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Abstract

Event cameras are very promising sensors which have

shown several advantages over frame-based cameras. Deep

learning based approaches, which are leading the state-of-

the-art in visual recognition tasks, could potentially take

advantage of the benefits of these cameras, but some adap-

tations are still needed in order to effectively work on event

data. This work introduces the first baseline for semantic

segmentation with this kind of data. We build a seman-

tic segmentation CNN based on state-of-the-art techniques

which takes event information as the only input. Besides,

we propose a novel representation for DVS data that out-

performs previously used event representations for related

tasks. Since there is no existing labeled dataset for this

task, we propose how to automatically generate approx-

imated semantic segmentation labels for some sequences

of the DDD17 dataset, which we publish together with the

model, and demonstrate they are valid to train a model for

DVS data only. We compare our results on semantic seg-

mentation from DVS data with results using corresponding

grayscale images, demonstrating how they are complemen-

tary and worth combining.

Supplementary Material

A video showing the performance of our

method in the test sequence is available at:

https://youtu.be/YQXBjWUSiaA. We release the dataset

and code at: https://github.com/Shathe/Ev-SegNet

1. Introduction

Event cameras, as Dynamic Vision Sensor (DVS) [21],

are promising sensors which register intensity changes of

the captured environment. In contrast to conventional cam-

eras, this sensor does not acquire images at a fixed frame-

rate. These cameras, as their name suggests, capture events

and record a stream of asynchronous events. An event in-

dicates an intensity change at a specific moment and at a

particular pixel (more details on how events are acquired in

Figure 1. Two examples of semantic segmentation (left) from

event based camera data (middle). The semantic segmentation is

the prediction of our CNN, fed only with event data. Grayscale

images (right) are displayed only to facilitate visualization.

Section 3.2). Event cameras offer multiple advantages over

more conventional cameras, 1) mainly its very high tempo-

ral resolution, which allows the capture of multiple events in

microseconds; 2) its very high dynamic range, which allows

the information capture at difficult lighting environments;

3) its low power and bandwidth requirements. Maqueda et

al. [24] show how visual recognition tasks can benefit from

these advantages in their work emphasizing that event cam-

eras are natural motion detectors and automatically filter out

any temporally-redundant information. Besides, they show

that these cameras provide richer information than just sub-

tracting consecutive conventional images.

These cameras offer a wide range of new possibilities

and features that could boost solutions for many computer

vision applications. However, new algorithms still have

to be developed in order to fully exploit their capabilities,

especially regarding recognition tasks. Most of the latest

achievements based on deep learning solutions for image

data have not yet been even attempted on event cameras.

One of the main reasons is the output of these cameras: they

do not provide standard images, and there is not yet a clearly

adopted way of representing the stream of events to feed a

CNN. Another challenge is the lack of labeled training data,

which is key to training most recognition models. Our work

includes simple but effective novel ideas to deal with these

two challenges. They could be helpful in many DVS ap-

plications, but we focus on an application not explored yet



with this sensor, semantic segmentation.

This work proposes to combine the potential of event

cameras with deep learning techniques on the challenging

task of semantic segmentation. Semantic segmentation may

intuitively seem a task much better suited to models using

appearance information. However, we show how, with an

appropriate model and representation, event cameras pro-

vide very promising results for this task.

Figure 1 shows two visual results as an example of the

output of our work. Our main contributions are:

• First results, up to our knowledge, on semantic seg-

mentation using DVS data. We build an Xception-

based CNN that takes this data as input. Since there is

no benchmark available for this problem, we propose

how to generate approximated semantic segmentation

labels for some sequences of the DDD17 event-based

dataset. Model and data are being released.

• A comparison of different DVS data representation

performance on semantic segmentation (including a

new proposed representation that is shown to outper-

form existing ones), and an analysis of benefits and

drawbacks compared to conventional images.

2. Related work

2.1. Event Camera Applications

As previously mentioned, event cameras provide valu-

able advantages over conventional cameras in many situa-

tions. We find recent works which have proved these advan-

tages in several tasks typically solved with conventional vi-

sion sensors. Most of these works focus their efforts on 3D

reconstruction [28, 19, 35, 34] and 6-DOF camera tracking

[29, 11]. Although 3D reconstruction and localization solu-

tions are very mature on RGB images, existing algorithms

cannot be applied exactly the same way on event cameras.

The aforementioned works propose different approaches for

adapting them.

We find recent approaches that explore the use of these

cameras for other tasks, such as optical flow estimation

[12, 23, 36] or, closer to our target tasks, object detection

and recognition [26, 6, 20, 30]. Regarding the data used in

these recognition works, Orchard et al. [26] and Lagorce et

al. [20] performed the recognition task on small datasets,

detecting mainly characters and numbers. The most recent

works, start to use more challenging (but scarce) recordings

in real scenarios, such as N-CARS dataset, used in Sironi et

al. [30], or DDD17 dataset [2], which we use in this work

because of the real world urban scenarios it contains.

Most of these approaches have a common first step: en-

code the event information into an image-like representa-

tion, in order to facilitate its processing.

We discuss in detail different previous work event rep-

resentations (encoding spatial and temporal information) as

well as our proposed representation (with a different way of

encoding the temporal information) in Sec. 3.

2.2. Semantic Segmentation

Semantic segmentation is a visual recognition problem

which consists of assigning a semantic label to each pixel

in the image. State-of-the-art on this problem is currently

achieved by deep learning based solutions, most of them

proposing different variations of encoder-decoder CNN ar-

chitectures [5, 4, 17, 16].

Some of the existing solutions for semantic segmentation

target an instance-level semantic segmentation, e.g., Mask-

RCNN [15], that includes three main steps: region proposal,

binary segmentation, and classification. Other solutions,

such as DeepLabv3+ [5], target class-level semantic seg-

mentation. Deeplabv3+ is a fully convolutional extension of

Xception [7], which is also a state-of-the-art architecture for

image classification and the base architecture of our work.

A survey on image segmentation by Zhu et al. [37] pro-

vides a detailed compilation of more conventional solutions

for semantic segmentation, while Garcia et al. [13] present

a discussion of more recent deep learning based approaches

for semantic segmentation, covering from new architectures

to common datasets.

The works discussed so far show the effectiveness

of CNNs for semantic segmentation using RGB images.

Closer to our work, we find additional works which prove

great performance in semantic segmentation tasks using ad-

ditional input data modalities to the standard RGB image.

For example, a common additional input data for semantic

segmentation is depth information. Cao et al. [3] and Gupta

et al. [14] are two good examples of how to combine RGB

images with depth information using convolutional neural

networks. Similarly, a very common sensor in the robotics

field, the Lidar sensor, has also been shown to provide use-

ful additional information when performing semantic seg-

mentation [32, 10]. Other works show how to combine less

frequent modalities such as fluorescence information [1] or

how to perform semantic segmentation on multi-spectral

images [10]. Semantic segmentation tasks for medical im-

age analysis [22] also typically apply or adapt CNN based

approaches designed for RGB images to different medical

imaging sensors, such as MRI images [18] and CT data [8].

Our work is focused on a different modality, event cam-

era data, not explored in prior work for semantic segmen-

tation. Following one of the top performing models on

semantic segmentation for RGB images [5], we base our

network on the Xception design [7] to build an encoder-

decoder architecture for semantic segmentation on event

images. Our experiments show good semantic segmentation

results using only event data from a public benchmark [2],



close to what is achieved on standard imagery from the

same scenarios. We also demonstrate the complementary

benefits that this modality can bring when combined with

standard cameras to solve this problem more accurately.

3. From Events to Semantic Segmentation

In this section, we will discuss different event represen-

tations used in visual recognition tasks in order to end up

proposing a rich encoding of the event data for semantic

segmentation.

3.1. Event data

Event cameras capture the changes in intensities for each

pixel. The output of an event camera is not a 3-dimensional

image (height, width, and channels) as conventional cam-

eras but a stream of events. An event represents the positive

or negative change in the log of the intensity signal (over an

established threshold σ):

log(It+1)− log(It) ≥ σ, (1)

being It+1 and It the intensity captured at two consecutive

timestamps. Each event (ei) is then defined by four differ-

ent components: two coordinates (xi, yi) of the pixel where

the change has been measured, a polarity (pi) that can be

positive or negative, and a timestamp (ti):

ei =
{

xi, yi, pi, ti
}

. (2)

Events are asynchronous and have the described encod-

ing that, by construction, does not provide good input for

broadly used techniques in visual recognition tasks, such

as CNNs. Perhaps the most straightforward representation

would be a nx4 matrix, with n the number of events. But

obviously, this representation does not encode the spatial

relationship between events. Several strategies have been

proposed to encode this information into a dense represen-

tation successfully applied in different applications.

3.2. Event Representation

Basic dense encoding of event location. The most suc-

cessfully applied event data representation creates an im-

age with several channels encoding the following informa-

tion. It stores at each location (xi, yi) information from the

events that happened there at any time ti within an estab-

lished integration interval of size T . Variations of this rep-

resentation have been used by many previous works, show-

ing great performance in very different applications: opti-

cal flow estimation [36], object detection [6], classification

[20, 27, 30] and regression tasks [24], respectively.

Earlier works used only one channel to encode event oc-

currences. Nguyen et al. [25] stores the information of the

last event that has occurred in each pixel, i.e., the corre-

sponding value chosen to represent a positive event, nega-

tive event or absence of events. One important drawback is

that only the last event information remains.

In a more complete representation, a recent work for

steering wheel angle estimation, from Maqueda et al. [24],

stores the positive and negative event occurrences into two

different channels. In other words, this representation

(Hist) encodes the 2D histogram of positive and negative

events that occurred at each pixel (xi, yi), as follows:

Hist(x, y, p) =

N
∑

i=1,tiǫW

δ(xi, x)δ(yi, y)δ(pi, p), (3)

where δ is the Kronecker delta function (the function is 1 if

the variables are equal, and 0 otherwise), W is the time win-

dow, or interval, considered to aggregate the event informa-

tion, and N is the number of events occurred within interval

W . Therefore, the multiplication δ(xi, x)δ(yi, y)δ(pi, p)
denotes whether an event ei matches its coordinates xi, yi
with x, y values and its polarity pi with p. This representa-

tion has two channels, one per polarity p (positive and neg-

ative events). Our proposed representation described later,

will make use of these two histogram channels.

Note that all the representations discussed so far only

use the temporal information (timestamps ti) to see the time

interval where each event belongs to.

Dense encodings including temporal information.

However, temporal information, i.e., the timestamp of

each event ti, contains useful information for recognition

tasks, and it has been shown that including this non-spatial

information of each event into the image-like encodings

is useful. Lagorce et al. [20] propose a 2-channel image,

one channel per polarity, called time surfaces. They store,

for each pixel, information relative only to the most recent

event timestamp during the integration interval W . Later,

Sironi et al. [30] enhance this previous representation by

changing the definition of the time surfaces. They now

compute the value for each pixel combining information

from all the timestamps of events that occurred within W .

Another recently proposed approach by Zhu et al.

[36] introduces a more complete representation that in-

cludes both channels of event occurrence histograms from

Maqueda et al. [24], and two more channels containing tem-

poral information. These two channels (Recent) store, at

each pixel (xi, yi), the normalized timestamp of the most

recent positive or negative event, respectively, that occurred

in that location during the integration interval:

Recent(x, y, p) = max
tiǫW

tiδ(xi, x)δ(yi, y)δ(pi, p). (4)



Grayscale Hist(x, y,−1) S(x, y,−1) Recent(x, y,−1) M(x, y,−1)

Figure 2. Visualization (between 0 and 255 gray values) of different 1-channel encodings of data from events with negative polarity

(p = −1) explained in the Sect. 3.2. In these examples the event information has been integrated for a time interval of 50ms (T = 50ms).

Grayscale is shown as reference.

All these recent representations normalize the event

timestamps and histograms to be relative values within the

interval W .

Inspired by all this prior work, we propose an alternative

representation that combines the best ideas demonstrated so

far: the 2-channels of event histograms to encode the spatial

distribution of events, together with information regarding

all timestamps occurred during the integrated time interval.

Our proposed representation. We propose a 6-channel

image representation. The first two channels are the his-

togram of positive and negative events (eq. 3). The remain-

ing four channels are a simple but effective way to store

information relative to all event timestamps happening dur-

ing interval W . We could see it as a way to store how they

are distributed along T rather than selecting just one of the

timestamps. We propose to store the mean (M ) and stan-

dard deviation (S) of the normalized timestamps of events

happening at each pixel (xi, yi), computed separately for

the positive and negative events, as follows:

M(x, y, p) =
1

Hist(x, y, p)

N∑

i=1,tiǫW

tiδ(xi, x)δ(yi, y)δ(pi, p),

(5)

S(x, y, p) =

√

√

√

√

√

√

√

N
∑

i=1,tiǫW

(tiδ(xi, x)δ(yi, y)δ(pi, p) − Mean(x, y, p))
2

Hist(x, y, p) − 1
.

(6)

Then, our representation consists of these six 2D-

channels: Hist(x, y,−1), Hist(x, y,+1), M(x, y,−1),
M(x, y,+1), S(x, y,−1), S(x, y,+1). Figure 2 shows a

visualization of some of these channels. In the event rep-

resentation images, the brighter the pixels, the higher the

value encoded, e.g., white means the highest number of neg-

ative events in the Hist(x, y,−1).

3.3. Semantic Segmentation from Event Data

CNNs have already been shown to work well on dense

event-data representations, detailed in previous section [24,

36], therefore we explore a CNN based architecture to learn

a different visual task, semantic segmentation.

Figure 3. Semantic segmentation from event based cameras. We

process the different 2D event-data encodings with our encoder-

decoder architecture based on Xception [7] (Sec. 3.3 for more

details). Best viewed in color.

Semantic segmentation is often modeled as a per-pixel

classification, and therefore the output of semantic segmen-

tation models has the same resolution that the input. As

previously mentioned, there are plenty of recent success-

ful CNN-based approaches to solve this problem both us-

ing RGB data and additional modalities. We have built

an architecture inspired on current state-of-the-art semantic

segmentation CNNs, slightly adapted to use the event data

encodings. Related works commonly follow an encoder-

decoder architecture, as we do. As the encoder, we use the

well-known Xception model [7], which has been shown to

outperform other encoders, both in classification [7] and se-

mantic segmentation tasks [5]. As the decoder, also follow-

ing state-of-the-art works [4, 5], we build a light decoder,

concentrating the heavy computation on the encoder. Our

architecture also includes features from the most success-

ful recent models for semantic segmentation, including: the

use of skip connections to help the optimization of deep ar-

chitectures [16, 17] to avoid the vanishing gradient problem

and the use of an auxiliary loss [33] which also improves

the convergence of the learning process. Fig. 3 shows a di-

agram of the architecture built in this work, with the multi-

channel event representation as network input.

As similar architectures, we perform the training opti-

mization via back-propagation of the loss, calculated as the

summation of all per-pixel losses, through the parameter

gradients. We use the common soft-max cross entropy loss

function (L) described in eq. (7):

L = −
1

N

N
∑

j=1

M
∑

c=1

yc,j ln(ŷc,j), (7)



Dataset Classes: flat (road and pavement), background (construction and sky), object, vegetation, human, vehicle

Train Sequences Selected suitable sequence intervals Num. Frames

1487339175 [0, 4150), [5200, 6600) 5550

1487842276 [1310, 1400), [1900, 2000), [2600, 3550) 1140

1487593224 [870, 2190) 995

1487846842 [380, 500), [1800, 2150), [2575, 2730), [3530, 3900) 1320

1487779465 [1800, 3400), [4000, 4700), [8400, 8630), [8800, 9160), [9920, 10175), [18500, 22300) 6945

TOTAL: 15950

Test Sequences Selected suitable sequence intervals Num. Frames

1487417411 [100, 1500), [2150, 3100), [3200, 4430), [4840, 5150) 3890

Table 1. Summary of Ev-Seg Data which consists of several intervals of some sequences of the DDD17 dataset.

where N is the number of labeled pixels and M is the num-

ber of classes. yc,j is a binary indicator of pixel j belonging

to class c (ground truth). ŷc,j is the CNN predicted proba-

bility of pixel j belonging to class c.

4. Ev-Seg: Event-Segmentation Data

The Ev-Seg data is an extension for semantic segmenta-

tion of the DDD17 dataset [2]. The DDD17 dataset con-

sists of 40 sequences of different driving set-ups. These se-

quences were recorded on different scenarios (e.g., motor-

ways and urban scenarios). This dataset provides synchro-

nized grayscale and event-based information but, it does not

provide semantic segmentation labels.

Our extension includes generated (automatically gener-

ated, non-manual annotations) semantic segmentation la-

bels to be used as ground truth for a large subset of that

dataset. Besides the labels, to facilitate replication and fur-

ther experimentation, together with the labeling, we also

publish the selected subset of grayscale images and corre-

sponding event data encoded with three different represen-

tations (Maqueda et al. [24], Zhu et al. [36] and the new

one proposed in this work).

Generating the labels. Besides the obvious burden

of manually labeling a semantic segmentation per-pixel

ground truth, if we think of performing this task directly on

the event-based data it turns out even more challenging. We

only need to look at any of the event representations avail-

able (see Fig. 1), to realize that for the human eye is hard to

distinguish many of the classes there if the grayscale image

is not side-by-side. Other works have shown how CNNs are

robust to training with noise [31] or approximated labels[1],

including the work of Chen et al. [6] that also successfully

uses generated labels from grayscale for object detection in

event-based data. We then propose to use the corresponding

grayscale images to generate an approximated set of labels

for training, which we demonstrate is enough to train mod-

els to segment directly on event-based data.

To generate these approximated semantic labels, we per-

formed the following three steps.

First, we have trained a CNN for semantic segmen-

tation on the well known urban environment dataset

Cityscapes [9], but using grayscale images. The architec-

ture used for this step is the same architecture described in

subsection 3.3, which follows state-of-the-art components

for semantic segmentation. This grayscale segmentation

model was trained for 70 epochs with a learning rate of 1e-

4. The final model obtains 83% categories MIoU on the

Cityscapes validation data. This is still a bit far from the

top results obtained on that dataset with RGB images (92%

MIoU), but enough quality for our the process.

Secondly, with this grayscale model, we obtained the se-

mantic segmentation on all grayscale images of the selected

sequences (we detail next which sequences were used and

why). These segmentations are what we will consider the

labels to train our event-based segmentation model.

Lastly, as a final post-processing step on the ground truth

labels, we cropped the bottom part of all the images, i.e., 60

bottom rows of the image it always contains the car dash-

board and it only introduces noise into the generated labels.

Subset of DDD17 sequences selection. As previously

mentioned, we have not generated the labels for all the

DDD17 data. We next discuss the reasons and selection

criteria that we followed.

Some DDD17 sequences did not give good labels when

being pass through the CNN. There are several reasons for

this. As the data domain available to train the base grayscale

semantic segmentation model was Cityscapes data, which is

an urban domain, we selected only the DDD17 sequences

from urban scenarios. Besides, only images with enough

contrast (not too bright, not too dark) are likely to provide

a good generated ground truth. Therefore, we only selected

sequences which were recorded during day-time, with no

extreme overexposure. Given these restrictions, only six se-

quences approximately matched them. Therefore, we per-

formed a manual more detailed annotation of the intervals

in each of these sequences where the restrictions applied

(details on Table 1).

Data summary. Table 1 shows a summary of the con-

tents of the Ev-Seg data. From the six sequences selected

as detailed previously, five sequences were used as training

data and one sequence was used for testing. We chose for



Grayscale Label

Figure 4. Examples of the test sequence. Semantic label im-

ages (right) have been generated from the grayscale images (left)

through a CNN trained on a grayscale version of Cityscapes.

testing the sequence with more homogeneous class distribu-

tion, i.e., that contained more amount of labels of categories

which appears less such as the human/pedestrian label.

The labels have the same categories than the well-known

Cityscapes dataset [9] (see Table 1), with the exception of

sky and construction categories. Although these two cat-

egories were properly learned in the Cityscapes dataset,

when performing inferences on the DDD17 dataset with

grayscale images, these categories were not correctly gener-

ated due to the domain-shift. Therefore in our experiments,

those two categories are learned together, as if they were

the same thing. This domain shift between the Cityscapes

and DDD17 datasets was also the cause of generating the

Cityscapes categories instead of its classes.

Figure 4 shows three examples of grayscale images and

corresponding generated segmentation that belong to our

extension of the DDD17 dataset. We can see that although

the labels are not as perfect as if manually annotated (and

as previously mentioned, classes such as building and sky

were not properly learned using only grayscale), they are

pretty accurate and well defined.

5. Experimental Validation

5.1. Experiment Set­up and Metrics

Metrics. Our work addresses the semantic segmentation

problem, i.e., per pixel classification, using event cameras.

Thus, we evaluate our results on the standard metrics for

classification and semantic segmentation: Accuracy and

Mean Intersection over Union (MIoU) .

In semantic segmentation, given a predicted image ŷ and

a ground-truth image y, and being N their number of pixels,

which can be classified in C different classes, the accuracy

metric, eq. (8) is computed as:

Accuracy(y, ŷ) =
1

N

N
∑

i=1

δ(yi, ŷi), (8)

and the MIoU is calculated per class as:

MIoU(y, ŷ) =
1

C

C∑

j=1

∑N

i=1
δ(yi,c, 1)δ(yi,c, ŷi,c)∑N

i=1
max(1, δ(yi,c, 1) + δ(ŷi,c, 1))

,

(9)

where δ denotes the Kronecker delta function, yi indicates

the class where pixel i belongs to, and yi,c is a boolean that

indicates if pixel i belongs to a certain class c.

Set-up. We perform the experiments using the CNN ex-

plained in Sec. 3.3. and the Ev-Seg data detailed in Sec.

4. We train all model variations from scratch using: the

Adam optimizer with an initial learning rate of 1e− 4 and a

polynomial learning rate decay schedule. We train for 30K
iterations using a batch size of 8 and during training we

perform several data augmentation steps: crops, rotations

(-15◦, 15◦), vertical and horizontal shifts (-25%, 25%) and

horizontal flips. Regarding the event information encod-

ing, for training, we always use an integration time interval

T = 50ms which has been shown to perform well on this

dataset [24].

5.2. Event Semantic Segmentation

Input representation comparison. A good input repre-

sentation is very important for a CNN to properly learn

and exploit the input information. Table 2 compares sev-

eral semantic segmentation models trained with different

input representations. The top three rows correspond to

event-based representations. We compare a basic dense

encoding of event locations, a dense encoding which also

includes temporal information and our proposed encoding

(see Sec.3.2. for details). Our event encoding performs

slightly but consistently better on the semantic segmenta-

tion task on the different metrics and evaluations consid-

ered. Fig. 5 shows a few visual examples of these results.

All models (same architecture, just trained with differ-

ent inputs) have been trained with data encoded using in-

tegration intervals of 50ms, but we also evaluate them us-

ing different interval sizes. This is an interesting evalua-

tion because by changing the time interval, in which the

event information is aggregated, we somehow simulate dif-

ferent camera movement speeds. In other words, intervals

of 50ms or 10ms may encode exactly the same movement

but at different speeds. This point is pretty important be-

cause, in real scenarios, models have to perform well at

different speeds. We can see that all models perform just

slightly worse on test data encoded with different intervals

sizes (10ms, 250ms) that the integration time used during



Accuracy MIoU Accuracy MIoU Accuracy MIoU

Input representation 50ms 50ms 10ms 10ms 250ms 250ms

Basic dense encoding [24] 88.85 53.07 85.06 42.93 87.09 45.66

Temporal dense encoding [36] 88.99 52.32 86.35 43.65 85.89 45.12

Ours 89.76 54.81 86.46 45.85 87.72 47.56

Grayscale 94.67 64.98 94.67 64.98 94.67 64.98

Grayscale & Ours 95.22 68.36 95.18 67.95 95.29 68.26

Table 2. Semantic segmentation performance of different input representations on the test Ev-Seg data. Models trained using time intervals

(T ) of 50ms but tested with different T values: 50ms, 10ms and 250ms.

Basic dense Temporal dense Grayscale

Grayscale img encoding [24] encoding [36] Ours Grayscale & Ours GT Labels

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Semantic segmentation on several test images from Ev-Seg data. Results using different input representations of event data only,

(b) to (d), or using grayscale data (e) and (f). Grayscale original image (a) and ground truth labels are shown for visualization purposes.

Models trained and tested on time intervals of 50ms. Best viewed in color.

training (50ms), see Fig. 6 examples. There are two main

explanations for why the models are performing similarly

on different integration intervals: 1) the encodings are nor-

malized and 2) the training data contains different camera

speeds. Both things help to generalize better at different

time intervals or movement speeds.

Event vs conventional cameras. Table 2 also includes,

in the two bottom rows, results using the corresponding

grayscale image for the semantic segmentation task.

Although conventional cameras capture richer pure ap-

pearance information than event cameras, event cameras

provide motion information, which is also very useful for

the semantic segmentation task. In examples of results us-

ing grayscale data from Fig. 5(e), (f), we can see how event

information helps for example to better segment moving ob-

jects, such as pedestrians (in red in those examples) or to

refine object borders. While conventional cameras suffer

detecting small objects and in general, with any recognition

on extreme illumination (bright or dark) conditions, event

cameras suffer more in recognizing objects with no move-

ment (because they move at the same speed than the camera

or because they are too far to appreciate their movement).

Conventional cameras perform better on their own for

semantic segmentation than event-based cameras on their

own. However, our results show that semantic segmenta-



T = 250ms T = 50ms T = 10ms

Figure 6. Semantic segmentation results (bottom) using different

integration interval size (T ) for the event data representation (top).

Results obtained with a model trained only on 50ms integrated

event information encoded with our proposed representation.

Grayscale Event representation

Figure 7. Semantic segmentation result (bottom) on a static se-

quence, i.e, a car waiting at a crossing. This is an obvious adver-

sarial case for event cameras, due to lack of event information.

tion results are better when combining both of them. This

suggests they are learning complementary information. In-

terestingly, we should note that the data available for train-

ing and evaluation is precisely data where we could prop-

erly segment the grayscale image, therefore slightly more

beneficial for grayscale images than event-based data (i.e.,

there is no night-time image included in the evaluation set

because there is no ground truth for those).

Two clear complementary situations from our experi-

ments: 1) On one hand, it is already known that one the

major drawback of event cameras is that objects that do not

move with respect to the camera do not trigger events, i.e.,

are invisible. Fig. 7 shows an example of a car waiting at

a pedestrian crossing, where we see that while conventional

cameras can perfectly see the whole scene, event cameras

barely capture any information; 2) On the other hand, event

cameras are able to capture meaningful information on situ-

ations where scene objects are not visible at all for conven-

tional vision sensors, e.g., difficult lighting environments.

This is due to their high dynamic range, Fig. 8 illustrates an

example of a situation where neither of the grayscale nor the

event-based models have been trained for. The event-based

model performs much better due to the minor domain-shift

on the input representation.

Grayscale Event representation

Figure 8. Semantic segmentation (bottom) on extreme lighting

conditions (night-time) with different input representations (top):

grayscale image and our event data representation. Corresponding

models trained only on good illuminated daytime samples. This is

an obvious adversarial case for conventional cameras, due to lack

of information in the grayscale capture.

6. Conclusions and Future Work

This work includes the first results on semantic seg-

mentation using event camera information. We build an

encoder-decoder architecture which is able to learn seman-

tic segmentation only from event camera data. Since there

is no benchmark available for this problem, we propose how

to generate automatic but approximate semantic segmenta-

tion labels for some sequences of the DDD17 event-based

dataset. Our evaluation shows how this approach allows the

effective learning of semantic segmentation models from

event data. In order to feed the model, we also propose a

novel event camera data representation, which encodes both

the event histogram and their temporal distribution. Our se-

mantic segmentation experiments, comparing different rep-

resentations, show that our approach allows the effective

learning of semantic segmentation models and that our ap-

proach outperforms other previously used event representa-

tions, even when evaluating in different time intervals. We

also compare the segmentation achieved only from event

data to the segmentation from conventional images, show-

ing their benefits, their drawbacks and the benefits of com-

bining both sensors for this task. For future work, one of the

main challenges is still obtaining and generating more and

better semantic segmentation labels, through alternative do-

main adaptation approaches and/or event camera simulators

(they currently do not provide this kind of labels).
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