
Live Demonstration: A Real-time Event-based Fast Corner Detection Demo

based on FPGA

Min Liu, Wei-Tse Kao, Tobi Delbruck
Institution of Neuroinformatics, University of Zurich and ETH Zurich

{minliu@ini.uzh.ch}

Abstract

Corner detection is widely used as a pre-processing step

for many computer vision (CV) problems. It is well stud-

ied in the conventional CV community and many popu-

lar methods are still used nowadays such as Harris, FAST,

and SIFT. For event cameras like Dynamic Vision Sensors

(DVS), similar approaches also have been proposed in re-

cent years. Two of them are event-based Harris (eHARRIS)

and event-based FAST (eFAST). This demo presents our re-

cent work in which we implement eFAST on MiniZed FPGA.

The power consumption of the whole system is less than 4W

and the hardware eFAST consumes about 0.9W. This demo

processes at least 5M events per second, and achieves a

power-speed improvement factor product of more than 30X

compared with CPU implementation of eFAST. This embed-

ded component could be suitable for integration to appli-

cations such as drones and autonomous cars that produce

high event rates.

1. Brief Introduction and Motivation

Corner detection or keypoint extraction is a basic but im-

portant topic in computer vision. It extracts the most impor-

tant information from the image data to avoid processing

all pixels and thus decreases the latency and quality of sub-

sequent processing. It underlies many optical flow, visual

odoometry, and SLAM methods. There are several cor-

ner detection methods adapted for event sensors. Two of

them are event-based Fast (eHARRIS) [3] and event-based

Harris (eFAST) [4]. Compared with eHARRIS, eFAST re-

quires less expensive computation since it does not require

derivative calculations. Most of the operations from eFAST

are comparison, sorting and accumulating. Based on this,

we choose to target eFAST for logic circuit implementation.

The motivation of this work is that we want to design

a general pre-processing real-time hardware logic module

(IP)1 for event-based algorithms to further reduce the la-

1IP is used in logic design community for “intellectual property” block.

tency and CPU load on host processor. DVS event cameras

are known for their sparse output, high temporal resolution

and high dynamic range. Each single event contains little

information (although on the average more than a conven-

tional pixel sample), so it is not necessary to process every

event. Some key events can be detected so as to only com-

pute subsequent information around these events. We first

conceived this aim as a sub project of our previous event-

based optical flow work (ABMOF)[2]. ABMOF imple-

mented on FPGA currently calculates the optical flow for

every event at about 1M events per second. For some fast

motions such as panning the image across densely textured

scenes, the rate goes above 10MHz. ABMOF originally

proposed to simply downsample (by skipping) events that

flow is computed on. eFAST based on FPGA is intended

in this context for more informative selection of relevant

events on which to compute flow.

2. Experimental Result

To implement the eFAST IP block, we used high level

synthesis (Vivado HLS[5]) rather than the lower-level (but

more efficient) System-Verilog from Xilinx. HLS is a very

convenient tool for software engineers who wants to accel-

erate their work on FPGA. The grammar of HLS is similar

to C/C++ but the designer must be familiar with the capa-

bilities of hardware parallelism and memory on the FPGA

for effective results.

The setup of our demo is shown in Figure 1. It mainly

consists of five parts: DAVIS240C[1], MiniZed2 hosting en-

try level $90 Xilinx Zynq 7z007s SoC FPGA, power meter,

wireless router and the laptop. The DAVIS is connected to

the MiniZed via its one USB interface. eFAST is imple-

mented on the MiniZed logic. A USB serial port interfaces

UART to computer for logic debug and the last USB pro-

vides power. A minimal PetaLinux linux distribution is in-

stalled on the MiniZed processor to use libcaer3 to fetch the

DAVIS data and to transmit the results by UDP over WiFi.

2http://zedboard.org/product/minized
3https://github.com/inivation/libcaer

The MiniZed is connected to a power meter.

Figure 1. The demo setup

Detected keypoints cannot be rendered on MiniZed be-

cause it lacks any display interface. Instead, eFAST output

is sent to a laptop by WiFi connection using a dedicated

router for the laptop and MiniZed to reduce the transfer la-

tency. The laptop hosts a C++ server for display of the key-

point detector and DVS data. The laptop is only used for

rendering results and providing power.

We measure the process time and power consumption

on our demo and compared it with eFAST running on

a Ubuntu 16.04 PC with a quad-core 2.3GHz CPU (i5-

8259U). eFAST on PC used the implementation of [3]4,

which runs inside ROS. It can output the average processing

time per event after every packet is processed.

For the power consumption measurement, we use a

power meter for MiniZed and the software tool powertop5

for laptop. We first measure the static power without run-

ning eFAST on both of them. After starting the algorithm,

the differential value of the power meter and powertop is

the power consumption resulting from eFAST.

Table 1. comparison between eFAST on FPGA and PC

platform FPGA PC Comparison

processing time/us 0.1-0.2 0.6-30 >6x faster

eFAST power/W 0.9 5 5x more efficient

total power/W 3.7 17.5 5x more efficient

Results are shown in Table 1. There are three metrics:

processing time, eFAST power, and total system power.

eFAST power only takes into account the eFAST. Total

4https://github.com/uzh-rpg/rpg_corner_events
5https://github.com/fenrus75/powertop

power counts all the parts (DAVIS and MiniZed, or lap-

top). eFAST running on this small platform is more than 6×

faster than running on PC and requires 5× less power con-

sumption. Therefore, the FGPA implementation achieves a

power× speed improvement product that is more than 30×

higher in FPGA than PC. With 100MHz clock, the process-

ing time for each event is either 100ns or 200ns (depend-

ing on local context), which means that this system handles

up to 10M events per second which is sufficient for most

real applications. The eFAST utilized 25% Look up tables

(LUTs), 11% Flip-Flops (FFs) and 57% Block RAMs on

the MiniZed.

3. Conclusion

We presented a real-time eFAST corner detection demo

for event-based camera. This demo processes up to 10MHz

event rate. The eFAST IP will serve as a useful pre-

processing module of many CV problems requiring real-

time performance such as Optical Flow, Visual Odometry

and SLAM.

We plan to soon release this IP for free non-commercial

exploitation.

4. Acknowledgement

This work was supported by the Swiss National Centre

of Competence in Research (NCCR) Robotics.

References

[1] Christian Brandli, Raphael Berner, Minhao Yang, Shih-

Chii Liu, and Tobi Delbruck. A 240× 180 130 db

3 µs latency global shutter spatiotemporal vision sen-

sor. IEEE Journal of Solid-State Circuits, 49(10):2333–

2341, 2014.

[2] Min Liu and Tobi Delbruck. Adaptive time-slice block-

matching optical flow algorithm for dynamic vision

sensors. In British Machine Vis. Conf.(BMVC), 2018.

[3] Elias Mueggler, Chiara Bartolozzi, and Davide Scara-

muzza. Fast event-based corner detection. In British

Machine Vis. Conf.(BMVC), volume 1, 2017.

[4] Valentina Vasco, Arren Glover, and Chiara Bartolozzi.

Fast event-based Harris corner detection exploiting the

advantages of event-driven cameras. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems (IROS), pages 4144–4149. IEEE, 2016.

[5] Vivado-HLS Xilinx. Vivado design suite user guide-

high-level synthesis, 2018.

