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Abstract

Event cameras are novel, bio-inspired visual sensors,

whose pixels output asynchronous and independent times-

tamped spikes at local intensity changes, called ‘events’.

Event cameras offer advantages over conventional frame-

based cameras in terms of latency, high dynamic range

(HDR) and temporal resolution. Until recently, event cam-

eras have been limited to outputting events in the inten-

sity channel, however, recent advances have resulted in the

development of color event cameras, such as the Color-

DAVIS346. In this work, we present and release the first

Color Event Camera Dataset (CED), containing 50 minutes

of footage with both color frames and events. CED fea-

tures a wide variety of indoor and outdoor scenes, which we

hope will help drive forward event-based vision research.

We also present an extension of the event camera simulator

ESIM [1] that enables simulation of color events. Finally,

we present an evaluation of three state-of-the-art image re-

construction methods that can be used to convert the Color-

DAVIS346 into a continuous-time, HDR, color video cam-

era to visualise the event stream, and for use in downstream

vision applications.

Website: http://rpg.ifi.uzh.ch/CED

1. Introduction

Since their recent addition to the computer vision com-

munity [2], event cameras have challenged conventional

thinking about how to solve computer vision problems. In-

stead of producing global-shutter images at a fixed frame-

rate as in conventional cameras, event cameras have pixels

that operate independently and asynchronously. When the

brightness change at a given pixel exceeds a threshold, that

pixel emits an event containing its (x, y) address, timestamp

and polarity. Event cameras offer several advantages; they
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Figure 1: Our Color Event Camera Dataset (CED) features

both outdoor (top row) and indoor (bottom row) sequences,

and provides color images (left column) and color events

(right row) from the Color-DAVIS346 for each sequence.

sample at the rate of scene dynamics without having to wait

for an external shutter cycle, and the output is data-driven

and non-redundant. This means that event cameras have ex-

tremely low latency, low power consumption and bandwidth

requirements, high dynamic range and suffer essentially no

motion blur. The temporal resolution of current event cam-

eras is in the order of microseconds.

Since their introduction, event cameras have spawned

a flurry of research. They have been used in feature

detection and tracking [3–6], depth estimation [7–10],

stereo [11–14], optical flow [15–18], image reconstruc-

tion [19–25], localization [26–29], SLAM [30–32], visual-

inertial odometry [33–36], pattern recognition [37–40],

and more. In response to the growing needs of the

community, several important event-based vision datasets

have been released, directed at popular topics such as

SLAM [28], optical flow [41, 42] and recognition [37, 43].

Event camera datasets enable better benchmarking and re-

producibility, and grant researchers access to high qual-

ity event data in a range of environments without nec-

essarily having to acquire an expensive event camera.



Figure 2: “DAVIS346

Red Color” camera used

for dataset collection.

While existing datasets are

limited to monochrome events,

event camera technology has

since advanced to allow color

events and frames [44], which

opens the door to a new gener-

ation of color event processing.

The addition of color infor-

mation to event-based vision

has the potential to improve

performance of many tasks,

such as segmentation [45] and

recognition, where it is known that color is an impor-

tant source of visual information [46]. Early works have

shown promising results using prototype color event cam-

eras [47–49], or a mirrored-rig with three monochrome

cameras and three color filters [45], however, to-date there

are no publicly available color event datasets. Further,

the wider research community has limited access to color

event cameras, hindering progress into color event vision

research.

We present the first Color Event Camera Dataset (Fig. 1)

that aims to spur research into color event vision by pro-

viding the community with high quality color event data,

alongside color frames from the Color-DAVIS346 [44]. The

Color-DAVIS346 (Fig. 2) is the latest color event camera,

built upon the popular line of DAVIS cameras that many

existing datasets and research is based off. Rather than di-

recting our focus at a specific target application, we aim

to cater for general purpose vision research by including

a diverse range of scenes (simple objects, indoor/outdoor

scenes, people), lighting conditions (daylight, indoor light,

low-light), camera motions (linear, 6-DOF motion) and dy-

namics. While we do not provide ground truth labels for any

specific task (e.g. optical flow estimation, object detection,

etc.), we provide color images from the sensor that are nat-

urally synchronized and registered to events. These images

may be used to generate proxy labels for any task of inter-

est (using either conventional computer vision, or manual

annotation) that can be transferred to the events.

To visually unveil the color information contained in

color events, we evaluate and compare three state-of-the-art

event-based image reconstruction methods [22, 24, 50] on

our Color Event Camera Dataset. Image reconstruction is

an active field of event-based vision research [6, 19–24, 50]

that allows visualisation of the event stream, and enables

application of decades of computer vision research and ex-

pertise on event data, which in its raw form is inaccessible to

powerful tools such as convolutional neural networks. Fur-

ther, event reconstructed images have the potential to retain

desirable qualities of event cameras, such as high dynamic

range, high temporal resolution and immunity to motion

blur.

Contributions:

1. We present CED: Color Event Camera Dataset con-

taining 50 minutes of both color events and frames in

a wide range of natural scenes with static and dynamic

objects, and covering a variety of camera-motions

from simple translations and rotations to unconstrained

6-DOF motions.

2. We release a color event camera simulator, based on

ESIM [1].

3. We present color video reconstructions from a color

event camera, comparing three state-of-the-art recon-

struction methods. Video reconstruction provides a

natural way to visualize the event stream and enable

image-based processing on events.

2. Related Works

Many event-based vision datasets have been published

since the introduction of the DVS [2]. Most of these datasets

were recorded using a DAVIS [51] event camera or sim-

ilar and have a particular use-case in mind, such as im-

age reconstruction [24], recognition [37, 43, 52], optical

flow [21, 42, 53], driving/SLAM [26, 29, 41]. The dataset

perhaps most similar to ours is the Event-Camera Dataset

and Simulator [28]. All of the above datasets are limited

to monochrome temporal contrast or gray-level events. Our

Color Event Camera Dataset (CED) doesn’t have a particu-

lar use-case in mind and aims simply to cover a wide range

of scenarios and motions that can be used in a broad swathe

of research topics.

The need for publicly available datasets of arbitrary

event data is partly driven by the fact that event cameras are

scarce and expensive hardware acquisitions. For this rea-

son several event camera simulators have been developed

in previous years, the most sophisticated of which is the

ESIM [1]. While ESIM provides high quality, realistic event

data and ground-truth from a free moving simulated camera

in an arbitrary 3D modeled environment, it does not support

color events. Nor does (to our knowledge) any other con-

temporary, publicly available event simulator. We propose

an extension of ESIM to simulate color events and make it

publicly available.

Thus far there have been few works that use color events.

One particular counterexample is Marcireau et al. [45], who

perform color segmentation on color events. However, in

this work the authors felt compelled to build their own

color event camera using a complex array of beam split-

ting mirrors and filters to channel light into three separate

event cameras. Further, this setup did not allow capturing

color frames, which had to be instead reconstructed from

the event streams of the three sensors. Our dataset hopes to

save future researchers this kind of effort.

The C-DAVIS [49] was one of the first color event
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Figure 3: Left: 2×2 RGBG Bayer pattern in the Color-

DAVIS346. Right: Events from the Color-DAVIS346 split

into each color. Positive (ON) events are colored by the

corresponding filter color, negative (OFF) events are black.

cameras, based on the DAVIS [51] with VGA resolution

color (RGBW) frames and QVGA monochrome events.

The SDAVIS192 [48] had improved sensitivity over the

DAVIS, able to output color (RGBW) events and frames

at 188 × 192 pixel resolution. Moeys et al. [47] used

the SDAVIS192 to demonstrate color image reconstruction

from events using 1) naı̈ve integration and 2) Poisson in-

tegration [54] of a gradient field based on the surface of

active events [15]. The Color-DAVIS346 [44] is the latest

color event camera at the time of writing, and outputs color

(RGBG) events and frames at 346 × 260 resolution.

3. CED: Color Event Camera Dataset

The Color-DAVIS346 [44] consists of an 8×6mm

CMOS chip patterned with RGBG filters (Fig. 3), able to

output color events and standard frames at 346×260 pixel

resolution. Table 1 displays the camera bias settings used

(based off the defaults provided in the DAVIS ROS driver1).

Events generated by the DAVIS are reported with microsec-

ond timestamp precision. We provide time-stamped, raw

frames from the DAVIS, as well as color frames obtained

via demosaicing [55]. To minimize motion blur in the

DAVIS frames, we use fixed exposure fine-tuned for each

indoor sequence. We use auto-exposure for outdoor se-

quences since it is bright enough to drive exposure time

down. No infrared filter is used unless otherwise specified.

We provide binary (rosbag) files containing synchronized

and time-stamped events, raw images and color images.

The Color Event Camera Dataset (Fig. 4) contains 50

minutes of footage consisting of 100k color DAVIS frames

and over one billion color events. The sequences cover

a wide variety of scenes that showcase some of the key

properties of the technology, namely high dynamic range,

high temporal resolution and immunity to motion-blur. We

include five categories (Table 2): Simple, Indoors, Peo-

ple, Driving and Calibration. Simple contains sequences

in favorable conditions, i.e. well-lit, moderate camera mo-

tions, where the DAVIS frame is typically sharp and well-

1https://github.com/uzh-rpg/rpg_dvs_ros

Table 1: Bias settings used for the Color-DAVIS346.

Bias Indoors Outdoors

Coarse Fine Coarse Fine

DiffBn 4 39 4 39

OFFBn 4 0 4 0

ONBn 6 200 6 200

PrBp 2 58 3 0

PrSFBp 1 33 1 33

RefrBp 4 25 4 25

exposed. Indoors contains challenging conditions such as

low-light, fast camera motion, as well as natural indoor

office scenes. People consists of pre-determined actions

such as sitting, waving, dancing with both static and dy-

namic camera. Driving is filmed through the windshield of

a car in sunny conditions and contains a range of environ-

ments including highways, tunnels, city and country. Cal-

ibration shows a ColorChecker and density step target in

various lighting conditions including fluorescent, low-light,

outdoors, with and without an infrared filter.

Color Event Simulator. In addition to the real event

datasets, we extended the event camera simulator ESIM [1]

to allow simulation of color events2. Our extension operates

on the ground-truth color (RGB) frames generated by the

rendering engine, and simulates a color filter array (specifi-

cally, an RGBG Bayer pattern, as in the DAVIS346 used for

this dataset). The simulated Bayered frames are then pro-

cessed by the event simulation code in ESIM, thus produc-

ing color events in the same way as the DAVIS346. ESIM

can readily provide multiple ground truth modalities, such

as color frames, depth maps, optical flow maps, camera

poses and camera velocities. Our extension is compatible

with all the rendering engines already bundled with ESIM,

including a photorealistic rendering engine. Figure 5 shows

an example of color event data and ground truth modalities

simulated by our extension of ESIM.

4. Color Video Reconstruction

Image reconstruction from events serves two primary

functions: 1) as a way to visualise events and 2) for use

in downstream vision applications e.g. object detection.

4.1. Method

We evaluate and compare three state-of-the-art event-

based image reconstruction methods on our Color Event

Camera Dataset. While these methods were originally de-

signed for monochrome events, we found that with minimal

modification all three were able to produce convincing color

reconstructions. While “ground-truth” color DAVIS frames

were available, only color events were used as input to each

method.

2https://github.com/uzh-rpg/rpg_esim
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Figure 4: Impressions of the scenes from our dataset. Left column: color DAVIS frame; right column: color events.



Table 2: Types of scenes in our Color Event Camera Dataset.

Type # Seq
Length

(mins)
Lux Description Possible Applications

Simple 16 5 80 - 1e3 Simple camera motions looking at simple objects

and scenes with vibrant colors such as fruit, blocks

and posters.

Image reconstruction

Indoors 15 5 0.8 - 1e3 Natural indoor scenes including office, kitchen,

rooms and corridors

Object detection

People 27 10 400 Common actions and gestures such as sitting,

waving, jumping, air guitar.

Action recognition

Driving 12 28 200 - 1e5 Footage from front windshield of car driving

around country, suburban and city landscapes.

Features tunnels, traffic lights, vehicles and pedes-

trians during the day in sunny conditions.

Segmentation,

Optical flow

Calibration 14 2 80 - 1e5 ColorChecker and density step target: indoors,

outdoors, with and without infrared filter.

Color calibration

Simulated - - - Color ESIM (adapted from [1]). Simulator can be

used to generate unlimited sequences with ground

truth depth, ego-motion, optical flow and more.

Optical flow, SLAM,

Image reconstruction
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(a) Frame (b) Events (c) Depth Map (d) Optical Flow

Figure 5: Example color events and ground truth modalities simulated with our color extension for ESIM. This scene was

generated using the photorealistic rendering engine based on Unreal Engine.

1. Manifold Regularisation (MR).3 Reinbacher et al.

[22] use integration with spatio-temporal smoothing to re-

cover image frames from events. They use the surface of

active events [15] to define a manifold that guides regulari-

sation. We use default parameters provided by the authors;

the integration window length is set to to 1, 000 events.

2. High-pass Filter (HF).4 Scheerlinck et al. [24] show

that a lightweight, asynchronous complementary filter can

be used to obtain a continuous-time video from events and

frames. If desired, the frame input to the filter can be

set to zero, resulting in a simple high-pass filter that pro-

duces reasonable results from only events. Since each

pixel is treated independently without spatial smoothing,

the Bayer pattern is preserved, and demosaicing [56] can

be used to recover an RGB image at any point in time.

3https://github.com/VLOGroup/dvs-reconstruction
4https://github.com/cedric-scheerlinck/dvs_

image_reconstruction

We use a gain of 0.06 for both cutoff frequency and

cutoff frequency per event component. As a

final post-processing step, we apply a 5×5 bilateral filter

with spatial filter sigma set to 1.0 for each output

reconstruction.

3. E2VID Neural Network (E2VID). Rebecq et al. [50]

show that a recurrent neural network trained on a large

amount of event data simulated with ESIM [1] can gener-

ate high quality video reconstructions from event data only.

E2VID converts the stream of events into a sequence of

“event tensors”, each consisting of a fixed batch of events

represented as a 3D spatio-temporal voxel grid. The se-

quence of event tensors is passed to a recurrent UNet that

outputs a sequence of reconstructed image frames.

Manifold regularization (MR) and E2VID utilize spatial

smoothing, which destroys the Bayer pattern if applied di-

rectly to events. For both of these methods, we found that

color images can still be obtained by reconstructing red,
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Figure 6: Qualitative comparison of different color video reconstruction methods on our dataset (images randomly selected).

Only events were used for each reconstruction method. Results (c), (d) qualitatively match the DAVIS frame (a).

green and blue channels independently (at quarter resolu-

tion), then upsampling to the original resolution using bicu-

bic interpolation. Because of the Bayer pattern, the four

different (upsampled) color channels will not be exactly

aligned. Therefore, we shift each color channel by one pixel

horizontally and/or vertically so that all four color channels

are geometrically aligned. We fuse both green channels (af-

ter alignment) by simply taking the mean. In contrast, the

High-pass filter (HF) treats each pixel independently and

does not perform spatial smoothing. Thus, it can be applied

directly to events, then converted to color using demosaic-

ing [56].

4.2. Results

Figure 6 shows reconstruction results of all three meth-

ods; Manifold regularisation (MR), High-pass filter (HF)

and events-to-video neural network (E2VID), alongside

DAVIS frames from the Color-DAVIS346. HF and E2VID

preserve color well and qualitatively match the DAVIS

frame. We encourage the reader to watch the accompanying

video, which convey our results better than still-images.

Figure 7 displays edge cases such as high-speed, HDR

etc. that highlight strengths and weaknesses of each recon-

struction method and the DAVIS frames:

Initialisation (first row). Both MR and HF are ini-

tialised at zero and rely on integration of events to build

a consistent image over time. Thus, they are prone to pro-

ducing edge-like images, particularly within the first few

milliseconds after initialisation, until enough events ‘fill in’

the missing information. In contrast, E2VID is good at fill-

ing in gaps and can hallucinate color accurately in places

with no events.

Fast Motion (second row). HF is a temporal high-pass

filter, and is sensitive to temporal components in the input

signal, such as frequency and speed. Thus, the quality of

the reconstruction can be adversely affected by extremely

fast (or slow) motions.
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Figure 7: Edge cases for different reconstruction methods. First row: initialization, all method but E2VID fail. Second row:

fast motion, HF accumulates more noise. Third row: zoom on carpet, HF preserves fine details better. Fourth row: Low

apparent motion e.g. in the sky, HF preserves slow moving objects better. Fifth row: HDR scene, DAVIS cannot capture

entire intensity range, reconstructions can. Sixth row: dark room (2 lux), DAVIS suffers motion blur, not the reconstructions.



In addition, fast motions tend to generate noise in the

event stream that is accumulated without discrimination by

the integrator in HF. MR and E2VID are good at rejecting

noise from fast motion and showcase the attractive proper-

ties of event cameras for challenging scenarios.

Sharpness (third row). MR and E2VID rely on spatial

smoothing to filter out noise from the event stream, which

can degrade sharpness of fine details. For color reconstruc-

tion, the spatial smoothing property of these two methods

destroys the Bayer pattern, requiring each color to be recon-

structed independently (at quarter resolution), then upscaled

back to the original resolution, further losing fine details. In

contrast, HF requires no spatial smoothing, so a raw inten-

sity reconstruction at full resolution is possible, since the

Bayer pattern is preserved. A demosaicing algorithm [56]

can be used to convert the raw output to color without loss

of resolution, resulting in a sharper reconstruction.

Memory (fourth row). The “memory” (i.e. the time

span over which information in the event data can be prop-

agated) is variable between all three methods. For HF, the

size of the temporal receptive field (memory) is explicitly

encoded through the cutoff frequency parameter. Hence, the

duration across which information can be propagated can be

set to an arbitrarily high amount of time, at the expense of

integrating more noise, and creating “bleeding” patterns fol-

lowing moving objects. By contrast, MR and E2VID have

an implicit memory, whose size can vary with the number

of events used in each integration window (MR), or event

tensor (E2VID). However, we observe that the memory of

MR and HF is notably smaller than HF, which is particu-

larly visible in the driving sequence (fourth row of Fig. 7),

where HF is able to reconstruct slow moving objects, e.g.

the clouds or the distant buildings, in contrast to MR and

E2VID.

HDR (fifth row). Since the APS is limited to a uniform

exposure duration for all pixels, the DAVIS frame has low

dynamic range compared to events. Thus, dark regions are

often underexposed while bright regions (window) are well

exposed, and vice versa. Reconstructions from MR, HF and

E2VID all showcase the high dynamic range property of

events, i.e. both dark and bright regions are clear.

Low light (sixth row). Low lighting is a challenge for

conventional cameras because the exposure duration must

be increased to avoid underexposure, leading to motion blur.

While the DAVIS frame is motion blurred, MR, HF and

E2VID demonstrate immunity to motion blur, even in chal-

lenging low lighting conditions.

4.3. Application of Reconstructions

While many computer vision algorithms work on

grayscale images, it is well established that incorporating

color information can significantly boost performance for

the task at hand [57]. This is because color images contain

Figure 8: Object detection (YOLO [58]) on reconstructed

images using E2VID. Color (right) tends to improve detec-

tion performance.

more information about the scene than grayscale images,

which can only encode structural information. This is par-

ticularly true in recognition tasks, where color can be an im-

portant visual cue. Figure 8 shows one example where color

improves object detection performance. We apply YOLO

[58] to E2VID images reconstructed from both grayscale

and color events and observe that color offers qualitative

improvement. While image reconstructions can be used di-

rectly for the task at hand, they may also be used to generate

proxy labels (e.g. segmentation, optical flow, recognition)

that can be transferred to events.

5. Conclusion
We present the first Color Event Camera Dataset, con-

taining both frames and events across a diverse range of

scenes, motions and lighting conditions. We release an

open source color event camera simulator based on ESIM

[1]. We show how three state-of-the-art event-based im-

age reconstruction methods can be adapted for color video

reconstruction, and compare strengths/weaknesses of each

method. We hope that our Color Event Camera Dataset and

simulator will inspire future work with color events, which

we believe is the next step for event-based vision.
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