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Abstract

This paper aims at visualizing the resiliency of deep net-

work interpretations across datasets. We further explore

how these interpretations change when network weights

are damaged. We utilize Class Activation Maps to ob-

tain heatmaps of deep network interpretations and identify

salient local regions. We apply our methods on two remote

sensing datasets and demonstrate that representations are

resilient across similar datasets. We also demonstrate the

benefits of transfer learning for different datasets. We fur-

ther analyze these interpretations when the network weights

are damaged and illustrate that retraining a damaged net-

work is useful in recovering its performance. Our visual-

ization results, based on ResNet50, offer insights in the re-

siliency of convolutional network architectures.

1. Introduction

This paper aims at visualizing deep convolutional neural

network interpretations for aerial imagery [10], [11] and un-

derstanding how these interpretations change when network

weights are damaged. We focus our investigation on net-

works for aerial imagery, as these may be prone to damages

due to harsh operating conditions and are usually inaccessi-

ble for maintenance once deployed. Visualizing changes in

the network’s interpretation, when the undamaged weights

are retrained, allows us to visually assess the resilience of a

network.

Visualizing CNN internal representations is a way to bet-

ter understand the way deep networks interpret images [13],

[12], [15]. The work in [9] uncovered salient structures

and textures present in network interpretations for aerial im-

agery, illustrated in Figure 1. This paper is an extension of

the work in [9] to include analysis on the resilience of net-

work interpretations to weight damages. Additionally, we

demonstrate how recovery of the interpretations is possible

by retraining a damaged network. The main contributions

of this paper are:

Figure 1. Class activation maps (CAMs) for aerial imagery from

UCM (left columns) and AID (right columns) datasets. Images

and CAMs are shown for classes: baseball field (top row), storage

tanks (middle row), beach (bottom left) and bridge (bottom right).

• Demonstrate the resilience of class activation maps

during transfer learning on aerial datasets.

• Visualize the effects of damaged network weights on

network interpretations.

• Visualize the effect of retraining the network, as a form

of adaptation that helps the network recover its inter-

pretation after substantial damage.

2. Related Work

Zeiler and Fergus, in [13], introduced one of the first

visualization techniques for understanding the workings of

CNNs. More recently, the Global Average Pooling (GAP)

layer has been used to obtain class activation maps as

demonstrated in [15]. The work in [1] aims to visualize

what the network learns using a DeconvNet [14] to get

pixel level predictions for different textures. Bau and Zhou

adopted a more flexible approach to classifying a broader

set of features by shedding light on how a CNN has re-

markable localization abilities [1]. The work in [8] encour-

aged the use of class activation maps for tasks such as visual
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Figure 2. Block diagram for class activation map extraction for intact CNN (top path) and CNN with damaged weights (bottom path).

questioning answer and image captioning. Recent work in

[5] was able to link spatial information importance to clas-

sification accuracy by generating randomized occlusion bi-

nary maps.

A different line of research deals with understanding

how errors in the network weights affect classification per-

formance. The effects of various modifications in the net-

work weights were analyzed in [2], [4]. In [2] quantiza-

tion and Principal Component Analysis (PCA) were used to

drop network weights. The work in [7] established a frame-

work for estimating resiliency of DCNN’s by understand-

ing the relationship between bit error rate and classification

error. Recent work in [6] examines the classification accu-

racy for various amounts of weight damage in deep convo-

lutional architectures. In this paper, we visualize the effects

of weight damage on class activation maps for network in-

terpretation.

3. Methodology

3.1. Aerial-CAM

Class activation maps (CAMs) are extracted for aerial

images [9] using the GAP layer [15]. The CAMs are ob-

tained using the intact network and the network with var-

ious degrees of weight damage, as illustrated by Figure 2.

After the CAMs are obtained, the Highest Activation Re-

gion (HAR) is found to localize the image region that most

contributes to the network activation.

A CAM is the image region that most influences the

classification decision of the network. The GAP layer is

a weighted sum of the feature maps from the last convo-

lutional layer and is used to generate CAMs. For a given

feature map, let fk(x, y) represent the activation of unit k

in the last convolutional layer at the (x, y) location in the

test image and wk is the corresponding GAP layer output.

The CAM, F (x, y) for an aerial scene belonging to class c

is given by

Fc(x, y) =
∑

k

wk

c
fk

c
(x, y). (1)

Our work investigates how these interpretations are affected

by transfer learning to gain insight into the CAM’s transfer-

ability across tasks. We also explore the effects of weight

damage on network interpretations.

3.2. CAM Resilience to Weight Damage

In this work, weight damages are spread randomly us-

ing the framework shown in Figure 2. We introduce weight

damage at four levels D1, D2, D3 and D4, for the popu-

lar ResNet50 architecture [3]. These selected nodes are all

present in the first convolution layer of each network block.

If a layer contains N trainable weights, we drop D% of N

weights.

Dropping network weights is forcing the selected

weights to zero, simulating the stuck at zero damage. The

amount of damage D% is swept from 5% to 95% of the total

number of weights in a given layer across all filters between

the convolutional layers l and l + 1. The skip connections

in ResNet50 are not altered.

Once damaged, the network weights are permanently

disabled in the test and retrain phase. Therefore, only the

undamaged weights are updated during retraining, while

gradient flow to the damaged weights is disabled. Retrain-

ing can help reinforce existing network connections and

adapt to new interpretations with the limited number of

weights remaining in the damaged network.
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Figure 3. Visualizing CAM resilience across aerial datasets, when

training one one dataset (UCM/AID) and testing on another

(AID/UCM) without retraining. Results shown when training

on UCM and testing on AID (left columns) or vice versa (right

columns), and for shared classes among datasets: harbor, river (top

row), or for new previously unseen classes: intersection, bridge

(bottom row).

Figure 4. Visualizing CAM failure and recovery after retraining

to illustrate the benefit of transfer learning from aerial imagery to

MS-COCO. Images (top row), CAMs without retraining (middle

row) and CAMs after transfer learning (bottom row).

4. Results

4.1. CAMs For Transfer Learning

We begin our experiments by illustrating the resilience

of deep network interpretations across datasets. In these

experiments, we obtain CAM visualization results for the

ResNet50 architecture [9]. The resilience of CAMs across

aerial datasets, UCM and AID, is illustrated in Figure 3.

Good CAM heatmaps and localizations are obtained even

for classes that were not used during training. However,

useful representations are not maintained when the datasets

have significant differences, for example when training with

AID aerial data and testing on MS-COCO. As illustrated in

Figure 4, transfer learning plays a crucial role in improving

the CAMs and the ability of the network to localize useful

image regions.

AID UCM

Training Accuracy 96.3 94.2

Validation Accuracy 92.4 91.7

Table 1. Percent accuracy of ResNet50 on aerial datasets.

4.2. CAMs With Weight Damage

Table 1 shows accuracy results for ResNet50, without

any damage, when trained separately on the AID and UCM

datasets to classify 14 classes. When introducing damage to

network weights, we experiment with the layer location and

amount of damage. Four layer locations were chosen and

the amount of damage at these layers was independently

varied from 5% to 95% in increments of 5%.

Figure 5 shows results of CAMs for ResNet50 with 50%

damaged weights and retraining. In Figure 5(a)(b) we ob-

serve the network is able to classify test images from class

airport and baseball field correctly even after substantial

(75%) damage to the network weights. We also observe a

drop in the highest activation region (HAR), which is later

recovered after retraining, as shown in the last two columns.

In Figure 5(c)(d) the network misclassifies an image from

class storage tanks and resort as airport. The reasoning be-

hind the misclassification can be explained by the class ac-

tivation map after damage (highlighted in red). The activa-

tion is focused on regions that resemble an airport/airplanes.

Retraining helps the network regain its lost interpretations

as seen in the last two columns of Figure 5.

5. Conclusion

This paper explores the resilience of deep network in-

terpretations during transfer learning and when network

weights are damaged. We illustrate that network represen-

tations are resilient across aerial datasets even without re-

training, but transfer learning greatly improves representa-

tions when the test domain is significantly different, as is

the case with MS-COCO. We consider the commonly used

ResNet50 network in our investigation of resiliency under

weight damage. Visualizing how class activation maps be-

have when weights are damaged, provided insight into the

network’s decision making process under failure conditions.

Retraining to overcome the effects of damage, gave us acti-

vation maps illustrating how network decision making im-

proves.
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Figure 5. Results with class activation maps for ResNet50 on AID dataset for classes (a) airport (b) baseball field (c) storage tanks and (d)

resort. Columns show (1) test image, (2) CAM without damage, (4) CAM after weight damage, (7) CAM after retraining; (3) HAR without

damage, (5) HAR after weight damage, (8) HAR after retraining; (6) predicted label after weight damage, where red indicates incorrect

prediction.
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