using

one single local linear relationship per data point (like in

the case of Laplacian regularization): in essence, SAKE

constructs a “multi-Laplacian” quadratic form assembled

based on the neighborhood geometry, which penalizes

any embedding that is not locally affine. The resulting

reconstruction, based on a sparse-matrix eigenanalysis of

the sum of all local quadratic forms, offers an as-rigid-as-

possible interpolation between scattered anchor points [1]

that is particularly appropriate for DTM generation from

sparse bare-terrain elevations. In this paper, we further

simplify SAKE to transform it into a least-squares problem

instead, in order to improve computational efficiency.



4. Multiscale morphological analysis

Morphological filtering as described in Sec. 3.1 can

remove small above-ground objects, but may significantly

affect the elevations of the DSM in the process. In this

section, we propose to use morphological operations at var-

ious scales, not as a way to filter out above-ground objects

as in [22], but as a classifier of ground/above-ground pixels

in the DSM. Our approach is inspired by [16], but adapted

to elevation maps by using erosion and opening (instead of

opening/closing) operations, and with feature descriptors

better adapted to remote sensing.

Multiscale erosion and opening operations. First, we

perform erosion and opening operations on S different

scales. This simply amounts to evaluating De and Dop

for different window sizes w (see definition in Eq. (1)).

Let’s denote by s the (integer) scale level, varying from a

smallest widow size at scale s = 1 to the largest window

size at scale s = S where S is the total number of scales

we use. Typically, we use S = 16 with window sizes of

10m, 20m, 30m, ..., and 160m for high resolution DSMs;

low-resolution DSMs (10m accuracy and above) require

less scales. For each scale s, we perform on the original

DSM D the two morphological operations, which we

denote by Ds
e and Ds

op respectively. For conciseness, we

define D0
e ≡ D0

op ≡ D, i.e., the zero scale morphological

operations are defined to be the original DSM.

Multiscale spatial profile. From these series of multi-

scale morphological operations, we deduce two “profile”

vectors Pe and Pop of size |Pe| = |Pop| = S for each DSM

pixel, encoding its neighborhood at various scales. For pixel

i, the profile vector is simply defined as:

Pe(i)=
(

D1
e(i)−D

0
e(i);D

2
e(i)−D

1
e(i); ...;D

S
e(i)−D

S−1
e (i)

)

,

and similarly for Pop; i.e., the profile vectors represent the

change between two consecutive scales of the results of

the morphological operations. Note that as a consequence,

these profiles only measure relative spatial properties

present at different scales. Fig. 3 shows the intuition behind

the profiles derived from erosion and opening.

Feature vectors. From the multiscale spatial profiles Pe

and Pop, we further extract feature descriptors as follows:

• F̄e, Fmin
e , Fmax

e , F var
e denote respectively the mean, mini-

mum, maximum and variance of a given profile Pe(i),
measuring the distribution of elevation changes in the

multiscale erosion operations. Similarly, F̄op, Fmin
op ,

Fmax
op , F var

op are computed from Pop(i).

• δFe and δF var
e are the mean and variance of the vector of

differences between adjacent elements ofPe(i), reflect-

ing the distribution of consecutive differences of eleva-

tion changes. Same for δFop and δF var
op .

• F sum
e denotes the sum of the maximum change Fmax

e and

of the two values of the profile with indices immediately

adjacent (on each side) to the index of the maximum.

This feature computes the integral of erosion changes on

three consecutive scales around the maximum, helping

better distinguish above-ground objects when no sharp

elevation step is visible due to noise. Same for F sum
op .

• F flat
e and F flatσ

e denotes the mean and standard devia-

tion of the values in Pe(i) after removing the maximum

value and the two values with immediately adjacent in-

dices. As the window size increases, an above-ground

object will be eventually filtered out, so the profile ex-

hibits a series of major drops surrounded by flat zones

since most above-ground objects appear on a fairly flat

terrain. This feature thus helps distinguish the presence

of above-ground objects. Same for F flat
op and F flatσ

op .

• FmaxZ
e denotes the maximum standard score (i.e., z-

score) of the elements in the profile Pe(i). This feature

helps confirm the presence of an above-ground object by

checking if Fmax
e is a salient change in the profile. This

feature distinguishes above-ground objects from moun-

tainous reliefs as a mountain terrain does not change as

sharply as man-made objects or trees.

Classification through erosion and opening. Based on

the set of features above, we perform a rule-based classifi-

cation of all pixels of the input DSM as follows. For each

pixel i, we assign a label ℓe(i) based on the features derived

from Pe(i) as follows:

ℓe =































































flat if (Fmax
e <θ1) & (Fe<θ2) & (|Fe|<θ3)

& (F var
e <θ4) & (δFmax

e <θ5);

slope if
[

(Fmin
e <θ6) & (Fmax

e <θ7)
]

|
[

(Fe>θ8) & (δFe>θ9) & (δF var
e <θ5)

]

|
[

(FmaxZ
e >θ10) & (F flat

e >θ11)
]

;

object if
[

(Fmax
e >θ7) & (FmaxZ

e >θ13)
]

|
[

(F sum
e >θ14 & F flat

e <θ11
& F flatσ

e <θ12)
]

;

other otherwise.

We define the various thresholds as follows: {θi}i=1..14 =
{1, 1, 1.5, 3, 3, 92, 5, 3, 5, 3, 0.5, 1, 2, 1.5}. Given that we

always considered relative profiles, these parameters are ro-

bust to very different types of DSMs with arbitrary quality

and do not require tuning. The rules were derived from the

following observations: (a) flat: the distribution of the pro-

file is almost uniform around 0 at all scales, indicating a

rather flat bare-terrain; (b) slope: if there is a large differ-

ence between max and min and no large jumps, or if the av-

erage score is large, or if there are both large jumps and no

big flat regions, then the pixel is in a mountainous region;;

(c) objects: if the profile exhibits both large max and stan-

dard score, or a large jump across multiple scales followed

by flat regions, then the pixel is above-ground (presence of

building, tree, etc). If none of these cases happen, we clas-

sify the pixel as other (which typically applies to between



(a) classification map from Ge (b) classification map from Gop (e) closeup of DSM

(c) mountain map generated from (a) (d) fused classification map (f) closeup of classification map

Figure 4. Classification maps. Results of our erosion-based classification ℓe (a) and opening-based classification ℓop (b), mountain map

(c) and the final classification ℓ (d), along with closeups of the DSM (e) and of the final classification map (f). Color convention: green

(flat), violet (slope), red (object) and black (other).

1% to 3% of the DSM pixels). The associated parameters

used in these rules were found after exploring statistics from

a number of input DSMs in order to find reliable thresholds.

Finally, the same classification process (with identical

thresholds) is achieved based on the multiscale opening-

based feature Pop(i) of each pixel of the DSM, leading to a

second classification ℓop(i) of the initial DSM as well.

5. Classification map

The multiscale morphological analysis we introduced

above results in two different classications, ℓe and ℓop,

based on a rule-based analysis of the feature descriptors

derived from erosion and opening operations. While many

pixels in the DSM end up with the same classification in

both (Fig. 4(a)&(b)), there are discrepancies that need to be

resolved to get a single, high-quality classification map.

5.1. Fused classification

Based on our experiments, multiscale erosion analy-

sis is particularly sensitive to elevation changes, and thus

most accurate at detecting above-ground objects; multiscale

opening analysis, on the other hand, is better at detecting

bare-terrain pixels, be they classified as flat or slope. There-

fore, we perform a fusion of the two classifications into a

final classification ℓ as follows:

∀i, ℓ(i) =

{

object if ℓe(i) is object,

ℓop(i) otherwise.

That is, we trust the object labels detected by ℓe foremost,

and otherwise use the resulting classification from ℓop. This

simple fusion allows us to obtain an accurate fused classifi-

cation ℓ containing sharp transitions between above-ground

pixels and bare-terrain pixels (see Figs. 4(d) and closeup

(f)) rivaling with (and often outperforming) state-of-the-art

results from deep learning DTM generation computed from

far less noisy LiDAR data in [5]: we significantly reduce

the typical “ambiguity” regions around above-ground

objects, allowing for a proper treatment of complex scenes,

e.g. dense building areas with narrows streets.

Cleanup. Further cleaning up of the final classification

map can be performed for added robustness. Through

region growing, we identify isolated regions of either flat

or slope pixels of total areas below a certain size; pixels

in these regions are simply classified as other, as they are

likely to be the results of noise or of an ambiguous case.

5.2. External mask integration and user integration

Since false-positive and true-negative errors are un-

avoidable in large-scale scenarios containing a large variety

of different terrains and cities, external masks such as

road lines, forests, lakes, or buildings, are always helpful.

With the rapid development of semantic classification (in

particular using deep learning techniques), an increasing

number of masks are becoming available. Our system is

flexible enough to integrate such masks into our classi-

fication map in a straightforward fashion. For example,

road lines help get more bare-terrain information in dense

inhabited areas over hilly regions by labeling roads as

ground while avoiding object areas. Similarly, a forest map

can help disambiguate the challenging scenario of a large,

dense forest which may be erroneously recognized as flat

through automatic analysis. Semantic masks thus always

improve the quality of the generated DTMs in large-scale



applications. Moreover, an expert can further modify

manually the labeling established by our algorithm.

5.3. Mountain map

Sometimes, establishing specific maps (such as a moun-

tain map) is a desirable task that our multiscale analysis

also helps with. We found that a simple post-processing

of the erosion-based classification ℓe (see Fig. 4(a)) leads

to very clean mountain maps: we simply detect regions of

object pixels surrounded by flat pixels and convert them to

flat; same for regions of object pixels surrounded by slope,

which we convert to slope; and finally, regions of object

pixels surrounded by a mixture of flat and slope pixels are

turned into other. The result, shown in Fig. 4(c), nicely

delineates flat from mountainous regions, at very little

additional computational cost.

6. Surface interpolation through LAKE

As briefly discussed in Sec. 2, the SAKE approach to

surface interpolation removes many of the issues plaguing

typical DEI interpolation methods by enforcing a series

of local linear combinations between nearby points to

penalize all non-linear slopes. In this section, we propose a

simpler expression of SAKE, coined LAKE as the Spectral

solve involved in the original approach is replaced by a

faster Least-squares solve. We then apply this technique

to create a DTM map, of the same size as the input DSM,

that interpolates the ground elevations (read from the input

DSM) of the pixels labeled as either flat or slope.

6.1. Least­Squares Affine­Kernel Embeddings

To find the elevation h(i) of each pixel i not classified

as flat or slope in the DTM, we proceed in three steps.

Assembling the quadratic form Q. Just like in the orig-

inal SAKE approach, we first construct a sparse quadratic

form Q based on the local weights derived from the right

singular vectors of Eq. (3) for each pixel neighborhood

as summarized in Sec. 3.2. This quadratic form can be

thought as a penalty on elevations to force them to be

as locally linear as possible, which will help regularize

the interpolation. Since we wish to construct a regular

grid of elevations (i.e., the final DTM), the construction

of the weights based on the neighborhood of each pixel

can be precomputed very efficiently. Compared to SAKE,

however, we consider size-varying neighborhoods: for

every pixel, we use its one-ring neighborhood (i.e., the 8

pixels touching it) by default, but use a larger two-ring

neighborhood (i.e., the 24 closest pixels) if the pixel is

labeled as slope. This modification of the original approach

(which uses a constant neighborhood size) is particularly

important in our case: it indirectly adds local rigidity of the

interpolation in steep areas, thus preventing the appearance

of small spikes which sparse constraints typically generate.

(a) DSM (inset) and classification (b) direct low-res LAKE DTM

(c) direct high-res LAKE DTM (d) hierarchical LAKE DTM

Figure 5. Hierarchical DTM generation. (a) Initial sparse bare-

terrain model from classification; (b)DTM solved in a lower reso-

lution; (c) DTM by LAKE directly from the bare-terrain model;

(d) DTM by hierarchical LAKE with elevations from low-res

DTM added in large empty zones of the bare-terrain model.

Constraints. We then assemble a sparse diagonal matrix

C that encodes the elevation constraints we wish to impose.

Matrix C has a non-zero value Cii only if pixel i of the

classification map is ℓ(i)=flat or slope. We use Cii=α for

flat elevations and Cii = 2α for slope elevations to allow

for a closer fit of constrained elevations in mountainous

regions and a more relaxed fit in nearly flat regions to

more efficiently reduce noise in flat parts. We also as-

semble a vector b containing the elevations of the DSM

for pixels labeled flat or slope, and 0 otherwise. We use

α=(10m/resolution)2 in all our results in this paper.

Solve. We now wish to find elevations, stored as a vec-

tor H containing the elevation h(i) of every pixel, such that

the constraints are satisfied (CH=b) while minimizing the

quadratic form HTQH . While the original SAKE proposes

an eigensolve, we found much more efficient (and still accu-

rate enough) to simply use a least-squares solution of the set

of linear equations: QH=0 and CH= b. This is achieved

by solving the linear system:

(QTQ+ CTC)H = CT b,
which can be efficiently evaluated through Conjugate Gra-

dient using the DSM as initialization. The result of this lin-

ear solve is our final DTM.

6.2. Hierarchical DTM generation

As a way to both accelerate the linear solve of LAKE

and improve robustness to extreme sparsity of constrained

elevations (often present for satellite stereo pairs because of

occlusions in dense urban areas or in agricultural fields with

repetitive texture), we propose a hierarchical DTM gen-

eration process that can handle DSMs with very different

quality and geographical scenarios. If the constraints given



(a) PCI Geomatics (b) our reconstruction

Figure 6. Visual Comparison. For the Côte d’Azur DSM, the PCI

result of [15] with careful hand-tuning by an expert (left) removes

the relief details over urban regions, while our automatic result

captures a proper elevation map (see DSM in inset).

to LAKE contain large empty regions where no elevations

are available (for example, no elevation points detected

in a zone of 500×500 m2, that is, 500×500 pixels in a

DSM with 1-meter resolution), the flatness prior used in

SAKE may create too much of a bowl-shaped depression or

bump in this region. So we compute first a low-resolution

DTM for which this artifact will be absent or negligible

(because the surface tension induced by the quadratic form

is stronger and prevents sagging); from this reference

DTM, we then insert the computed ground elevations into

the large empty zones to evaluate the fine DSM. Much like

a multigrid approach, this two-step technique converges

also slightly faster as a coarse solution is used to drive the

finest solution. Fig. 5 shows the difference between a direct

LAKE solve (c) and a hierarchical LAKE solve (d).

7. Experiments

The DTM generation pipeline we just described was

implemented in C++, and all experiments were done on an

Intel Core i7 clocked at 4.1GHz with 64GB RAM. Figures

shown in this paper were created straight from input DSMs

with no parameter tuning and no external masks. Table 1

provides input sizes and running times for all examples

shown in this paper.

Times Rio Buenos Aires Toulon Panama Hatta
(in min.) (516M) (116M) (87M) (41.6M) (35M)
analysis 18 5.1 5.1 4.3 8
classif. 1.9 0.8 0.1 0.1 0.1
DTM gen. 21 10 10 2.5 2
total time 40.9 15.9 15.2 6.9 10.1

Table 1. Performances on DSMs of different types and sizes (Rio

from Fig. 1, others from Fig. 2) in terms of running times (for

multiscale morphological analysis, classification, DTM generation

through LAKE, and total time). Times are expressed in minutes,

while sizes are mentioned in number of DSM pixels.

We ran a large number of automatic DTM generations

from DSMs of different quality and noise levels, from

all over the world. Fig. 8 shows a selection of examples

for difficult regions, mixing significant relief and urban

structures. Fig. 1 shows Rio de Janeiro as another difficult

example. These results offer a visual estimation of the

quality of our generated DTMs when no human interaction
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(c) our DTM error(a) groundtruth DTM (b) PCI DTM error
-5m
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Figure 7. Error plots. From a manually-produced DTM used as

groundtruth (a), we compare the errors of PCI [15] (b) vs. our

DTM generation (c), using the same color ramp as in Fig. 2.

is provided. Note that computational times for these DTMs

vary from 15 minutes for Toulon to 41 minutes for Rio, av-

eraging 8.93M pixels per min on average. Since every step

of our pipeline is easily parallelizable, these timings can be

reduced dramatically for machines with more processing

power. Our experiments indicate that our morphological

analysis takes about 40% of the total time, suggesting that

a faster implementation of this part could further reduce the

overall computational time. We also measured the quality

of our DTMs in Fig. 2 by comparing with two type of

ground-truth references: (a) a manual DTM generated by

applying progressive filtering of carefully user-segmented

regions, and (b) the USGS National Elevation Dataset

(NED). After computing the difference between our results

and the ground-truth references, we visualized the elevation

difference using a corlormap covering from -5 meters

to 5 meters. The average absolute error is 1.28 meters

over the entire 125km2 testing areas, and most of the

errors are located in mountainous regions and man-altered

regions such as bridges. We also compared our results to

the current state-of-the-art commercial product from PCI

Geomatics [15] in Fig. 6. While this tool generates equally

good results in flat urban areas and slightly better on

unhabited mountainous regions compared to our method, it

fails completely when urban structures or trees are present

on rolling hills while our approach continues to perform

adequately even in this case.

Note that our approach has been used for the past year

by LuxCarta [11] as part of their digital map production

pipeline with success, proving its robustness.

8. Conclusions

In this paper, we presented an approach for automati-

cally generating DTMs from arbitrary DSMs. Our method

relies on a novel multiscale morphological analysis of the

DSM to classify each pixel, and on a subsequent interpola-

tion of reliable elevations through a least-squares smooth

embedding approach which does not suffer from the typical

oscillations of interpolation methods based on differential
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Hatta DTM Côte d’Azur DTM
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Figure 8. Generality. Our method adapts to DSMs of arbitrary terrain types: Hatta, United Arab Emirates, DSM with 0.5 meter spatial

resolution from Pleiades; Côte d’Azur, France, DSM with 1 meter from Pleiades; Buenos Aires, Argentine, DSM with 2 meters from SPOT

6; Panama City center, Panama, DSM with 30 meters from ALOS.

equations. We demonstrated that this combination of tools

can produce reliable and accurate large-scale DTMs from a

large variety of DSMs of various qualities and resolutions,

often improving upon state-of-the-art results without any

user interaction.

Limitations. While we have been able to successfully

construct DTMs of a wide variety of world regions, small

relief details on mountains and rocky shores are sometimes

mislabeled as objects due to their shape similarity with

man-made buildings at low resolution. Post-treatment

using a mountain map or sea map can help fix these

issues, but finding a fully automatic and reliable solution

without any additional map would be useful. Moreover,

our morphological analysis only focuses on a limited

range of scales; we may thus mislabel a wide and dense

forest as flat. A larger filtering window would remove this

issue, but currently, it would come at the cost of slower

performances; accelerating the multiscale analysis (e.g.,

using GPU) could thus be a valuable direction to explore

in order to improve both timings and classification accuracy.

Future work. Currently, the labeling of the DSM

pixels is done independently for each pixel, allowing

embarrassingly-parallel workload. However, the quality of

the results (validity of labels and frequency of other labels)

could be further improved if our rule-based classification

considers a small neighborhood, without significantly re-

ducing the efficiency of the classification. Our attempts at

implementing this idea never produced much better results,

confirming the adequacy of the features derived from our

multiscale morphological analysis. Maybe a hybrid method

mixing these features with learning-based approaches could

be proven useful. Finally, applying our approach to LIDAR

is also straightforward, but proper evaluation was not per-

formed due to limited access to large datasets.
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