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Abstract

We present a fully event-driven vision and processing

system for selective attention and tracking, realized on a

neuromorphic processor Loihi interfaced to an event-based

Dynamic Vision Sensor DAVIS. The attention mechanism

is realized as a recurrent spiking neural network that im-

plements attractor-dynamics of dynamic neural fields. We

demonstrate capability of the system to create sustained ac-

tivation that supports object tracking when distractors are

present or when the object slows down or stops, reducing

the number of generated events.

1. Introduction

Event-based sensors send out data packages, or events,

from each pixel asynchronously when the pixel detects a

local brightness change, rather than reading all pixels and

sending out frames at a constant rate. Such event-based

sensing allows us to perform some vision tasks extremely

efficiently, reducing the amount of required computation,

transmitted data, and power consumption. Many event-

based vision pipelines and architectures have been devel-

oped over the last decade [1, 2], which address such vision

tasks as stereo vision [3], 3D pose estimation [4, 5], or op-

tical flow [6]. These event-based pipelines are typically im-

plemented on conventional Von Neumann computer archi-

tectures. While such implementations try to make the best

out of the event-driven nature of the sensor output, they can-

not fully utilize its advantages: the clocked, sequential op-

eration of a CPU, as well as separation between memory

and processor stay in contrast to the highly parallel asyn-

chronous temporal stream of events coming from an event-

based sensor.

Neuromorphic hardware, in contrast to the conventional

CPU, offers a massively parallel computing substrate that

is inherently event-based, which matches the processing

paradigm of event-based sensors [7, 8, 9, 10]. We aim

to develop neuronal architectures that solve different tasks

on such neuromorphic devices taking full advantage of the

event-driven computation. In this work, we target a vision

task of object tracking; in particular we show how a sim-

ple attention network can be configured on a neuromorphic

hardware to select one object in an event-based input stream

and to track this object in presence of equally salient dis-

tractors. While similar principles to the one realized here

have been used in early days of neuromorphic engineering

to design a dedicated spiking neuromorphic chip for atten-

tion [11], here we present its realization on a generic neu-

romorphic device Loihi that can also support other vision,

cognitive, and motor control tasks [8].

Neuromorphic processors emulate dynamics of biolog-

ical spiking neurons in hardware and thus allow us to run

spiking neural network architectures in real-time, with a

small energy footprint, and in small form-factor devices,

making them a promising computing platform for event-

based vision [7, 8]. However, most neuromorphic devices

target offline computation, with applications in either com-

putational neuroscience [10, 12] or data processing [9]. The

Kapoho Bay – a USB-stick form-factor version of the In-

tel’s latest neuromorphic research platform Loihi [8] – is

among neuromorphic systems that offer a direct Address-

Event Representation (AER) interface to event-based sen-

sors [13]. This allows us to build a setup, in which a neu-

romorphic camera DAVIS [14] can be directly interfaced to

Loihi, stimulating on-chip neurons configured in a network

that can solve vision tasks. Here, we focus in particular on

the task of object-centered attention and tracking.

While the event-based output of a DAVIS camera singles

out a fast-moving object easily, two capabilities need addi-



tional processing: the ability to suppress distractors even if

their salience changes and at times surpasses that of the tar-

get object and; keeping track of an object if it slows down

or even stops. To gain these capabilities, the system needs a

mechanism to hold a memory of the object’s location in the

field of view. While such a memory mechanism can be re-

alized on a conventional computing system, doing so would

alleviate the advantages of the low-power event-based com-

puting. Here we explore a setup in which an event-based

sensor is interfaced to an event-based processor running a

recurrent neural network that is capable of creating mem-

ory states based on the incoming events.

Feed-forward artificial neural networks (ANNs) are

stateless – they merely transfer inputs to outputs and if they

do not receive input, the activity in the network fades away.

In a spike-based network with integrate-and-fire neurons,

the activity decays with a time-constant of neuronal dynam-

ics, in a conventional ANN, even more radically, on the next

clock cycle. In order to create a memory state, recurrence

in the network is needed. A well-known model for work-

ing memory that has been studied in computational neuro-

science and cognitive science is a Dynamic Neural Field

(DNF) [15] – a neural population-based model. The DNF is

a dynamical system that can be realized as a recurrent neu-

ral network with attractor dynamics, created by configuring

a population of neurons with a winner-take-all connectiv-

ity [16]. In this connectivity pattern, neurons that encode

similar values have an excitatory connection and neurons

that encode different values – an inhibitory one. This sim-

ple connectivity pattern performs a selective amplification

of a noisy input and, in an extreme case of strong interac-

tion, can create sustained activation patterns that are kept

active even if the initial input ceases completely. This prop-

erty has been used as a model of working memory [15].

DNFs have been used previously to realize object track-

ing with on SCAMP – a smart camera with an in-focal-

plane processor array [17]. Here, we demonstrate object

tracking with DNFs in an event-based setting using a spik-

ing neuromorphic device Loihi.

2. The hardware setup

2.1. Neuromorphic Device Loihi

Intel Neuromorphic Computing Lab designed the neuro-

morphic research chip Loihi, in which spiking neural net-

work models can be simulated in real-time efficiently [8].

The chip consists of a mesh of 128 neuromorphic cores,

three embedded x86 processor cores, and an off-chip com-

munication interface that allows to scale up architectures

to multiple Loihi devices. Compartments are the main

building blocks used to configure both single- and multi-

compartment neurons. In this work we only use single-

compartment neurons.

The external input to a network on Loihi is provided

through spike generators. Spike generators are ports con-

nected to compartments that can generate spikes at precise

time-steps. Loihi provides an instrument for measuring the

variables and sending them off the chip using “probes”.

For compartments it is possible to define probes to measure

spike events, neuron’s membrane voltage and input current.

For the connections, probes can measure multiple synaptic

variables, including weight, pre-synaptic and post-synaptic

traces. Probing, however, affects the performance of the

chip.

Loihi’s Python NxSDK-0.8.0 API allows us to imple-

ment SNNs on the chip [18]. The NxNet API provides

ways to define a graph of neurons and synapses and con-

figure their parameters (such as decay time constants, spike

impulse values, synaptic weights, refractory delays, spiking

thresholds), inject external stimulus into the network, im-

plement custom learning rules, and monitor and modify the

network during runtime.

2.2. Dynamic Vision Sensor DAVIS

In this work, we used a Dynamic Vision Sensor type

of a camera, the DAVIS240C [14]. The DAVIS camera

emulates the dynamics of biological retinal cells in silicon

using mixed-signal analog/digital technologies. There are

240 × 180 pixels integrated on the chip. Each pixel inde-

pendently detects the brightness change in a small area of

the visual scene and emits an event if the brightness change

passes a positive (“on” event) or a negative (“off” event)

threshold. Each event is a digital data packet that carries

the address of the pixel, the polarity of the detected bright-

ness change, and the time of the event using Address Event

Representation. Due to its high dynamic range, the sensor

captures moving objects in its visual field in a wide range

of lighting conditions.

To connect DAVIS to Loihi, the direct parallel AER in-

terface on the device can be used. The events are cap-

tured and distributed to neurons on the neuromorphic cores

through the embedded FPGA and x86 processors. For re-

producibility, in this work, we use recorded spikes that we

feed into Loihi using a spike generator from the NxNet

API to generate some of the plots. The network was also

tested with the direct AER interface between the DAVIS

and Loihi.

3. Attractor Dynamics for Object Tracking:

the Dynamic Neural Fields

A Dynamic Neural Field is a mathematical model that

was derived to describe activity of large homogeneous pop-

ulations of biological neurons [15]. The connectivity pat-

tern in such a neuronal population is shown in Fig. 1. First,

neurons are “aligned” according to a feature which they are



Figure 1. Schematic representation of a 1-dimensional winner-

take-all dynamic neural field. The lateral connections are all-to-all

and the synaptic weights are defined by the kernel function that

depends on the distance between the pre- and post-synaptic neu-

rons.

sensitive to (here, the position in the camera’s field of view).

Second, neurons that are sensitive to similar values of the

feature (i.e. are close to each other on this behavioral space)

are connected via excitatory (positive weight) connections,

and neurons that are sensitive to dissimilar features inhibit

each other (negative-weight connections). This soft winner-

take-all connectivity pattern, combined with a non-linearity

of the neuronal activation function, leads to formation of an

attractor state in a DNF neuronal population. In particular,

DNFs form a so-called bump-attractor – a localized activity

peak centred over a salient value of the behavioral variable

(green line in Fig. 1). Such bump-attractor networks have

been used in the past both to explain activity patterns in bio-

logical neural networks and to build artificial cognitive sys-

tems for robot control [19, 15]. To realize DNF dynamics

on Loihi, we create a group of compartments that are con-

nected with synapses with weights matching the ”Mexican-

hat” connectivity kernel.

The output of the DNF population is computed as a pop-

ulation vector using the instantaneous firing rate of neurons

that is inversely proportional to the inter-spike intervals.

4. Results

4.1. Attractor dynamics on a neuromorphic Chip

First, we demonstrate the properties of a DNF realized

in a spiking neural network on Loihi that are used in the

object-tracking application. We have configured a small

population of 12 neurons in a winner-take-all fashion, as

shown in Fig. 1. We used two sets of parameters to demon-

strate two dynamical configurations of the DNF: a selec-

tive input-driven regime, shown in Fig. 3a, b, c and a self-

sustained regime shown in Fig. 3d. In each subfigure, the

upper plot shows spikes from the spike generators that send

input to Loihi, the middle plot shows the output spikes from

the DNF population, and the lower plot shows population

Figure 2. Performance evaluation.

activity vector of the DNF population (the position of the

mean of neuronal activity) over time of the experiment.

Fig. 3a shows that a DNF configured in a selective

regime selects one of the input bumps in the case of a bi-

modal input distribution. For each pair of input bumps with

equal strength (average firing rate), the DNF selects one of

them randomly. Fig. 3b shows behavior of the same DNF

population for an input sequence, in which one of the input

bumps arrives first, is selected and then stabilized by the

lateral interactions in the neuronal population. In this con-

figuration, the second input bump is rejected by the DNF

population and does not lead to any activity of the neurons

in the respective region.

Fig. 3c and d contrast behavior of the DNF config-

ured to be in an input-driven regime (c) versus in a self-

sustained regime (d). For the same input, the input-driven

DNF (Fig. 3c) follows the input activity, only rejecting

noise around the activity bumps. The self-sustained DNF

(Fig. 3d) keeps the position of the selected object and ig-

nores input at different locations unless it is spatially prox-

imal to the current activity bump. Thus, it shows tracking

behavior.

To configure the two DNFs, we used the parameters on

Loihi listed in the Table 1. In particular, we use Gaussian-

shaped connectivity profile for lateral connections in the

WTA (of amplitude “Excitatory weight” and spread “Con-

nectivity kernel σ”) and a direct global inhibition. Input-

and background-noise are generated as Poisson spikes.

4.2. Performance evaluation

Fig. 2 shows the duration of simulation on Loihi per time

step depending on the number of neurons in a 2D DNF

population with a single self-sustained bump without spike

generators (apart from the initial one creating the bump) or

probing. Neurons are distributed over the 2x128 cores. One

can observe that the simulation time per time step stays on

the level of 20µs for network sizes above 1000 neurons1.

1Although quite fast already, the simulation time depends on the details

of the network implementation and can be further optimized.



(a) (b)

(c) (d)

Figure 3. The plots show activity of spiking neurons on the Loihi chip, configured as a DNF in an input-driven (a, b, c) and self-sustained (d)

regime. In each subfigure, the top plot shows input spikes generated on the computer, the middle plot shows output of the DNF population

on Loihi, and the bottom plot shows the population vector (mean of the activity) of the DNF population.

4.3. Event­based attention and tracking

The tracking network consists of two two-dimensional

WTA/DNF layers with 64x64 neurons each. The first layer

has excitatory connections at a level at which peaks are self

sustained and weak global inhibition so that multiple bumps

can form. Bumps form at the locations of the on-event in-

put and follow the on-events when objects move over the

field of view of the DVS. The off-events inhibit neurons in

this population, decreasing activity in the bumps. This fa-

cilitates fast moving bumps avoiding a tail in the activation

pattern. The second WTA layer receives input from the first

layer through one-to-one connections. This layer has strong

self-excitation and strong global inhibition which lead to

the selection of a single bump. To this layer, we provide

an excitatory initial input, cuing one of the objects in the

beginning of the DVS stimulation; feature-based cues can

also be used here [15] (Chapter 5). The WTA forms an

activity bump over the selected object, which is moved by

the excitatory input from the input layer when the selected

object moves. In these experiments, parameters listed in



Parameter Input

driven

Self-

sustained

Voltage threshold 3000 ∗ 2
6

3000 ∗ 2
6

Voltage decay time constant 150 ts 150 ts

Current decay time constant 10 ts 10 ts

Connectivity kernel σ 1.5 1.5

Self excitation no yes

Excitatory weight 200 150

Global inhibitory weight -160 -75

Input weight 200 200

Input firing rate (Poisson) 60 Hz 60 Hz

Noise firing rate (Poisson) 2 Hz 2 Hz
Table 1. DNF parameters used to produce plots in Fig. 3

Figure 4. Trajectory of the selected object (star), obtained from

the activity bump in the DNF on Loihi and from frames, used as

ground truth. The average distance between the points in the two

trajectories over all frames is 3.5 DAVIS pixels. The distance was

calculated with an offset between frames- and events-trajectory of

15 ms, where the distance is minimal.

Table 2 were used. In particular, both DNF layers are self-

connected using a Mexican hat connectivity kernel specified

by a difference of two Gaussians (with amplitude and σ of

the excitatory and inhibitory kernels); a global inhibitory

group of neurons is used to provide global inhibition. Ev-

ery neuron in the inhibitory group has a given probability to

be connected to any neuron in the excitatory layer.

Fig. 5 shows performance of the two-dimensional DNF

on the Loihi chip in a tracking experiment. Here, the

shapes translation dataset [20] is used that contains a num-

ber of objects drawn on a wall in front of a moving DVS.

Plots in Fig. 5b show input that is sent to Loihi over the

course of the experiment: the DVS events are emitted at the

edges of the objects.

Fig. 5c shows activity of the first, non-selective DNF

layer: activity in this layer forms peaks over all objects, sta-

bilizing this activity in moments with reduced motion and

Parameter value

Voltage threshold 640 ∗ 2
6

Voltage threshold global inhibition 896 ∗ 2
6

Voltage decay time constant 20 ts

Current decay time constant 20 ts

Input connectivity kernel σ 1.5

Excitation kernel σ 2

Inhibition kernel σ 4

Excitatory weight non-selective 152

Inhibitory weight non-selective -41

Excitatory weight selective 230

Inhibitory weight selective -41

Excitatory weight to global inhibition 5

Global inhibitory weight non-selective -20

Global inhibitory weight selective -90

Excitatory weight non-selective to selec-

tive (1:1 connectivity)

740

Input weight on events 70

Input weight off events -50

Refractory period 12 ts

Refractory period global inhibition 7 ts

Connection probability to/from global in-

hibition

0.6

Number of global inhibitory neurons 40
Table 2. DNF parameters used to produce plots in Fig. 5 and 6, if

layer is not specified, the parameter applies to both.

weaker DVS output. Fig. 5d shows activity of the output

layer of the tracking DNF. Here, one of the objects (the star)

is selected (by a local boost to this layer in the beginning of

the simulation) and is tracked throughout the experiment,

despite presence of the distractors.

To obtain the spike plots, the spikes were filtered with

a 50ms rectangular filter and snapshots were taken at reg-

ular intervals within the simulation of 6500 time steps.

DAVIS input events to the first layer were down-sampled

and binned into 1ms per time step (events that exceeded one

event per bin, were discarded), i.e. the 6500 time steps cor-

respond to 6.5s of DAVIS input.

Fig. 4 shows the trajectory of the selected object that is

extracted from the activity of the output layer of the DNF

model and the ground truth extracted from the input frames.

The blue trace shows the center of the star object extracted

from the DAVIS frames by thresholding (ground truth). The

orange trace shows mean (i.e. population vector) of the

instantaneous firing rate of neurons in the second (output)

layer of the network (i.e. the middle of the tracked bump).

Instantaneous firing rates are estimated based on the inter-

spike intervals.

The DVS input to the network was down-sampled to

64x64 neurons, the trajectory was up-sampled to the DAVIS

resolution of 240x180. The mean error was calculated as the

mean of all distances between the locations of the bump ac-



(a)

(b)
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Figure 5. Object tracking experiment: (a) snapshots of input DAVIS frames (top); (b) DAVIS on (green) and off (red) events binned into

10ms frame (second from top); (c) Firing rate of first non-selective WTA layer on Loihi (third from top); and (d) second, selective WTA

layer on Loihi (bottom).

tivity and the locations of the frame based extraction at the

timesteps of the DAVIS frames and amounts to 3.5 DAVIS

pixels.2

Fig. 6 shows our second tracking experiment. Here, a

ring with five identical objects is rotating in front of the

DAVIS camera. The first layer of the tracking SNN archi-

tecture creates activity bumps for all five objects, while the

second layer (bottom plots) only tracks the single object,

selected by a localized activity boost in the beginning of the

experiment (first pane in the plot). The same parameters

were used here as for Fig. 5. The length of simulation on

Loihi was 3000 timesteps here. DAVIS input events were

binned into 0.5ms per timestep, i.e. the simulation corre-

sponds to 1.5s of DAVIS input.

5. Conclusion

In this work, we have shown for the first time a setup that

interfaces an event-based camera DAVIS with the spiking

neuromorphic system Loihi, creating a purely event-driven

sensing and processing system. We have implemented a

simple attention and tracking network on Loihi that allows

to select a single object out of a number of moving objects

2The Figure was generated using a Brian2 simulation of the equations

implemented in Loihi, as it is currently impossible to probe a large network

for that many time steps, however, performance of the network can be

observed in a live demo.

in the visual field and track this object, even in cases when

movement stops and the event stream is interrupted. Full

evaluation of the system in terms of tracking speed and

quality, as well as power efficiency and robustness is tar-

get of our current work and will be reported shortly, while

functioning of the system can be observed in a live demon-

stration during the workshop.
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