Interpretable Machine Learning for Generating Semantically Meaningful Formative Feedback

Nese Alyuz
Intel Corporation, Intel Labs
Hillsboro, OR, USA
nese.alyuz.civitci@intel.com

Tevfik Metin Sezgin
Koc University
Istanbul, TURKEY
mtsezgin@ku.edu.tr

Abstract

We express our emotional state through a range of expressive modalities such as facial expressions, vocal cues, or body gestures. However, children on the Autism Spectrum experience difficulties in expressing and recognizing emotions with the accuracy of their neurotypical peers. Research shows that children on the Autism Spectrum can be trained to recognize and express emotions if they are given supportive and constructive feedback. In particular, providing formative feedback, (e.g., feedback given by an expert describing how they need to modify their behavior to improve their expressiveness), has been found valuable in rehabilitation. Unfortunately, generating such formative feedback requires constant supervision of an expert. In this work, we describe a system for automatic formative assessment integrated into an automatic emotion recognition setup. Our system is built on an interpretable machine learning framework that answers the question of what needs to be modified in human behavior to achieve a desired expressive display. It propagates the desired changes to human-understandable attributes through explanation vectors operating on a shared low level feature space. We report experiments conducted on a children’s voice data set with expression variations, showing that the proposed mechanism generates formative feedback aligned with the expectations reported from a clinical perspective.

1. Introduction

The neuro-developmental conditions affecting communication and behavioral skills are referred to as Autism Spectrum Conditions (ASC). The main characteristics accompanied with ASC can be listed as having difficulty in social communication and interaction with other people, having restrictive interest, repetitive behaviors, and showing symptoms that restrict these individuals from functioning properly at any areas of life such as work or school [5]. Research shows that individuals with ASC particularly struggle with recognizing affective or mental states expressed by others and expressing their own inner states [7]. These deficiencies in recognition and expression of affect act as social communication barriers for individuals with ASC, keep them from developing healthy social relationships, and lead to social exclusion. There have been numerous technological developments that target ASC population to teach them emotion-related skills. Technologies such as ICPS - I Can Problem-Solve [3], Emotion Trainer [2], Lets Face It [9], or Mindreading [4] are examples that target to train individuals on emotion recognition and social communication skills. However, there is a lack of interactive tools and technologies for assisting individuals on the Autism spectrum in their quest to improve their skills for expressing emotions.

This work is part of the European Union project called ASC-Inclusion-Enlarged [1], which aims to address difficulties associated with training ASC children to better express their own emotions and assess others’ emotions. When assessing the emotional expressiveness of a subject, automated emotion recognition technologies through any or all of the expressive modalities of face, voice, or gestures can be used. The emotion performed can be evaluated through inference algorithms and the output can be used to inform whether the attempt of displaying a particular emotion was successful or not. However, such an approach lacks any feedback on what they can do to improve their expressiveness. In this work, we propose a formative assessment approach to include a feedback mechanism which would provide specific and comprehensible guidance for improved performance. By receiving easy-to-understand and targeted corrective feedback, individuals have the opportunity to learn how they should adjust their facial, vocal, or gestural behavior to show prototypical emotions. The paper is organized as follows: First, in Section 2, the proposed formative assessment approach is explained. Section 3 summarized the experimental results on the sample voice data. Section 4 concludes the paper, outlining future directions as well.
2. Proposed Formative Feedback Generation Scheme

The typical scenario for formative feedback involves a person displaying a performance, with a target label in mind. In the case of Autism rehabilitation, this is a child who attempts to display a target emotion through a variety of channels (facial displays, voice, body language, gestures). If the performer fails to express the emotion successfully, the goal of the formative feedback module is to generate human understandable explanations of what behavioral changes would move the performed instance closer to the desired target. Formative feedback is generated on a per-instance basis. Hence, there are two main inputs to the formative feedback module: features extracted from the performed instance, and the label of the expected (target) class. Implicitly, there is a third input: the classifier that classifies user input. In general, this classifier can come in any form (e.g., an SVM, a PGM, or a Deep Network), and our scheme does not force a particular kind of classifier. Hence, to generalize the scheme to any kind of classifier, a probabilistic black-box classification module is obtained by estimating the input classifier, which serves as the third input to the formative feedback system. Using the idea of the explanation vectors of Baehrens et al. [6], these three inputs are used to obtain feature modifications required to achieve the target classification on an instance basis. Using these explanations, the original feature can be modified to convert the input instance into one whose prediction decision matches the target. The difference between the original and the modified feature sets can be used to describe the necessary corrections. However, providing corrections at the feature level will not be comprehensible from a user perspective. Therefore, it is necessary to define high-level attributes and obtain the necessary alterations in terms of these. To generate the formative feedback, attribute extraction is run on both the original and the modified feature sets, and the difference between the original attributes and the modified attributes is used to generate the semantically meaningful formative feedback to the subject. The two main contributions of this work are as follows: First of all, the features are updated in an iterative manner to find the minimum necessary alteration. Secondly, for the feedback to be semantically meaningful, the necessary feature modifications are mapped to a higher-level attribute space. In the following three subsections, we describe the details of explanation vectors generation, iterative feature modification, and generation of semantically meaningful correction steps.

2.1. Explanation Vector Generation

Let’s assume that we have a training set of d-dimensional points \(X = \{x_1, x_2, \ldots, x_n\} \) with class labels \(Y = \{y_1, y_2, \ldots, y_n\} \in \{1, \ldots, C\} \), where we have \(C \) distinct classes of output labels and the joint distribution \(P(X, Y) \) is unknown. The explanation vector of a given instance \(x_0 \) for a target class label \(c \) can be computed as the derivative of the conditional probability for the given input instance:

\[
\zeta_c(x_0) = \frac{\partial}{\partial x} P(Y \neq c | X = x) \bigg|_{x=x_0} \tag{1}
\]

Here, \(\zeta_c \) is a \(d \)-dimensional vector like the original input instance, defining the flow away from the corresponding class: The entries with high absolute values will point out features that have high influence on the classification decision, where positive and negative signs indicate individual features whose values should be decreased or increased, respectively, to better resemble the target class.

To generate explanations for an unknown classifier \(g(\cdot) \), first of all we have to estimate the classifier. Then the explanation vector will be computed using the estimation \(\hat{g}(\cdot) \) and the class label given by the classifier. In this work, we have considered Kernel Density Estimation [8] to estimate the joint probability for the given class label:

\[
\hat{p}_c(x, y = c) = \frac{1}{n} \sum_{i \in I_c} k_\sigma(x - x_i) \tag{2}
\]

where \(k_\sigma(\cdot) \) is the kernel function and \(I_c \) is the index set for the given class. Here, we employed Gaussian kernel and estimated the conditional probability distribution as follows:

\[
\hat{p}_c(y = c | x) \approx \frac{\sum_{i \in I_c} k_\sigma(x - x_i)}{\sum_i k_\sigma(x - x_i)} \tag{3}
\]

The explanation vector for instance \(z \) and expected class label \(c \) can be defined as follows:

\[
\hat{\zeta}_c(z) = \frac{\partial}{\partial x} \hat{p}_c(y \neq g(z) | x) \bigg|_{x=z} \tag{4}
\]

Using \(g(z) \) outputs instead of \(c \) class labels allows us to interpret the classification decisions of our black-box classifier (assuming \(\hat{g}(\cdot) \approx g(\cdot) \) well).

2.2. Iterative Feature Modification

The explanation vector defines the direction of the flow away from the corresponding class. However, the magnitude of the vector does not embody any information about how much change is needed to resemble the target class better. As in the gradient descent algorithm, the explanation vector can be computed in an iterative manner until convergence to the target class is achieved. Moreover, a predefined step size can be employed for each iteration. As a fixed step size, we compute the minimum inter sample distance:

\[
d_s = \min_{i \in \{1, \ldots, n\}, j \in \{1, \ldots, n\} \setminus i} ||x_i - x_j|| \tag{5}
\]

At each iteration, using the directional information residing in the explanation vector and the calculated step size, the input instance (feature) is modified:
\[\mathbf{z}_{(t+1)} = \mathbf{z}_{(t)} - \frac{d_v \cdot \hat{c}_v(z_{(t)})}{|\hat{c}_v(z_{(t)})|} \]

(6)

After each iterative modification, the decision of the classifier (either \(g(\cdot) \) or \(\hat{g}(\cdot) \)) will be checked to see if convergence to the target class is achieved. Once convergence is reached, iterative computation of the explanation vectors and feature updates will result in a modified feature set comprising the minimal amount of change needed.

2.3. Attribute-based Feedback Generation

Once convergence at the feature space is obtained, the difference between the original and the modified feature set gives the minimum change needed for the instance to be classified from the target class. However, computing this difference at the feature space and providing it as a feedback to the user will not be comprehensible as the feature space can be very high dimensional and even the little changes needed at feature level would fire up in the difference vector. In this work, we propose to switch to a high-level attribute level which would enable us to provide semantically meaningful feedback to the user. The high-level attribute space can either be defined by careful selection of meaningful set of features, or it can require to switch to this high-level space by running pre-trained attribute extractor. It should be noted that defining semantically meaningful attributes is highly dependent on the feature space and the classification problem.

3. Experimental Results on Voice Modality

3.1. Voice Database and Emotional-Attributes

In order to test our proposed formative feedback generation approach, we experimented with a sample emotional voice dataset, consisting of 1534 instances labeled for 27 emotional classes. For each instance, 6373 vocal features were available.

As an initial step, we defined semantically meaningful attributes for the voice modality considering a variety of affective states. We mainly referred to the relations shortlisted by our clinical partners, where modality-specific characteristics are given for different emotions. The attributes shortlisted are as follows: (1) pitch, (2) pitch variation, (3) loudness, and (4) speech rate. For our initial analysis, we focused on two basic emotions of Happy and Sad. Voice attributes and their expected associations to these two basic emotions are given in Table 1. However, these associations only define the relations at a very coarse level, as actual data would not exactly abide these rules.

3.2. Classifier Approximation with Kernel Density Estimation

A simple thresholding approach for formative assessment, where we would decide on the correctness of an attribute using its respective location to the threshold (e.g. attribute mean), would fail on realistic data. The proposed approach based on explanation vector generation is expected to yield more accurate explanations related to classifier’s decisions.

For our initial experiments, we focused on the two-class classification problem (Happy vs. Sad), and utilized only the instances of these two classes. Keeping the ratio of the two emotion instances approximately the same, we have spared 14 happy and 11 sad instances for testing. Since we have a limited number of training examples (60 happy and 45 sad), we have employed Leave-One-Out cross validation for hyper-parameter optimization. This randomized separation of training and test sets is handled for 20 repetitions. The mean test accuracy obtained with KDE over all repetitions is 73.6%.

3.3. Explanation Vectors and Modified Features

After the classifier is estimated with the KDE, the explanation vectors for a single iteration can be computed as given in Equation (4). The explanation vector generation and feature modification steps will be handled in an iterative manner, where the iteration structure and the convergence rule is given in Section 2.2. For our preliminary experiments, where we have considered two emotion classes, we have considered each instance of a class as a misexpressed instance of the opposite class. For example, for a Happy instance, the explanation vector generation and feature modification iterations are run, where the target class is Sad for the convergence rule.

For the voice modality, the attributes that we want to give feedback on are directly included in the input features. Therefore, we directly investigated the alterations caused on these four attributes. The attribute-specific means of all instances from all six basic emotions are used as thresholds to binarize the attribute values. In Figure 1, each row gives the bar plots of Happy (left) and Sad (right) instances, when the attribute values are considered as either Low or High when compared with the attribute-specific threshold. For example, for Happy instances (left-top plot), the features are modified so that each instance is classified as from the Sad class. Here, the bar plots for the pitch attribute are given for before modification and for after modification. As expected, the number of instances with low pitch is increased.
whereas the number of instances with high pitch value is decreased. This trend is opposite for the Sad instances (top-right plot). Moreover, we see similar trends for the other attributes.

4. Conclusion and Future Directions

In this work, we propose a method to generate comprehensible corrective feedback to guide children with ASC in expressing their emotions better. Based on the explanation vector generation approach of Baehrens et al. [6], we propose to modify features in an iterative manner until they resemble the target class, and the minimum required alterations are expressed in terms of high-level attributes to provide semantically meaningful corrections. The initial experiments on the voice modality showed that we were able to generate feedback aligned with the expectations from a clinical point of view.

As future directions, we target to evaluate the generated formative feedback from a user perspective, assessing whether they are semantically meaningful. For performance improvement, use of a larger training set is necessary. Moreover, the current module can be extended to work on a larger set of emotions. Additionally, high-level attributes that do not reside in the feature space can be considered when providing the corrective feedback.

5. Acknowledgements

This work was funded by the EC Seventh Framework Program (FP7, 2007-2013) under grant agreement #289021 (ASC-Inclusion). Metin Sezgin has been supported by the BAGEP and GEBIP outstanding young scientist programs.

References