
Asynchronous Convolutional Networks for Object Detection

in Neuromorphic Cameras

Marco Cannici Marco Ciccone Andrea Romanoni Matteo Matteucci

Politecnico di Milano, Italy

{marco.cannici,marco.ciccone,andrea.romanoni,matteo.matteucci}@polimi.it

Abstract

Event-based cameras, also known as neuromorphic cam-

eras, are bioinspired sensors able to perceive changes in the

scene at high frequency with low power consumption. Be-

coming available only very recently, a limited amount of

work addresses object detection on these devices. In this

paper we propose two neural networks architectures for ob-

ject detection: YOLE, which integrates the events into sur-

faces and uses a frame-based model to process them, and

fcYOLE, an asynchronous event-based fully convolutional

network which uses a novel and general formalization of the

convolutional and max pooling layers to exploit the sparsity

of camera events. We evaluate the algorithm with different

extensions of publicly available datasets, and on a novel

synthetic dataset.

1. Introduction

Fundamental techniques underlying Computer Vision

are based on the ability to extract meaningful features. To

this extent, Convolutional Neural Networks (CNNs) rapidly

became the first choice in many computer vision applica-

tions such as image classification [18, 45, 13, 48], object

detection [42, 41, 25], semantic scene labeling [49, 37, 26],

and they have been recently extended also to non-euclidean

domains such as manifolds and graphs [16, 31]. In most of

the cases the input of these networks are images.

In the meanwhile, neuromorphic cameras [43, 36, 3] are

becoming more and more widespread. These devices are

bio-inspired vision sensors that attempt to emulate the func-

tioning of biological retinas. As opposed to conventional

cameras, which generate frames at a constant frame rate,

these sensors output data only when a brightness change

is detected in the field of view. Whenever this happens,

an event e = 〈x, y, ts, p 〉 is generated indicating the po-

sition (x, y), the instant ts at which the change has been

detected and its polarity p ∈ {1,−1}, i.e., if the bright-

ness change is positive or negative. The result is a sen-

sor able to produce a stream of asynchronous events that

sparsely encodes changes with microseconds resolution and

with minimum requirements in terms of power consump-

tion and bandwidth. The growth in popularity of these type

of sensors, and their advantages in terms of temporal res-

olution and reduced data redundancy, have led to fully ex-

ploit the advantages of event-based vision for a variety of

applications, e.g., object tracking [39, 29, 11], visual odom-

etry [32, 40], and optical flow estimation [2, 24, 47].

Spiking Neural Networks (SNNs) [27], a processing

model aiming to improve the biological realism of artificial

neural networks, are one of the most popular neural model

able to directly handle events. Despite their advantages in

terms of speed and power consumption, however, training

deep SNNs models on complex tasks is usually very dif-

ficult. To overcome the lack of scalable training proce-

dures, recent works have focused on converting pre-trained

deep networks to SNNs, achieving promising results even

on complex tasks [14, 5, 8].

An alternative solution to deal with event-based cameras

is to make use of frame integration procedures and conven-

tional frame-based networks [35] which can instead rely on

optimized training procedures. Recently, other alternatives

to SNNs making use of hierarchical time surfaces [20] and

memory cells [46] have also been introduced. Another so-

lution, proposed in [33], suggests instead the use of LSTM

cells to accumulate events and perform classification. An

extension of this work making use of attention mechanisms

has also been proposed in [4].

Although event-cameras are becoming increasingly pop-

ular, only very few datasets for object detection in event

streams are available, and a limited number of object detec-

tion algorithms has been proposed [23, 6, 38].

In this paper we introduce a novel hybrid approach to ex-

tract features for object detection problems using neuromor-

phic cameras. The proposed framework allows the design of

object detection networks able to sparsely compute features

while still preserving the advantages of conventional neu-

ral networks. More importantly, networks implemented us-

ing the proposed procedure are asynchronous, meaning that

1



computation is only performed when a sequence of events

arrive and only where previous results need to be recom-

puted.

In Section 3 the convolution and max-pooling operations

are reformulated by adding an internal state, i.e., a memory

of the previous prediction, that allows us to sparsely recom-

pute feature maps. An asynchronous fully-convolutional

network for event-based object detection which exploits this

formulation is finally described in Section 3.4.

2. Background

Leaky Surface. The basic component of the proposed ar-

chitectures is a procedure able to accumulate events. Sparse

events generated by the neuromorphic camera are integrated

into a leaky surface, a structure that takes inspiration from

the functioning of Spiking Neural Networks (SNNs) to

maintain memory of past events. A similar mechanism has

already been proposed in [7]. Every time an event with co-

ordinates (xe, ye) and timestamp tst is received, the cor-

responding pixel of the surface is incremented of a fixed

amount ∆incr. At the same time, the whole surface is decre-

mented by a quantity which depends on the time elapsed be-

tween the last received event and the previous one. The de-

scribed procedure can be formalized by the following equa-

tions:

qtxs,ys
= max(pt−1

xs,ys
− λ ·∆ts, 0) (1)

ptxs,ys
=

{

qtxs,ys
+∆incr if(xs, ys)

t = (xe, ye)
t

qtxs,ys
otherwise

, (2)

where ptxs,ys
is the value of the surface pixel in position

(xs, ys) of the leaky surface and ∆ts = tst − tst−1. To im-

prove readability in following equations, we name the quan-

tity (tst − tst−1) · λ as ∆leak. Notice that the effects of λ

and ∆incr are related: ∆incr determines how much infor-

mation is contained in each single event whereas λ defines

the decay rate of activations. Given a certain choice of these

parameters, similar results can be obtained by using, for in-

stance, a higher increment ∆incr and a higher temporal λ.

For this reason, we fix ∆incr = 1 and we vary only λ based

on the dataset to be processed. Pixel values are prevented

from becoming negative by means of the max operation.

Other frame integration procedures, such as the one

in [35], divide the time in predefined constant intervals.

Frames are obtained by setting each pixel to a binary value

(depending on the polarity) if at least an event has been re-

ceived in each pixel within the integration interval. With

this mechanism however, time resolution is lost and the

same importance is given to each event, even if it repre-

sents noise. The adopted method, instead, performs contin-

uous and incremental integration and is able to better handle

noise.

Similar procedures capable of maintaining time resolu-

tion have also been proposed, such as those that make use

of exponential decays [7, 19] to update surfaces, and those

relying on histograms of events [28]. Recently, the con-

cept of time surface has also been introduced in [20] where

surfaces are obtained by associating each event with tempo-

ral features computed applying exponential kernels to the

event neighborhood. Extensions of this procedure making

use of memory cells [46] and event histograms [1] have also

been proposed. Although these event representations better

describe complex scene dynamics, we make use of a sim-

pler formulation to derive a linear dependence between con-

secutive surfaces. This allows us to design the event-based

framework discussed in Section 3 in which time decay is

applied to every layer of the network.

Event-based Object Detection. We identified YOLO

[41] as a good candidate model to tackle the object detection

problem in event-based scenarios: it is fully-differentiable

and produces predictions with small input-output delays.

By means of a standard CNN and with a single forward

pass, YOLO is able to simultaneously predict not only the

class, but also the position and dimension of every object

in the scene. We used the YOLO loss and the previous

leaky surface procedure to train a baseline model which we

called YOLE: ”You Only Look at Events”. The architecture

is depicted in Figure 1. We use this model as a reference

to highlight the strengths and weaknesses of the framework

described in Section 3, which is the main contribution of

this work. YOLE processes 128 × 128 surfaces, it predicts

B = 2 bounding boxes for each region and classifies ob-

jects into C different categories.

Note that in this context, we use the term YOLO to refer

only to the training procedure proposed by [41] and not to

the specific network architecture. We used indeed a simpler

structure for our models as explained in Section 4. Nev-

ertheless, YOLE, i.e., YOLO + leaky surface, does not ex-

ploit the sparse nature of events; to address this issue, in the

next section, we propose a fully event-based asynchronous

framework for convolutional networks.

3. Event-based Fully Convolutional Networks

Conventional CNNs for video analysis treat every frame

independently and recompute all the feature maps entirely,

even if consecutive frames differ from each other only in

small portions. Beside being a significant waste of power

and computations, this approach does not match the nature

of event-based cameras.

To exploit the event-based nature of neuromorphic vi-

sion, we propose a modification of the forward pass of fully

convolutional architectures. In the following the convolu-

tion and pooling operations are reformulated to produce

the final prediction by recomputing only the features cor-

responding to regions affected by the events. Feature maps



128

128

16

64

64

32

32

32

Conv Layer
5x5x16

Maxpool Layer
2x2

Conv Layer 
5x5x32

Maxpool Layer 
2x2

2048
1024

Fully
connected

Fully
connected

<x,y,ts,p> Integrator

64

16

16

Conv Layer 
5x5x32

Maxpool Layer 
2x2

128

8

8

Conv Layer 
5x5x32

Maxpool Layer 
2x2

256
4

4

Conv Layer 
5x5x32

Maxpool Layer 
2x2

20 = C + 5 B

4
4

- 4 x 4 regions
- B = 2 bounding
  boxes per region
- C = 10 classes

Fully
connected

Figure 1. The YOLE detection network based on YOLO used to detect MNIST-DVS digits. The input surfaces are divided into a grid of

4× 4 regions which predict 2 bounding boxes each.

maintain their state over time and are updated only as a con-

sequence of incoming events. At the same time, the leak-

ing mechanism that allows past information to be forgotten,

acts independently on each layer of the CNN. This enables

features computed in the past to fade away as their visual in-

formation starts to disappear in the input surface. The result

is an asynchronous CNN able to perform computation only

when requested and at different rates. The network can in-

deed be used to produce an output only when new events ar-

rive, dynamically adapting to the timings of the input, or to

produce results at regular rates by using the leaking mecha-

nism to update layers in absence of new events.

The proposed framework has been developed to extend

the YOLE detection network presented in Section 2. Nev-

ertheless, this method can be applied to any convolutional

architecture to perform asynchronous computation. A CNN

trained to process frames reconstructed from streams of

events can indeed be easily converted into an event-based

CNN without any modification on its layers composition,

and by using the same weights learned while observing

frames, maintaining its output unchanged.

3.1. Leaky Surface Layer

The procedure used to compute the leaky surface de-

scribed in Section 2 is embedded into an actual layer of

the proposed framework. Furthermore, to allow subsequent

layers to locate changes inside the surface, the following in-

formation are also forwarded to the next layer: (i) the list

of incoming events. (ii) ∆leak, which is sent to all the sub-

sequent layers to update feature maps not affected by the

events. (iii) the list of surface pixels which have been reset

to 0 by the max operator in Equation (1).

3.2. Event­based Convolutional Layer (e­conv)

The event-based convolutional (e-conv) layer we pro-

pose uses events to determine where the input feature map

has changed with respect to the previous time step and,

therefore, which parts of its internal state, i.e., the feature

map computed at the previous time step, must be recom-

puted and which parts can be reused. We use a procedure

similar to the one described in the previous section to let

features decay over time. However, due to the transforma-

tions applied by previous layers and the composition of their

activation functions, ∆leak may act differently in different

parts of the feature map. For instance, the decrease of a

pixel intensity value in the input surface may cause the value

computed by a certain feature in a deeper layer to decrease,

but it could also cause another feature of the same layer

to increase. The update procedure, therefore, must also be

able to accurately determine how a single bit of information

is transformed by the network through all the previous lay-

ers, in any spatial location. We face this issue by storing an

additional feature map, F(n), and by using a particular class

of activation functions in the hidden layers of the network.

Let’s consider the first layer of a CNN which processes

surfaces obtained using the procedure described in the pre-

vious section and which computes the convolution of a set

of filters W with bias b and activation function g(·). The

computation performed on each receptive field is:

ytij(1) = g

(

∑

h

∑

k

xt
h+i,k+jWhk(1)

+ b
(1)

)

= g(ỹtij(1)),

(3)

where h, k select a pixel xt
h+i,k+j in the receptive field of

the output feature (i, j) and its corresponding value in the

kernel W , whereas the subscript (1) indicates the hidden-

layer of the network (in this case the first after the leaky

surface layer).

When a new event arrives, the leaky surface layer de-

creases all the pixels by ∆leak, i.e., a pixel not directly af-

fected by the event becomes: xt+1
hk = xt

hk − ∆t+1
leak, with

∆t+1
leak > 0. At time t+ 1 Equation (3) becomes:

yt+1
ij(1)

= g

(

∑

h

∑

k

xt+1
h+i,k+jWhk(1)

+ b
(1)

)

= g

(

∑

h

∑

k

(xt
h+i,k+j −∆t+1

leak)Whk(1)
+ b

(1)

)

= g

(

ỹtij(1) −∆t+1
leak

∑

h

∑

k

Whk(1)

)

.

(4)



If g(·) is (i) a piecewise linear activation function g(x) =
{αi · x if x ∈ Di}, as ReLU or Leaky ReLU, and we as-

sume that (ii) the updated value does not change which lin-

ear segment of the activation function the output falls onto

and, in this first approximation, (iii) the leaky surface layer

does not restrict pixels using max(·, 0), Equation 4 can be

rewritten as it follows:

yt+1
ij(1)

= ytij(1) −∆t+1
leakαij(1)

∑

h

∑

k

Whk(1)
, (5)

where αij(1) is the coefficient applied by the piecewise func-

tion g(·) which depends on the feature value at position

(i, j). When the previous assumption is not satisfied, the

feature is recomputed as its receptive field was affected by

an event (i.e., applying the filter W locally to xt+1).

Consider now a second convolutional layer attached to

the first one:

y
t+1
ij(2)

= g





∑

h,k

y
t+1
i+h,j+k(1)

Whk(2)
+ b

(2)





= g







∑

h,k






y
t
i+h,j+k(1)

− ∆
t+1
leak

αi+h,j+k(1)

∑

h′,k′

W
h′k′

(1)






Whk(2)

+ b
(2)







= y
t
ij(2)

− ∆
t+1
leak

αij(2)

∑

h,k






αi+h,j+k(1)

∑

h′,k′

W
h′k′

(1)






Whk(2)

= y
t
ij(2)

− ∆
t+1
leak

αij(2)

∑

h,k

F
t+1
h+i,k+j(1)

Whk(2)
= y

t
ij(2)

− ∆
t+1
leak

F
t+1
ij(2)

.

(6)

The previous equation can be extended by induction as it

follows:

yt+1
ij(n)

= ytij(n)
−∆t+1

leakF
t+1
ij(n)

,

with F
t+1
ij(n)

= αij(n)

∑

h

∑

k

F
t+1
i+h,j+k(n−1)

Whk(n)
if n > 1 ,

(7)

where Fij(n)
expresses how visual inputs are transformed

by the network in every receptive field (i, j), i.e., the com-

position of the previous layers activation functions.

Given this formulation, the max operator applied by the

leaky surface layer can be interpreted as a ReLU, and Equa-

tion (5) becomes:

yt+1
ij(1)

= ytij(1) −∆t+1
leakαij(1)

∑

h

∑

k

F
t+1
i+h,j+k(0)

Whk(1)
,

(8)

where the value Fi+h,j+k(0)
is 0 if the pixel xi+h,j+k ≤ 0

and 1 otherwise.

Notice that Fij(n)
needs to be updated only when the cor-

responding feature changes enough to make the activation

function use a different coefficient α, e.g., from 0 to 1 in

case of ReLU. In this case F(n) is updated locally in cor-

respondence of the change by using the update matrix of

the previous layer and by applying Equation 7 only for the

features whose activation function has changed. Events are

used to communicate the change to subsequent layers so

that their update matrix can also be updated accordingly.

The internal state of the e-conv layer, therefore, com-

prises the feature maps yt−1
(n) and the update values F

t−1
(n)

computed at the previous time step. The initial values of

the internal state are computed making full inference on a

blank surface; this is the only time the network needs to be

executed entirely. As a new sequence of events arrives the

following operations are performed (see Figure 3(a)):

i. Update F t−1
(n) locally on the coordinates specified by the

list of incoming events (Eq. (7)). Note that we do not

distinguish between actual events and those generated

by the use of a different slope in the linear activation

function.

ii. Update the feature map y(n) with Eq. (7) in the loca-

tions which are not affected by any event and gener-

ate an output event where the activation function coef-

ficient has changed.

iii. Recompute y(n) by applying W locally in correspon-

dence of the incoming events and output which recep-

tive field has been affected.

iv. Forward the feature map and the events generated in

the current step to the next layer.

3.3. Event­based Max Pooling Layer (e­max­pool)

The location of the maximum value in each receptive

field of a max-pooling layer is likely to remain the same

over time. An event-based pooling layer, hence, can exploit

this property to avoid recomputing every time the position

of maximum values.

The internal state of an event-based max-pooling (e-

max-pool) layer can be described by a positional matrix

I
t
(n), which has the shape of the output feature map pro-

duced by the layer, and which stores, for every receptive

field, the position of its maximum value. Every time a se-

quence of events arrives, the internal state I
t
(n) is sparsely

updated by recomputing the position of the maximum val-

ues in every receptive field affected by an incoming event.

The internal state is then used both to build the output fea-

ture map and to produce the update matrix F t
(n) by fetching

the previous layer on the locations provided by the indices

I
t
ij(n)

. For each e-max-pool layer, the indices of the recep-

tive fields where the maximum value changes are commu-

nicated to the subsequent layers so that the internal states

can be updated accordingly. This mechanism is depicted in

Figure 3(b).

Notice that the leaking mechanism acts differently in dis-

tinct regions of the input space. Features inside the same

receptive field can indeed decrease over time with differ-

ent speeds as their update values F
t
ij(n)

could be differ-

ent. Therefore, even if no event has been detected inside

a region, the position of its maximum value might change.



features and

F(n) matrices

Leaky
Surface

Figure 2. fcYOLE: a fully-convolutional detection network based on YOLE. The last layer is used to map the feature vectors into a set of

20 values which define the parameters of the predicted bounding boxes.

(a) (b)

Figure 3. The structure of the e-conv (a) and e-max-pooling layers (b). The internal states and the update matrices are recomputed locally

only where events are received (green cells) whereas the remaining regions (depicted in yellow) are obtained reusing the previous state.

However, if an input feature M has the minimum update

rate FM(n−1)
among features in its receptive field R and

it also corresponds to the maximum value in R, the cor-

responding output feature will decrease slower than all the

others in R and its value will remain the maximum. In this

case, its index I
t
(n)R

does not need to be recomputed until

a new event arrives in R. We check if the maximum has to

be recomputed for each receptive field affected by incoming

events and also in all positions where the previous condition

does not hold.

3.4. Event FCN for Object Detection (fcYOLE)

To fully exploit the event-based layers presented so far,

the YOLE model described in Section 2 needs to be con-

verted into a fully convolutional object detection network

replacing all its layers with their event-based versions (see

Figure 3). Moreover, fully-connected layers are replaced

with 1 × 1 e-conv layers which map features extracted by

the previous layers into a precise set of values defining

the bounding boxes parameters predicted by the network.

Training was first performed on a network composed of

standard layers; the learned weights were then used with

e-conv and e-max-pool layers during inference.

This architecture divides the 128×128 field of view into

a grid of 4× 4 regions that predicts 2 bounding boxes each

and classify the detected objects into C different classes.

The last 1 × 1 e-conv layer is used to decrease the dimen-

sionality of the feature vectors and to map them into the

right set of parameters, regardless of their position in the

field of view.

Moreover, this architecture can be used to process sur-

faces of different sizes without the need to re-train or re-

design it. The subnetworks processing 32 × 32 regions, in

fact, being defined by the same set of parameters, can be

stacked together to process even larger surfaces.

4. Experiments

4.1. Datasets

Only few event-based object recognition datasets are

publicly available in the literature. The most popular

ones are: N-MNIST [34], MNIST-DVS [44], CIFAR10-

DVS [22], N-Caltech101 [34] and POKER-DVS [44].

These datasets are obtained from the original MNIST [21],

CIFAR-10 [17] and Caltech101 [10] datasets by record-

ing the original images with an event camera while mov-

ing the camera itself or the images of the datasets. We

performed experiments on N-Caltech101 and on modified

versions of N-MNIST and MNIST-DVS for object detec-

tion, i.e., Shifted N-MNIST and Shifted MNIST-DVS, and on

an extended version of POKER-DVS, namely OD-Poker-

DVS. Moreover we also perform experiments on a synthetic

dataset, named Blackboard MNIST, showing digits written

on a blackboard. A detailed description of these datasets is

provided in the supplementary materials.

Shifted N-MNIST The N-MNIST [34] dataset is a con-

version of the popular MNIST [21] image dataset for com-

puter vision. We enhanced this collection by building a



slightly more complex set of recordings. Each sample is

indeed composed of two N-MNIST samples placed in two

random non-overlapping locations of a bigger 124 × 124
field of view. Each digit was also preprocessed by extract-

ing its bounding box which was then moved, along with the

events, in its new position of the bigger field of view. The

final dataset is composed of 60, 000 training and 10, 000
testing samples.

Shifted MNIST-DVS We used a similar procedure to ob-

tain Shifted MNIST-DVS recordings. We first extracted

bounding boxes with the same procedure used in Shifted N-

MNIST and then placed them in a 128× 128 field of view.

We mixed MNIST-DVS scale4, scale8 and scale16 samples

within the same recording obtaining a dataset composed of

30, 000 samples.

OD-Poker-DVS The Poker-DVS dataset is a small col-

lection of neuromorphic samples showing poker card pips

obtained by extracting 31 × 31 symbols from three deck

recordings. We used the tracking algorithm provided with

the dataset to track pips and enhance the original uncut deck

recordings with their bounding boxes. We finally divided

these recordings into a set of shorter examples obtaining a

collection composed of 218 training and 74 testing samples.

Blackboard MNIST We used the DAVIS simulator re-

leased by [32] to build our own set of synthetic recordings.

The resulting dataset consists of a number of samples show-

ing digits written on a blackboard in random positions and

with different scales. We preprocessed a subset of images

from the original MNIST dataset by removing their back-

ground and by making them look as if they were written

with a chalk. Sets of digits were then placed on the im-

age of a blackboard and the simulator was finally run to

obtain event-based recordings and the bounding boxes of

every digit visible within the camera field of view. The re-

sulting dataset is the union of three simulations featuring

increasing level of variability in terms of camera trajecto-

ries and digit dimensions. The overall dataset is composed

of 2750 training and 250 testing samples.

N-Caltech101 The N-Caltech101 [34] collection is the

only publicly available event-based dataset providing

bounding boxes annotations. We split the dataset into 80%
training and 20% testing samples using a stratified split.

Since no ground truth bounding boxes are available for the

background class, we decided not to use this additional cat-

egory in our experiments.

4.2. Experiments Setup

Event-based datasets, especially those based on MNIST,

are generally simpler than the image-based ones used to

train the original YOLO architecture. Therefore, we de-

signed the MNIST object detection networks taking inspi-

ration from the simpler LeNet [21] model composed of 6
conv-pool layers for feature extraction. Both YOLE and

fcYOLE share the same structure up to the last regres-

sion/classification layers.

For what concerns the N-Caltech101 dataset, we used a

slightly different architecture inspired by the structure of the

VGG16 model [45]. The network is composed by only one

layer for each group of convolutional layers, as we noticed

that a simpler architecture achieved better results. More-

over, the dimensions of the last fully-connected layers have

been adjusted such that the surface is divided into a grid of

5 × 7 regions predicting B = 2 bounding boxes each. As

in the original YOLO architecture we used Leaky ReLU for

the activation functions of hidden layers and a linear activa-

tion for the last one.

In all the experiments the first 4 convolutional layers

have been initialized with kernels obtained from a recog-

nition network pretrained to classify target objects, while

the remaining layers using the procedure proposed in [12].

All networks were trained optimizing the multi-objective

loss proposed by [41] using Adam [15], learning rate 10−4,

β1 = 0.9, β2 = 0.999 and ǫ = 10−8. The batch size

was chosen depending on the dataset: 10 for Shifted N-

MNIST, 40 for Shifted MNIST-DVS and N-Caltech101, 25
for Blackboard MNIST and 35 for Poker-DVS with the aim

of filling the memory of the GPU optimally. Early-stopping

was applied to prevent overfitting using validation sets with

the same size of the test set.

4.3. Results and Discussion

Detection performance of YOLE. The YOLE network

achieves good detection results both in terms of mean av-

erage precision (mAP) [9] and accuracy, which in this case

is computed by matching every ground truth bounding box

with the predicted one having the highest intersection over

union (IOU), in most of the datasets. The results we ob-

tained are summarized in Table 3.

We used the Shifted N-MNIST dataset also to analyze

how detection performance changes when the network is

used to process scenes composed of a variable number of

objects, as reported in Table 4. We denote as v1 the results

obtained using scenes composed of a single digit and with

v2 those obtained with scenes containing two digits in ran-

dom locations of the field of view. We further tested the ro-

bustness of the proposed model by adding some challenging

noise. We added non-target objects (v2fr) in the form of five

8× 8 fragments, taken from random N-MNIST digits using

a procedure similar to the one used to build the Cluttered

Translated MNIST dataset [30], and 200 additional random

events per frame (v2fr+ns).

In case of multiple objects the algorithm is still able to

detect all of them, while, as expected, performance drops

both in terms of accuracy and mean average precision when

dealing with noisy data. Neverthelesss, we achieved very

good detection performance on the Shifted MNIST-DVS,



Table 1. YOLE Top-20 average precisions on N-Caltech101. Full table provided in the supplemental material.

M
o
to

rb
ik

es

ai
rp

la
n
es

F
ac

es

ea
sy

m
et

ro
n
o
m

e

la
p
to

p

d
o
ll

ar

b
il

l

u
m

b
re

ll
a

w
at

ch

m
in

ar
et

g
ra

n
d

p
ia

n
o

m
en

o
ra

h

in
li

n
e

sk
at

e

sa
x
o
p
h
o
n
e

st
ap

le
r

w
in

d
so

r

ch
ai

r

ro
o
st

er

y
in

y
an

g

L
eo

p
ar

d
s

tr
il

o
b
it

e

g
ar

fi
el

d

AP 97.8 95.8 94.7 88.3 88.1 86.5 85.9 84.2 81.3 81.3 80.7 75.1 68.4 68.1 65.2 64.5 63.3 62.9 62.5 62.3

Ntrain 480 480 261 20 49 32 45 145 46 61 53 19 24 27 34 31 36 120 52 22

Table 2. fcYOLE Top-20 average precisions on N-Caltech101. Full table provided in the supplemental material.

M
o
to

rb
ik

es

ai
rp

la
n
es

F
ac

es

ea
sy

w
at

ch

d
o
ll

ar

b
il

l

ca
r

si
d
e

g
ra

n
d

p
ia

n
o

m
en

o
ra

h

m
et

ro
n
o
m

e

u
m

b
re

ll
a

y
in

y
an

g

sa
x
o
p
h
o
n
e

m
in

ar
et

so
cc

er

b
al

l

L
eo

p
ar

d
s

d
ra

g
o
n
fl

y

st
o
p

si
g
n

w
in

d
so

r

ch
ai

r

ac
co

rd
io

n

b
u
d
d
h
a

AP 97.5 96.8 92.2 75.7 74.4 70.3 69.5 67.7 63.4 61.0 60.4 59.7 59.5 57.3 57.2 55.6 55.1 52.3 48.3 46.5

Ntrain 480 480 261 145 32 75 61 53 20 45 36 24 46 40 120 42 40 34 33 51

Table 3. Performance comparison between YOLE and fcYOLE.

S-MNIST-DVS Blackboard MNIST

fcYOLE YOLE fcYOLE YOLE

acc mAP acc mAP acc mAP acc mAP

94.0 87.4 96.1 92.0 88.5 84.7 90.4 87.4

OD-Poker-DVS N-Caltech101

fcYOLE YOLE fcYOLE YOLE

acc mAP acc mAP acc mAP acc mAP

79.10 78.69 87.3 82.2 57.1 26.9 64.9 39.8

Table 4. YOLE performance on S-N-MNIST variants.

S-N-MNIST

v1 v2 v2* v2fr v2fr+ns

accuracy 94.9 91.7 94.7 88.6 85.5

mAP 91.3 87.9 90.5 81.5 77.4

Blackboard MNIST and Poker-DVS datasets which repre-

sent a more realistic scenario in terms of noise. All of these

experiments were performed using the set of hyperparame-

ters suggested by the original work from [41]. However, a

different choice of these parameters, namely λcoord = 25.0
and λnoobj = 0.25, worked better for us increasing both the

accuracy and mean average precision scores (v2*).

The dataset in which the proposed model did not achieve

noticeable results is N-Caltech101. This is mainly ex-

plained by the increased difficulty of the task and by the

fact that the number of samples in each class is not evenly

balanced. The network, indeed, usually achieves good re-

sults when the number of training samples is high such as

with Airplanes, Motorbikes and Faces easy, and in cases in

which samples are very similar, e.g., inline skate (see Ta-

ble 1 and supplementary material). As the number of train-

ing samples decreases and the sample variability within the

class increases, however, the performance of the model be-

comes worse, behavior which explains the poor aggregate

scores we report in Table 3.

Detection performance of fcYOLE. With this fully-

convolutional variant of the network we registered a slight

decrease in performance w.r.t. the results we obtained using

YOLE, as reported in Table 3 and Table 2. This gap in per-

formance is mainly due to the fact that each region in fcY-

OLE generates its predictions by only looking at the visual

information contained in its portion of the field of view. In-

deed, if an object is only partially contained inside a region

the network has to guess the object dimensions and class by

only looking at a restricted region of the surface. It should

be stressed, however, that the difference in performance be-

tween the two architectures does not come from the use of

the proposed event layers, whose output are the same as the

conventional ones, but rather from the reduced expressive

power caused by the absence of fully-connected layers in

fcYOLE. Indeed, not removing them would have allowed

us to obtain the same performance of YOLE, but with the

drawback of being able to exploit event-based layers only

up to the first FC-layer, which has not been formalized yet

in an event-based form. Removing the last fully-connected

layers allowed us to design a detection network made of

only event-based layers and which uses also a significantly

lower number of parameters. In the supplementary mate-

rials we provide a video showing a comparison between

YOLE and fcYOLE predictions.

To identify the advantages and weaknesses of the pro-

posed event-based framework in terms of inference time we

compared our detection networks on two datasets, Shifted

N-MNIST and Blackboard MNIST. We group events into

batches of 10ms and average timings on 1000 runs. In the

first dataset the event-based approach achieved a 2x speedup

(22.6ms per batch), whereas in the second one it performed

slightly slower (43.2ms per batch) w.r.t. a network making

use of conventional layers (34.6ms per batch). The second

benchmark is indeed challenging for our framework since

changes are not localized in restricted regions. Our current

implementation is not optimized to handle noisy scenes ef-

ficiently. Indeed, additional experiments showed that asyn-

chronous CNNs are able to provide a faster prediction only

up to a 80% of event sparsity (where with sparsity we mean

the percentage of changed pixels in the reconstructed im-

age). Further investigations are out of the scope of this pa-

per and will be addressed in future works.



Shifted Shifted Blackboard

N-MNIST MNIST-DVS OD-Poker-DVS N-Caltech101 MNIST

Figure 4. Examples of YOLE predictions.

5. Conclusions

We proposed two different methods, based on the YOLO

architecture, to accomplish object detection in event-based

cameras. The first one, namely YOLE, integrates events

into a unique leaky surface. Conversely, fcYOLE relies

on a more general extension of the convolutional and max

pooling layers to directly deal with events and exploit their

sparsity by preventing the whole network to be reprocessed.

The obtained asynchronous detector dynamically adapts to

the timing of the events stream by producing results only

as a consequence of incoming events and by maintaining its

internal state, without performing any additional computa-

tion, when no events arrive. This novel event-based frame-

work can be used in every fully-convolutional architecture

to make it usable with event-cameras, even conventional

CNN for classification, although in this paper it has been

applied to object detection networks.

We analyzed the timing performance of this formaliza-

tion obtaining promising results. We are planning to ex-

tend our framework to automatically detect at runtime when

the use of event-based layers speeds up computation (i.e.,

changes affect few regions of the surface) or a complete re-

computation of the feature maps is more beneficial in order

to exploit the benefits of both approaches. Nevertheless, we

believe that a ad-hoc hardware implementation, would al-

low to better exploit the advantages of the proposed method

enabling a fair timing comparison with SNNs, which are

usually implemented in hardware.

Acknowledgements We would like to thank Prophesee for

helpful discussions on YOLE. The research leading to these re-

sults has received funding from project TEINVEIN: TEcnologie

INnovative per i VEicoli Intelligenti, CUP (Codice Unico Progetto

- Unique Project Code): E96D17000110009 - Call “Accordi per

la Ricerca e lInnovazione”, cofunded by POR FESR 2014-2020

(Programma Operativo Regionale, Fondo Europeo di Sviluppo

Regionale Regional Operational Programme, European Regional

Development Fund).



References

[1] L. Y. Alex Zihao Zhu. Ev-flownet: Self-supervised optical

flow estimation for event-based cameras. Robotics: Science

and Systems, Jan 2018. 2

[2] P. Bardow, A. J. Davison, and S. Leutenegger. Simultaneous

optical flow and intensity estimation from an event camera.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 884–892, 2016. 1

[3] R. Berner, C. Brandli, M. Yang, S.-C. Liu, and T. Delbruck.

A 240×180 10mw 12us latency sparse-output vision sensor

for mobile applications. pages C186–C187, 01 2013. 1

[4] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci.

Attention mechanisms for object recognition with event-

based cameras. In 2019 IEEE Winter Conference on Appli-

cations of Computer Vision (WACV), pages 1127–1136, Jan

2019. 1

[5] Y. Cao, Y. Chen, and D. Khosla. Spiking deep convolu-

tional neural networks for energy-efficient object recogni-

tion. International Journal of Computer Vision, 113(1):54–

66, 2015. 1

[6] N. F. Y. Chen. Pseudo-labels for Supervised Learning on

Dynamic Vision Sensor Data, Applied to Object Detection

under Ego-motion. arXiv, Sep 2017. 1

[7] G. K. Cohen. Event-Based Feature Detection, Recognition

and Classification. PhD thesis, Université Pierre et Marie

Curie - Paris VI, Sep 2016. 2

[8] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeif-

fer. Fast-classifying, high-accuracy spiking deep networks

through weight and threshold balancing. In 2015 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages

1–8, July 2015. 1

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The Pascal Visual Object Classes (VOC)

Challenge. Int. J. Comput. Vision, 88(2):303–338, Jun 2010.

6

[10] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of

object categories. IEEE Trans. Pattern Anal. Mach. Intell.,

28(4):594–611, Apr 2006. 5

[11] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza.

Asynchronous, photometric feature tracking using events

and frames. In Eur. Conf. Comput. Vis.(ECCV), 2018. 1

[12] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. PMLR, pages

249–256, Mar 2010. 6

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016. 1

[14] S. Kim, S. Park, B. Na, and S. Yoon. Spiking-yolo: Spiking

neural network for real-time object detection. arXiv preprint

arXiv:1903.06530, 2019. 1

[15] D. P. Kingma and J. Ba. Adam: A Method for Stochastic

Optimization. arXiv, Dec 2014. 6

[16] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. In International Confer-

ence on Learning Representations (ICLR), 2017. 1

[17] A. Krizhevsky. Learning multiple layers of features from

tiny images. 04 2009. 5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems

25, pages 1097–1105. Curran Associates, Inc., 2012. 1

[19] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B.

Benosman. HOTS: A Hierarchy of Event-Based Time-

Surfaces for Pattern Recognition. IEEE Trans. Pattern Anal.

Mach. Intell., 39(7), Jul 2016. 2

[20] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B.

Benosman. Hots: a hierarchy of event-based time-surfaces

for pattern recognition. IEEE transactions on pattern anal-

ysis and machine intelligence, 39(7):1346–1359, 2017. 1,

2

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proc. IEEE,

86(11):2278–2324, Nov 1998. 5, 6

[22] H. Li, H. Liu, X. Ji, G. Li, and L. Shi. CIFAR10-DVS: An

Event-Stream Dataset for Object Classification. Front. Neu-

rosci., 11:309, May 2017. 5

[23] J. Li, F. Shi, W. Liu, D. Zou, Q. Wang, H. Lee, P.-K. Park,

and H. E. Ryu. Adaptive temporal pooling for object de-

tection using dynamic vision sensor. British Machine Vision

Conference (BMVC), 2017. 1

[24] M. Liu and T. Delbruck. Adaptive time-slice block-matching

optical flow algorithm for dynamic vision sensors. Technical

report, 2018. 1

[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37.

Springer, 2016. 1

[26] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3431–3440, 2015. 1

[27] W. Maass. Networks of spiking neurons: the third generation

of neural network models. Neural networks, 10(9):1659–

1671, 1997. 1

[28] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garca, and

D. Scaramuzza. Event-based vision meets deep learning on

steering prediction for self-driving cars. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 2

[29] A. Mitrokhin, C. Fermuller, C. Parameshwara, and Y. Aloi-

monos. Event-based moving object detection and tracking.

arXiv preprint arXiv:1803.04523, 2018. 1

[30] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of vi-

sual attention. In Advances in neural information processing

systems, pages 2204–2212, 2014. 6

[31] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and

M. M. Bronstein. Geometric deep learning on graphs and

manifolds using mixture model cnns. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5115–5124, 2017. 1



[32] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and

D. Scaramuzza. The Event-Camera Dataset and Simulator:

Event-based Data for Pose Estimation, Visual Odometry, and

SLAM. arXiv, Oct 2016. 1, 6

[33] D. Neil, M. Pfeiffer, and S.-C. Liu. Phased lstm: Accel-

erating recurrent network training for long or event-based

sequences. In Advances in Neural Information Processing

Systems, pages 3882–3890, 2016. 1

[34] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor.

Converting Static Image Datasets to Spiking Neuromorphic

Datasets Using Saccades. Front. Neurosci., 9, Nov 2015. 5,

6

[35] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha,

T. Serrano-Gotarredona, S. Chen, and B. Linares-Barranco.

Mapping from frame-driven to frame-free event-driven vi-

sion systems by low-rate rate coding and coincidence

processing–application to feedforward ConvNets. IEEE

Trans. Pattern Anal. Mach. Intell., 35(11):2706–2719, Nov

2013. 1, 2

[36] C. Posch, D. Matolin, and R. Wohlgenannt. A QVGA 143

dB Dynamic Range Frame-Free PWM Image Sensor With

Lossless Pixel-Level Video Compression and Time-Domain

CDS. IEEE J. Solid-State Circuits, 46(1):259–275, Jan 2011.

1

[37] A. Raj, D. Maturana, and S. Scherer. Multi-scale convolu-

tional architecture for semantic segmentation. page 14, 01

2015. 1

[38] B. Ramesh, H. Yang, G. Orchard, N. A. L. Thi, and C. Xiang.

DART: Distribution Aware Retinal Transform for Event-

based Cameras. arXiv, Oct 2017. 1

[39] B. Ramesh, S. Zhang, Z. W. Lee, Z. Gao, G. Orchard, and

C. Xiang. Long-term object tracking with a moving event

camera. 2018. 1

[40] H. Rebecq, T. Horstschaefer, G. Gallego, and D. Scara-

muzza. Evo: A geometric approach to event-based 6-dof

parallel tracking and mapping in real time. IEEE Robotics

and Automation Letters, 2(2):593–600, 2017. 1

[41] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 779–788, 2016. 1, 2, 6, 7

[42] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

Advances in neural information processing systems, pages

91–99, 2015. 1

[43] T. Serrano-Gotarredona and B. Linares-Barranco. A 128 ×
128 1.5 % Contrast Sensitivity 0.9 % FPN 3 µs Latency 4

mW Asynchronous Frame-Free Dynamic Vision Sensor Us-

ing Transimpedance Preamplifiers. IEEE J. Solid-State Cir-

cuits, 48(3):827–838, Mar 2013. 1

[44] T. Serrano-Gotarredona and B. Linares-Barranco. Poker-

DVS and MNIST-DVS. Their History, How They Were

Made, and Other Details. Front. Neurosci., 9, Dec 2015.

5

[45] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 1, 6

[46] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and

R. Benosman. Hats: Histograms of averaged time surfaces

for robust event-based object classification. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1731–1740, 2018. 1, 2

[47] T. Stoffregen and L. Kleeman. Simultaneous optical flow

and segmentation (sofas) using dynamic vision sensor. arXiv

preprint arXiv:1805.12326, 2018. 1

[48] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, volume 4, page 12, 2017.

1

[49] F. Yu and V. Koltun. Multi-Scale Context Aggregation by Di-

lated Convolutions. In International Conference on Learning

Representations (ICLR), 2016. 1


