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Abstract

Star trackers are primarily optical devices that are used

to estimate the attitude of a spacecraft by recognising and

tracking star patterns. Currently, most star trackers use

conventional optical sensors. In this application paper, we

propose the usage of event sensors for star tracking. There

are potentially two benefits of using event sensors for star

tracking: lower power consumption and higher operating

speeds. Our main contribution is to formulate an algorith-

mic pipeline for star tracking from event data that includes

novel formulations of rotation averaging and bundle adjust-

ment. In addition, we also release with this paper a dataset

for star tracking using event cameras1. With this work, we

introduce the problem of star tracking using event cameras

to the computer vision community, whose expertise in SLAM

and geometric optimisation can be brought to bear on this

commercially important application.

1. Introduction

The attitude of a spacecraft is the 3DOF orientation (roll,

pitch, yaw) of its body frame with respect to an inertial

frame, such as the celestial reference frame [25, Sec. 2.6].

Attitude control is a basic functionality in space flight. The

subsystem for attitude control is called the Attitude Deter-

mination and Control System (ADCS). As the name sug-

gests, there are two main components in an ADCS: estimat-

ing the current attitude, and executing a sequence of appro-

priate signals to the actuators (reaction wheels, thrusters,

etc.) to achieve the desired body orientation.

Our work focusses on the attitude determination prob-

lem. A number of sensors are in use for estimating space-

craft attitude, such as sun sensors and magnetometers. It

has been established, however, that star trackers are state-

of-the-art in spacecraft attitude estimation [24], especially

to support high precision orientation control. As opposed

to rough attitude estimation that is used, e.g., in the detum-

bling process of a satellite, star trackers play a crucial role

during stable flight to deliver fine attitude estimation to sup-

1Visit project website [1] for the data. This work was supported by

AIML and ARC grants LP160100495 and FT170100072.

Figure 1. Star identification result using the method of [22, 2]. The

labels correspond to identified stars from a star catalogue.

port the mission objectives, e.g., precisely aiming on-board

instruments at a target region in space or on Earth.

A star tracker is essentially a camera with an image pro-

cessing algorithm to estimate spacecraft attitude by recog-

nising star patterns [25, Chap. 4]. Underpinning star track-

ing is the ability to perform star identification [35] from an

image; see Fig. 1. In computer vision terms, this means to

extract a set of 2D-3D correspondences {(xp,Xp)}Np=1 be-

tween the input image and a star chart, where xp ∈ R
2 are

the 2D coordinates of an observed star in the image, and

Xp ∈ R
3 is a unit vector that represents the direction of the

same star in the inertial frame2. In fact, the matching is of-

ten accomplished by comparing local descriptors (e.g., the

geometric hash code of [22]) that encode the spatial config-

uration of stars in local image regions.

Given the correspondences, the camera orientation (de-

fined by rotation R) is computed via Wahba’s problem [5]

argmin
R∈SO(3)

N
∑

p=1

‖ #»xp −RXp‖22, (1)

where #»xp is the backprojected unit ray of xp, i.e.,

#»xp =
K−1x̄p

‖K−1x̄p‖2
, (2)

x̄p = [xT
p 1]T , and K ∈ R

3×3 is the camera intrinsic ma-

trix. Many algorithms exist for solving (1), such as the SVD

2Since stars are effectively at infinity, only their directions matter.
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Figure 2. (a) A star field under the field of view (FOV) of a telescope. (b) Events recorded using an iniVation Davis 240C event camera

as the FOV moves away from panel a (for clarity, the event polarities are not displayed here). (c) The event data collapsed onto the image

frame - the star patterns in panel a are clearly observed here (though the stars are blurred due to the motion of the camera).

method [25, Chap. 5]. Robust versions of (1) also exist to

deal with false correspondences [12]. Also critical to star

tracking is a filtering step [25, Chap. 6] that takes a sequence

of attitude estimates to produce more refined results.

1.1. Our contributions

We investigate the usage of event cameras for attitude

estimation based on star tracking. Unlike a conventional

optical sensor (e.g., CCD), an event sensor detects inten-

sity changes asynchronously [23]. The output of an event

camera is a set of events {(x, t, p)}, where x are the 2D co-

ordinates of an event on the image plane, t is the time of the

event, and p ∈ {+,−} is the polarity of the event. Fig. 2(b)

illustrates event data from observing a star field.

There are two potential benefits of using event cameras

for star tracking. First, due to the pausity of the scene (rel-

atively few bright spots against a black background), the

number of events generated tends to be small relative to the

number of pixel positions. Hence, an event camera may

consume less power. Second, event sensors have high tem-

poral resolution (e.g., iniVation Davis 240C has µs resolu-

tion), which could enable higher-speed star tracking. This

may be useful for ultra-fine attitude control.

In this work, we do not focus on demonstrating the above

benefits, since the gains from using the sensor must be put

in the context of other systems or processing requirements

- a complex issue that is beyond the scope of this paper.

Instead, our focus is on developing an algorithmic pipeline

for star tracking using event cameras, so as to establish the

feasibility and promise of the paradigm.

Due to the different sensing principle, existing meth-

ods [35, 25] cannot be directly applied. Moreover, event

data can be significantly noisier than conventional cameras;

see Fig. 2(b). To deal with this issue, we develop a novel

processing pipeline that includes new formulations of rota-

tion averaging and bundle adjustment for star tracking. We

also release our event data to spark further research.

1.2. Previous work

Event cameras and more generally event-based process-

ing are receiving significant attention in robotics and com-

puter vision [4]. Many core capabilities, such as optic flow

computation, 3D reconstruction, SLAM and visual servoing

(details in [4]), have proven to be feasible with event cam-

eras. In particular, in problems where high-speed opera-

tion is essential, techniques using event cameras outperform

equivalent methods that use conventional cameras [30].

Recently, there have been a few works that applied event

cameras in space. In [13], the feasibility of using event cam-

eras (aided by a telescope) to observe objects in space was

established. This was followed by [11], where a probabilis-

tic multiple hypothesis tracker (PMHT) was used to track

the objects through time. These works have not described

event-based star tracking for high-speed attitude estimation.

2. Problem setting

Consider event data S = {(x, t, p)} that was generated

by observing a star field over a contiguous period of time

t ∈ [tstart, tend] under camera motion. Our overall goal is

to estimate the attitude of the camera over the period of

time. Many previous works on motion estimation using

event cameras conduct (either implicitly or explicitly) some

form of temporal aggregation on event data to elicit the ge-

ometric structures of the scene [14, 20, 30, 29, 21, 34, 17].

Following these works, we generate event images

I1, . . . , Ii, . . . , IM (3)

from S , where each image

Ii(x) =
∑

t∈[t
(i)
start,t

(i)
end

]

δ(x, t), (4)

δ(x, t) =

{

1 if ∃(x, t, p) ∈ S
0 otherwise

(5)



Figure 3. Top row: Event images generated from star field events according to Sec. 2. The integration time (t
(i)
start − t

(i)
end) used here is 10 ms.

Brighter pixels indicate higher Ii(x) values. Bottom row: Discrete point sets (each white pixel is a point) corresponding to the top row.

is obtained by collapsing all the events in a time window

[t
(i)
start, t

(i)
end] ⊂ [tstart, tend] (6)

onto the image domain. In our work, the time blocks do not

overlap, i.e.,

[t
(i)
start, t

(i)
end] ∩ [t

(j)
start, t

(j)
end] = ∅ ∀i 6= j, (7)

and they uniformly partition the recording duration

[t
(1)
start, t

(1)
end] ∪ · · · ∪ [t

(M)
start , t

(M)
end ] = [tstart, tend]. (8)

Fig. 3 (top row) illustrates.

Due to the nature of our scene (i.e., star fields), the sim-

ple temporal aggregation method above is sufficient to elicit

the scene structure (cf. the technique in [28] that is targeted

at more complex scenes). However, by comparing Figs. 2(a)

and Fig. 3 (top row), it is evident that event images are con-

siderably noisier than conventional images. In Sec. 3, we

will describe the proposed algorithm that takes as input a

sequence of noisy event images I1, . . . , Ii, . . . , IM to com-

pute accurate camera orientations R̂1, . . . , R̂i, . . . , R̂M .

2.1. Why use event images?

By generating event images, we have effectively con-

verted S into a set of image frames. We emphasise that

this does not defeat the purpose of using an event camera

in our target problem, since the time windows [t
(i)
start, t

(i)
end]

are small (only 40ms each), which still enables high-speed

(25Hz) attitude estimation. In effect, we are using the event

camera primarily as a high-speed low-power optical sensor.

Ideally, event data should be processed using asyn-

chronous or event-based algorithms (e.g., the contrast max-

imisation framework [17]) to realise the full benefit of asyn-

chronous sensors. We leave this as future work.

3. Attitude estimation from event images

Fig. 4 shows the proposed processing pipeline. Details

will be described in the rest of this section.

3.1. Camera calibration

Notwithstanding the fundamentally different sensing

technology, the pinhole imaging model applies to event

cameras [15]. Hence a pixel position x in an event image Ii
can be backprojected to form a 3D ray by K−1x̄. For better

flow, we will discuss the estimation of K in Sec. 4.2. For

now we assume K is known without loss of generality.

3.2. Rotation measurements

The proposed pipeline generates and uses two types of

rotation measurements from the event images: absolute ro-

tations and relative rotations.

3.2.1 Absolute rotation estimation

Ideally, the processing could be simplified if we are able to

estimate the attitude of each Ii, by performing star identifi-

cation [35] followed by solving Wahba’s problem (1). How-

ever, this is infeasible for two reasons:

• Since most of the event images are noisy, the accuracy of

star identification and attitude estimation will be poor.

• Star identification is a relatively costly process. For ex-

ample, the desktop version of [22, 2] requires seconds to

process an image of size 240 × 180. It will thus be in-

feasible to execute star identification at event frame-rate,

especially on a resource-constrained space platform.

To solve the above two difficulties, a simple heuristic

(which we call active pixel count or APC) is conducted to

select only high-quality event images for star identification.
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Figure 4. Pipeline of proposed star tracking algorithm: given a sequence of noisy event images I1, . . . , Ii, . . . , IM , a sequence of attitude

estimates R̂1, . . . , R̂i, . . . , R̂M are produced. The output sequence can optionally be postprocessed using Bayesian filtering [25, Chap. 6].

On each event image Ii, mean filtering by convolution

with a 3 × 3 averaging kernel is first conducted. Then the

APC of Ii (using the mean filtered version) is calculated as

APC(Ii) =
∑

x

I (Ii(x) ≥ ǫ1) , (9)

where ǫ1 is a constant threshold. Basically, APC(Ii) gives

the number of pixels that are “active” (i.e., have produced a

sufficient number of events) in the time slab [t
(i)
start, t

(i)
end]. If

APC(Ii) ≥ ǫ2, (10)

where ǫ2 is another constant threshold, then we regard Ii as

suitable for direct attitude estimation. The heuristic is based

on the observation that brighter and more well-defined stars

tend to yield event data with more active pixels.

Let A ⊂ {1, . . . ,M} index the event images that are

selected via the APC heuristic. To ensure accurate attitude

estimates from this set, we use relatively high values for ǫ1
and ǫ2 (in our experiments, ǫ1 = 2 and ǫ2 = 50), thus,

A tends to be small, i.e., |A| ≪ M . We subject set A to

star identification (we applied [22] as implemented in [2] in

our pipeline), followed by the SVD technique for Wahba’s

problem [5], to yield a set of attitude estimates

{R̃i}i∈A, (11)

We call these rotation measurements the absolute rotations.

3.2.2 Relative rotation estimation

To fully make use of available data, we estimate relative

rotations from the event images. Let Ii and Ij be two event

images that overlap, i.e., they observe some common stars

in their respective FOVs. The relative rotation Rj,i between

the images aligns the noisy coordinates x and x′ of a star

that is observed simultaneously in Ii and Ij , i.e.,

#»x ′ ≈ Rj,i
#»x . (12)

Note that since stars are at infinity, there is no parallax be-

tween Ii and Ij , which justifies rotational alignment [25].

To estimate Rj,i, we begin by thresholding on the mean

filtered versions of Ii and Ij to create discrete point sets

{xi,p}Pp=1 and {xj,q}Qq=1. (13)

See Fig. 3 (bottom row) for example point sets generated.

Note that at this stage, data association has not been per-

formed and P 6= Q in general.

Given the point sets (13), to obtain the relative rotation

measurement R̃j,i we solve the registration problem

R̃j,i = argmin
R∈SO(3)

L
∑

p=1

r(p)(R), (14)

where L < P . The per-point error is computed as

rp(R) = min
q

‖R #»x i,p − #»x j,q‖2 , (15)

and r(p)(R) is the p-th largest value of the set

{rp(R)}Pp=1 (16)

By setting L < P , we obtain a robust solution since only the

L-smallest residuals are minimised. In other words, points

from Ii due to spurious events that have no correspondences

in Ij (i.e., the outliers) have no effect on the solution. Prob-

lem (14) can be solved efficiently by a variant of ICP called

trimmed ICP; see [10] for details of the algorithm.

It is computationally wasteful to attempt (14) on all pairs

of event images, hence, we only conduct trimmed ICP on

image pairs that are within a time window of fixed size W
(we set W = 5 in our experiments). This creates a set of

relative rotation measurements

{R̃j,i}〈j,i〉∈N , (17)

where N is the adjacency graph such that 〈j, i〉 ∈ N if and

only if |i− j| ≤ W .

3.3. Optimisation

The aim of optimisation is to denoise and fuse the dif-

ferent rotation measurements to yield accurate attitude es-

timates. This is accomplished efficiently using two novel

formulations of rotation averaging and bundle adjustment.



3.3.1 Augmented rotation averaging

The original form of rotation averaging [18] takes as input

a set of relative rotations and computes a set of absolute

rotations. Put in our context, this is the problem

min
{Ri}M

i=1

∑

〈j,i〉∈N

∥

∥

∥
Rj − R̃j,iRi

∥

∥

∥

F
, (18)

where ‖ ‖F is the Frobenius norm. However, this formu-

lation is unsuitable since N is a chain with no loops, and

optimising the attitudes using (18) will lead to drift errors.

To mitigate drift error, the absolute rotations (11) must be

factored into rotation averaging. To this end, we formulate

the augmented rotation averaging problem

min
{Ri}M

i=1,RM+1

∑

〈j,i〉∈N

∥

∥

∥
Rj − R̃j,iRi

∥

∥

∥

F

+ α
∑

k∈A

∥

∥

∥
Rk − R̃kRM+1

∥

∥

∥

F

s.t. RM+1 = I,

(19)

where RM+1 is a “dummy” attitude variable, I is the iden-

tity matrix, and α is a positive constant that defines the rel-

ative importance of the relative and absolute rotations. In-

tuitively, adding error terms of the form
∥

∥

∥
Rk − R̃kRM+1

∥

∥

∥

F
=

∥

∥

∥
Rk − R̃k

∥

∥

∥

F
, k ∈ A (20)

encourage consistency between some of the attitude esti-

mates and the measured absolute rotations, which is then

propagated to the rest of the sequence.

Despite having the same form as (18) except for the

constraint RM+1 = I, existing rotation averaging algo-

rithms [26, 27, 18, 9, 7, 8] (which are tailored for (18))

cannot be directly applied to (19). A simple workaround is

as follows: temporarily ignore the constraint RM+1 = I

in (19) and optimise the attitudes using an existing ro-

tation averaging algorithm (we used [9] in our work).

Then, right multiply each of the estimated attitude R̂i with

(R̂M+1)
−1 = (R̂M+1)

T .

It has been shown that rotation averaging is quite insen-

sitive to initialisations [32, 16], thus, when solving (19) we

simply initialise all rotation variables as the identity matrix.

3.3.2 Rotation-only bundle adjustment

The solutions from rotation averaging are then refined using

rotation-only bundle adjustment. First, as a by-product of

computing the relative rotations (14), we associate points

across event images to form star tracks {Ys}Ss=1, where

Ys = {yi,s ∈ R
2 | η(i, s) = 1}, (21)

η(i, s) =

{

1 if the s-th star is seen in Ii,

0 otherwise,
(22)

and yi,s are the 2D coordinates of the s-th observed star as

viewed in event image Ii. We then define the nonlinear least

squares (NLS) problem

min
{Ri},{Xs}

∑

i,s

η(i, s) ‖ #»y i,s −RiXs‖22

s.t. Xs ∈ R
3 and ‖Xs‖2 = 1, ∀s,

(23)

where Xs defines the 3D direction of the s-th observed star

as seen from the inertial frame. Intuitively, (23) is a spe-

cial case of bundle adjustment [36] where only rotational

motion and 3D directions are optimised.

Compared to (19), problem (23) takes into account the

observed star coordinates in the estimation. To use (23) to

refine the solutions of (19), we simply initialise the rota-

tion variables in (23) using the output of (19), then apply

a standard NLS solver (i.e., Ceres [6]) to carry out bundle

adjustment. As with most bundle adjustment solvers, Ceres

can take into account problem sparsity (i.e., not all points

are seen in every frame) to speed up convergence.

To initialise the star directions {Xs}, we compute

Xs =
1

|Ys|
∑

i

η(i, s)R̂−1
i

#»y i,s, (24)

i.e., the mean direction of the separate observations of the

s-th star as seen in the inertial frame, using initial estimates

of the attitudes {R̂i} from rotation averaging (19).

Secs. 4 and 5 will describe the testing methodology and

results of the proposed star tracking approach.

4. Generating testing data

Conducting a space mission for the purpose of our paper

is beyond our budget. Following other works in astronau-

tics research (e.g., [33]), we use simulation data to test our

method. While it is possible to use the event data simulator

by Mueggler et al. [31], for our problem it generates unreal-

istically clean data due to the simplicity of the scene (points

at infinity with no other structures or occlusions).

The approach we have taken is to use the planetarium

software Stellarium3 to render real star fields on a screen,

then capture the screen using an event camera, specifically

the iniVation Davis 240C. Fig. 5(a) shows our setup. Since

our target operating environment is space, where the at-

mosphere is much thinner, stars imaged in space will have

constant brightness. This supports the usage of Stellarium

which does not simulate atmospheric effects.

Given a fixed FOV and an arbitrary initial attitude, a ro-

tational motion of a fixed angular velocity is executed in

Stellarium to continuously change the attitude and generate

event data. Since the motion is controlled, the ground truth

3https://stellarium.org
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Figure 5. (a) Testing data generation rig. (b) Ground truth atti-

tudes and initial attitude estimates (both sets expressed as Euler

angles [3]) for a sample event data sequence generated according

to Sec. 4. See Sec. 5.1 on deriving the initial attitudes from the

rotation measurements computed according to Sec. 3.2.

attitudes throughout the recording duration can be analyti-

cally calculated; Fig. 5(b) illustrates ground truth attitudes

for such a sequence. In the above way, we can generate

event data sequences for objective testing. Before further

describing the experiments and results in Sec. 5, we first

explain other preprocessing and calibration steps.

4.1. Removing spurious events

In our setup, the events are mainly triggered by two

sources of intensity changes: the star motions and the screen

refresh. Events due to the latter are considered spurious in

our setting, thus we removed them using the Spatial Band-

pass Filter tool in the jAER suite4. Of course there remain

other noisy events due to inherent flaws of the sensor.

4.2. Calibrating the virtual telescope

Mathematically, Stellarium acts as a “virtual telescope”.

By imaging the screen output of Stellarium with an event

4https://github.com/SensorsINI/jaer

camera, we can relate a pixel position x on the event camera

and the corresponding star direction X with the equation

x̄ = KevHscKteRX ≡ KRX, (25)

where Kev, Hsc, Kte and R (all 3×3) are defined as follows:

• Kev is the intrinsic matrix of the event camera.

• Hsc is the homography that accounts for the non-fronto-

parallel viewpoint of the event camera to the screen. A

homography is mathematically valid since there is no par-

allax in star field images, and the screen and event camera

image plane differ by a planar perspective transform.

• Kte is the intrinsic matrix of the virtual telescope (deter-

mines the magnification of the instrument etc.).

• R is the attitude of the telescope (the quantity of interest).

Calibrating for the overall intrinsic matrix K (cf. Sec. 3.1)

is thus achieved by calculating Kev, Hsc and Kte.

The intrinsic matrix Kev can be estimated using existing

techniques; see [4, Calibration]. The homography Hsc can

also be estimated using standard methods [19] given suffi-

cient 2D-2D correspondences (manually extracted) between

an event image and the screen output of Stellarium.

To compute Kte, define the pinhole projection

z̄ = KteRX ≡ PX (26)

performed by Stellarium at a particular magnification,

where z are the image coordinates of a star direction X.

Given 2D-3D correspondences {(zi,Xi)}Ni=1 between a set

of observed stars in the Stellarium image and their corre-

sponding star directions (the latter can be easily retrieved

via the software interface), we set up the linear system







z̄1
...

z̄N






= P







X1

...

XN






(27)

and solve for P using standard linear least squares. Then,

Kte and R can be obtained from P via QR decomposition.

5. Results

Using the methodology for generating testing data in

Sec. 4, we generated a number of event data sequences to

test our star tracking pipeline. In all sequences, we fixed the

FOV on Stellarium to 20 degrees, the recording duration to

45 seconds, and the angular velocity to 4◦/s. The integra-

tion time t
(i)
end − t

(i)
start for event image generation was fixed at

40ms for all sequences, hence there are 1125 event images

per sequence. In all the testing sequences, the initial attitude

and rotational motion were chosen arbitrarily.

In this section, we show the results on six of the gener-

ated sequences; see the supplementary material for videos

of the corresponding event images (results on more se-

quences are also available there), and [1] to obtain the data.



Angular error < 1◦ < 10◦ > 10◦

# absolute rotations 30 1 2

Table 1. Angular error of absolute rotations {R̃i}i∈A.

5.1. Error analysis of input rotations

On each testing sequence, via Sec. 3.2, we ob-

tained absolute rotations {R̃i}i∈A and relative rotations

{R̃j,i}〈j,i〉∈N . Let {R∗
i }Mi=1 be the ground truth attitudes.

The angular error between two rotations R1 and R2 [18] is

∠(R1,R2) = 2 arcsin
(

(2
√
2)−1‖R1 −R2‖F

)

. (28)

To analyse the quality of the rotation measurements:

• Table 1 summarises the angular error between absolute

rotations {R̃i}i∈A and corresponding ground truth rota-

tions {R∗
i }i∈A over the six sequences, where there are

cumulatively 33 absolute rotations. It can be seen that

most of the absolute rotations are reasonably accurate,

indicating the effectiveness of the APC heuristic in se-

lecting event images for star identification.

• The ground truth relative rotation between Ii and Ij is

R∗
j,i = R∗

i (R
∗
j )

T . (29)

Table 2 displays the RMSE and standard deviation (SD)

of the relative angular error ∠(R̃j,i,R
∗
j,i) in each se-

quence. It is evident that the relative rotations are very

accurate (≤ 1◦ RMSE), which supports our idea of using

absolute rotations sparingly (since they are costly to com-

pute), and relative rotations extensively (see Sec. 3.2).

To visualise the input rotations, in Fig. 5(b) we plot the

attitudes that were obtained by chaining the absolute and

relative rotations of the particular sequence. Note that there

are multiple ways to chain the rotations, and an arbitrary

chaining order was used in the figure - since chaining was

done mainly for illustration (NB: our processing pipeline

does not require it as initialisation), the choice is sufficient.

The more important insight is that, while the individual in-

put rotations were accurate, simply chaining them without

further optimisation will lead to significant drift error.

5.2. Qualitative results

Fig. 6 plots the attitudes (in Euler angles) resulting from

rotation averaging and bundle adjustment, and the ground

truth attitudes, for the sequence in Fig. 5(b). It is evident

that the proposed optimisation routines have reduced the er-

rors significantly and accurately estimated the attitudes.

5.3. Quantitative results

Fig. 7 shows quantitative results for six sequences (more

results in supplementary material). For each sequence, we

plot the angular errors (as well as their RMSE and SD) be-

tween the ground truth attitudes and

Seq # 1 2 3 4 5 6

RMSE 0.0166 0.01276 0.2175 0.2345 0.3185 0.2234

SD 0.1239 0.155 0.2525 0.3423 0.1421 0.3121

Table 2. Angular error of relative rotations {R̃j,i}〈j,i〉∈N .
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Figure 6. Visualisation of optimised attitudes and ground truth at-

titudes for a testing sequence. Both sets of values are very close.

• The initial attitudes obtained by an arbitrary way of

chaining the input rotations (again, this is done only

for illustration and comparison purposes, since our algo-

rithms do not need to be initialised in this manner);

• The estimates after augmented rotation averaging; and

• The estimates after augmented rotation averaging and

rotation-only bundle adjustment.

In all the sequences, our pipeline achieved an error of ≤ 1◦

RMSE, which is on par with commercial star trackers [33].

5.4. Runtime

Executed on a 2.9GHz Intel i7 machine, the average to-

tal runtime per sequence is 58.8s, which includes time for

event image generation (8.1s), extracting rotation measure-

ments (41.3s) and optimisation (9.4s). A simple apportion-

ment over the 1125 event images in each sequence gives

≈ 19 FPS. Note that this result is mainly to indicate the ef-

ficiency of the proposed algorithms - not the speed of the

star tracker. As mentioned in Sec. 1.1, the actual speed will

likely depend on overall system design.

6. Conclusion

In this paper, we investigated event cameras for star

tracking. The main components in our processing pipeline

are novel formulations of rotation averaging and bundle ad-

justment. We also developed a simulation technique for

testing our method. Our results suggest that star tracking

using event cameras is feasible and promising.
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Figure 7. Quantitative results on six sequences (more results in supplementary material).
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