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Abstract

Finding clothes that fit is a hot topic in the e-commerce

fashion industry. Most approaches addressing this prob-

lem are based on statistical methods relying on historical

data of articles purchased and returned to the store. Such

approaches suffer from the cold start problem for the thou-

sands of articles appearing on the shopping platforms every

day, for which no prior purchase history is available. We

propose to employ visual data to infer size and fit charac-

teristics of fashion articles. We introduce SizeNet, a weakly-

supervised teacher-student training framework that lever-

ages the power of statistical models combined with the rich

visual information from article images to learn visual cues

for size and fit characteristics, capable of tackling the chal-

lenging cold start problem. Detailed experiments are per-

formed on thousands of textile garments, including dresses,

trousers, knitwear, tops, etc. from hundreds of different

brands.

1. Introduction

Fashion industry has been a major contributor to the

economy in many countries. Fashion e-commerce, in par-

ticular, has largely evolved over the past few years becom-

ing a major player for delivering competitive and customer-

obsessed products and services. Recent studies have shown

that finding the right size and fit is among the most impor-

tant factors impacting customers purchase decision mak-

ing process and their satisfaction from e-commerce fashion

platforms [1]. In the context of online shopping, customers

need to purchase clothes without trying them on. Thus, the

sensory feedback phase about how the article fits via touch

and visual cues is naturally delayed, leading to uncertainties

in the buying process. As a result, a lot of consumers remain

reluctant to engage in the purchase process in particular for

new articles and brands they are not familiar with.

To make matters worse, fashion articles including shoes

and apparel have important sizing variations primarily due

to: 1. a coarse definition of size systems for many cate-

gories (e.g small, medium, large for garments) ; 2. different

specifications for the same size according to the brand ; 3.

different ways of converting a local size system to another,

as an example in Europe garment sizes are not standardized

and brands don’t always use the same conversion logic from

one country to another.

A way to circumvent the confusion created by these vari-

ations is to provide customers with size conversion tables

which map aggregated physical body measurements to the

article size system. However, this requires customers to

collect measurements of their bodies. Interestingly, even

if the customer gets accurate body measurements with the

aid of tailor-like tutorials and expert explanations, the size

tables themselves almost always suffer from high variance

that can go up to one inch in a single size. These differences

stem from either different aggregated datasets used for the

creation of the size tables (e.g. German vs. UK popula-

tion) or are due to vanity sizing. The latter happens when

a brand deliberately creates size inconsistencies to satisfy a

specific focus group of customers based on age, sportiness,

etc. which represent major influences on the body measure-

ments presented in the size tables [2, 3, 4]. The combina-

tion of the above factors leaves the customers alone to face

a highly challenging problem of determining the right size

and fit during their purchase journey.

In recent years, there has been a lot of interest in build-

ing recommendation systems in fashion e-commerce with

major focus on modeling customer preferences using their

past interactions, taste, and affinities [5, 6, 7]. Other work

involve image classification [8, 9], tagging and discov-

ery of fashion products [10, 11], algorithmic outfit gener-

ation and style extraction [12], and visual search that fo-

cuses on the problem of mapping studio and street im-

ages to e-commerce articles [13, 14]. In this context, only

very few research work have been conducted to understand

how fashion articles behave from the size and fit perspec-

tive [15, 16, 17, 18], with the main goal of providing a size

advice for customers, mainly by exploiting similarities us-

ing article sales and returns data, as detailed in section 2.

Returns have various reasons such as ”don’t like the article,
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article damaged, size problems, etc.”. We propose a weakly-

supervised [19] teacher-student approach [20, 21, 22] where

we first use article sales and size related returns to sta-

tistically model whether an article suffers from sizing is-

sues or conversely has a normal size and fit behaviour. In

this context, we don’t have access to size and fit expert-

labeled data for articles, and thus, only rely on weakly-

annotated data from the returns process. We then make use

of a teacher-student approach with curriculum learning [23]

where the statistical model acts as the teacher and a CNN-

based model, called SizeNet, acts as the student that aims to

learn size issue indicators from the fashion images without

direct access to the privileged sales and returns data.

The contributions of our work are three-fold: 1. We

demonstrate, for the first time to our best knowledge, the

rich value of fashion images in inferring size characteris-

tics of fashion apparel; 2. At the same time our approach

is novel in using the image data to effectively tackle the

cold start problem that is known to be a very challenging

topic in the literature; 3. We propose a teacher statistical

model that uses crowd’s subjective and inaccurate feedback

(highly influenced by personal perception of article size) to

generate large scale confidence-weighted weak annotations.

This enables us to control the extent to which the weak an-

notations influence the quality of the final model, and we

demonstrate that not applying this approach, i.e. treating

weak labels uniformly, highly degrades the quality of the

learned model.

The outline of the paper is as follows. In section 2

we present related work. In section 3 we present the pro-

posed approach; subsection 3.1 presents the teacher-student

framework, subsection 3.2 presents the statistical model

predicting size issues taking into account the article’s cat-

egory, sales period, number of sales, and number of returns

due to size problems. In subsection 3.3 we introduce the

architecture of the SizeNet along with the curriculum learn-

ing approach using the statistical class labels and their con-

fidence scores to train SizeNet on fashion images. In sec-

tion 4 we present two baselines, experimental results, and

discussion to assess the quality of the SizeNet results over

different categories of garments including dresses, trousers,

knitwear, and tops/blouses. Furthermore, we analyze differ-

ent cases going from warm to cold start. Finally in section 5,

we draw conclusions and discuss future work directions.

2. Related Work

The topic of understanding article size issues, and more

generally predicting how e-commerce fashion articles may

fit customers is challenging. Recent work has been done

for supporting customers by providing size recommenda-

tions in [15] and [16]. Both approaches propose a person-

alized size advice to the customer using different formu-

lations. The first one uses a skip gram based word2vec

model [24] trained on the purchase history data to learn a

latent representation for articles and customers in a com-

mon size and fit space. Customer vector representation is

obtained by aggregating over purchased articles, and a gra-

dient boosted classifier predicts the fit of an article to a spe-

cific customer. The second publication proposes a hierar-

chical Bayesian approach to model what size a customer is

willing to buy along with the resulting return status (article

is kept, returned because it’s too big, or returned because

it’s too small).

Following a different approach, the authors of [17] pro-

pose a solution, using the purchase history for each cus-

tomer, to determine if an article of a certain size would be

fit or would suffer a size issue (defined as large, or small).

This is achieved by iteratively deducing the true sizes for

customers and products, fitting a linear function based on

the difference in sizes, and performing ordinal regression

on the output of the function to get the loss. Extra fea-

tures are simply included using addition to the linear func-

tion. To handle multiple personas using a single account,

hierarchical clustering is performed on each customer ac-

count before doing the above. An extension of that work

proposes a Bayesian approach on a similar model [18]. In-

stead of learning the parameters in an iterative process, the

updates are done with mean-field variational inference with

Polya-Gamma augmentation. This method therefore natu-

rally benefits from the nice advantages of Bayesian model-

ing - the uncertainty outputs, and the use of priors. It how-

ever does not tackle the cold-start problem - where zero or

very few article sales and returns are available.

In the fashion e-commerce context, everyday thousands

of articles are introduced to the catalog. The life cycle of

most articles in fashion e-commerce is usually short - after

few weeks, the article is out of stock and removed from the

assortment. The ”hassle-free” return policy of e-commerce

platforms allows customers to return items with no addi-

tional cost, whenever they desire up to multiple-weeks from

the purchase date. When customers return an item, they can

disclose a return reason, for example ”did not like the item”,

”item did not fit” or ”item was faulty”. In this work, we are

interested in estimating whether an item has sizing issues,

therefore, we make use of the weakly-annotated size related

return data where a customer mentions that an article is not

fitting. It is important to note that article returns can reach

the warehouses only after multiple days (if not weeks) from

the date of the article activation resulting in a cold start pe-

riod.

Indeed, all the aforementioned publications state that

data sparsity and cold start problem are the two major chal-

lenges in such approaches. They propose to tackle those

challenges with limited success by exploiting article meta

data or taxonomies in the proposed models. In this pa-

per, we leverage the potential of learning visual cues from

2



fashion images to better understand the complex problem

of article size and fit issues, and at the same time, pro-

vide insights on the value of the image-based approach in

tackling the cold start problem. A major advantage of im-

ages over meta data or taxonomies lies in the richness of

the imagery data, in addition to a lower subjectivity of the

information when compared to the large list of ambiguous

fashion taxonomies- for example, a slim jeans from Levi’s

does not follow the same physical and visual characteristics

as a slim jeans from Cheap Monday, as both brands target

different customer segments.

3. Proposed Approach

In this section, we explain the details of the proposed ap-

proach to infer article sizing problems from images. We first

start by introducing our weakly-supervised teacher-student

framework. Then we introduce our statistical model, and

finally we discuss the SizeNet - our CNN model capable

of predicting size issues from fashion images thanks to the

insights from the statistical model.

3.1. Teacher­Student Learning

The concept of training machine learning models fol-

lowing a teacher-student approach is a well-known con-

cept where its mention in the community dates back to 90s.

In recent years, however, there has been an extensive in-

terest in further developing the teacher-student and related

learning frameworks such as the curriculum learning ap-

proaches [21, 23, 22]. Interestingly, to motivate the teacher-

student training approach, [21] illustrates a cold start prob-

lem using the example of an outcome of a surgery three

weeks after it has occurred. The classifier is trained on his-

torical data where the historical data contains privileged in-

formation about the procedure and its complications during

the three weeks following the surgery. The model trained

using the privileged data is then considered as the teacher.

A second model is trained on the same samples but with-

out using the privileged information. Therefore, this second

model - the student - tries to learn from the insights given by

the teacher to replicate the outcome of the teacher without

directly having access to the privileged data. [21] uses the

teacher-student approach along with a support vector ma-

chine (SVM) [20]. In the non-separable case - i.e when

there exists no hyperplane separating classes - SVM needs

to relax the stiff condition of linear separability and allow

misclassified observations. As shown in [25], the teacher

also helps refining the decision boundary and can be assim-

ilated to a Bayesian prior.

Following a similar concept, curriculum learning [23]

suggests to train classifiers first on easier (or more confi-

dent) samples and gradually extend to more complex (or

less confident) samples. It is shown that this strategy leads

to better models with increased generalization capacities.

Most approaches using a teacher-student learning strategy

[21, 23, 22] derive the importance of the samples from the

teacher classifier. In this paper, we build a statistical model

that has privileged information on the article sales and re-

turns data, as the teacher, and train the SizeNet model, as

the student, on fashion images using a confidence score to

weigh the samples from the teacher. In other words, the ap-

proach is transferring knowledge from privileged informa-

tion space to the decision space. Though the teacher model

in our case does not use the article images as input, it lever-

ages the privileged historical data of sold articles (privileged

information space), and the student uses this knowledge to

learn from images in the decision space. The confidence-

weighted annotations generated by the teacher enables us

to control the extent to which these weak annotations (built

from the crowd’s subjective and inaccurate feedback) in-

fluence the quality of the final model, and thus, delivering

better learned model.

3.2. Statistical Modeling

In this work, we opt for a simplifying approach and for-

mulate the sizing problem as a binary classification prob-

lem. Thus, we arrange articles based on their sizing be-

havior into two categories. Class 1 groups articles that are

annotated as having a size issue, e.g. too small, shoulder

too tight, sleeves too long, etc. Class 0 groups other articles

with no size issue. To allocate articles to the appropriate

class, we need to consider two factors:

• The category: Article categories are diverse; some ex-

ample are shoes, t-shirts, dresses, trousers, etc. Gener-

ally, for each category we expect a different return rate

and sizing issues. As an example, high heels have a

higher size related return rate than sneaker shoes, since

customers are more demanding in terms of size and fit

with the former than the latter. Therefore, we should

consider for each category the amount of size related

returns in the category compared to that of its average.

• The sales period: The usual life cycle of an article

starts with its activation on the e-commerce platform,

after which customers start purchasing the article and

potentially return the article if it does not meet their

expectations. This process naturally results in a time

dependency in the purchase and return data. There-

fore, for each category, we should consider the amount

of the size related returns of an article compared to the

amount of the returns in its category over the same time

period.

Therefore considering the above points, if an article has

higher size related returns than the average of its category

over the same period of time, then the article is considered

to demonstrate a sizing problem (labeled as class 1); other-
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Figure 1. Architecture of the proposed teacher-student approach. On the top, the statistical model acts as the teacher with direct access

to the privileged sales and returns data. On the bottom, SizeNet is shown as the student, composed of a CNN backbone feature extractor

followed by a multi-layer perceptron.

wise, it is considered to have a normal sizing characteris-

tics and thus belongs to the no-sizing-issue class (labeled as

class 0).

For each article and category our confidence in labeling

the article as a size issue or not greatly depends on how large

the number of sales and returns are. Therefore, we propose

to use a binomial likelihood L to assess the confidence in

the class assertion. Let’s denote p the expected size related

return rate of the item, i.e the size related return rate of its

category, k the number of size related returns of the item,

and n the number of purchases. We can define the binomial

likelihood as following:

L =

(

n

k

)

pk(1− p)n−k (1)

We note that, the value of the likelihood is maximized

when the ratio of k over n is equal to p. In other words,

k is the expected number of size related returns sampled

from the distribution p, when drawing n times. The more

observations are sampled, the more the estimator is confi-

dent. That way, for a large value of n, if the ratio k over n

diverges from p, the likelihood is low. Conversely, if only

few observations have been sampled, the estimator is really

uncertain and tends to distribute the density over all possi-

ble values of k. Let’s define a score s based on the negative

logarithm of the binomial estimator:

s = − ln (L) (2)

In that way, the score s is very high when k is unlikely

to have been sampled from p, meaning that the size related

return rate is either very high (sizing problem, class y = 1)

or very low (no size issue, class y = 0). Figure 2 shows

the behaviour of s with respect to n and k. In this Figure, as

an example, let’s assume that the expected size return rate

p for a defined category and a fixed sales period is 0.3 (ver-

tical dashed gray line). Therefore, articles in this category

and in the same sales period, for which the size related re-

turns is larger than 0.3 (right side of the line) are considered

to demonstrate a sizing problem (labeled as y = 1). On

the other hand, for the same ratio of k over n, we see how

an increase in number of purchases n (different U shape

blue curves) results in an increase in the score s, and thus,

demonstrating a better confidence in the class assertion.
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Figure 2. Y-axis is the value of the score s. X-axis is the ratio

of the number of size related returns k over the number of sales

n. Curves are plotted for different amounts of sales n. In this

example the expected size return rate p is arbitrarily set at 0.3 for

illustration (vertical dashed gray line).

To get a better understanding of the score function s, we

can look at the asymptotic interpretation of the Equation 2.

By applying the Stirling approximation, we can easily de-
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rive the following property:

s → nKL(P̄ ||P ) when n → ∞ (3)

where P = {p, 1 − p} and P̄ = { k

n
, 1 − k

n
}, and KL de-

notes the Kullback-Leibler divergence [26]. This property

provides a better understanding of the behaviour of the con-

fidence score: if P̄ is very different from P , i.e if the size

related return rate is either way lower or way higher than the

one of its category, then the Kullback-Leibler divergence is

high and s is high too. However, if the number n of pur-

chases of the article is low, the score is penalized.

The negative log likelihood - as well as the Kullback-

Leibler divergence - are defined on R
+, and consequently

can in theory tend to the infinity. In practice, we can how-

ever define upper bounds for the score s. Upper bounds are

reached when p is very different from the ratio k over n, i.e

in the following two cases:

• when p → 0+ and k = n, then s = −n ln(p)

• when p → 1− and k = 0, then s = (k − n) ln (1− p)

Note that the cases p = 0 and p = 1; that is when the

size related return rate of the category is zero, or in con-

trast, when all items are returned, define very interesting

edge cases. The first usually happens in the few weeks that

follow the activation of the articles on the e-commerce plat-

form, where no returns are recorded yet. Therefore, in this

case p = 0 implies k = 0; since as soon as we record a

return for an article, we also record a return for its category.

As a consequence, for this case the binomial likelihood is

equal to 1, meaning that the confidence score is zero. There-

fore, the statistical model is not capable of providing any

size issue prediction. It is important to note that this case

actually corresponds to the challenging cold start problem

in e-commerce fashion for which we propose a solution in

this paper thanks to our SizeNet approach. The latter case

where p = 1 implies k = n, and the confidence score is

also zero. However, this scenario, in which all articles are

returned due to size issues, is practically non-existent in the

e-commerce context.

Now that we have established our statistical model as

the teacher, capable of providing sizing class labels with

a confidence score, we discuss the student for learning of

visual cues for size issues following a curriculum learning

framework, keeping in mind the generalization to the cold

start articles.

3.3. SizeNet: Learning Visual Size Cues

In this section, we propose the SizeNet architecture to in-

vestigate the article size and fit characteristics in a weakly-

supervised teacher-student manner using fashion images.

We make use of the labels and their confidence scores ac-

quired from the statistical model described in the previous

section, to teach the image-based SizeNet model size issue

classification. In particular, we adopt a curriculum learning

approach that gradually makes use of feeding the articles

with high size issue confidence scores for learning confi-

dent visual representations for sizing issues in the images

following by less confident samples to improve generaliza-

tion. Figure 1 illustrates the architecture of our approach

including the statistical model, and the proposed SizeNet

composed of a CNN backbone feature extractor followed

by a multi-layer perceptron.

Backbone Feature Extractor: We use the Fashion DNA

(fDNA) [7] network as a backbone features extractor for

SizeNet. The adopted fDNA architecture is similar to a

ResNet [27] architecture. The network is pre-trained on

1.33 million fashion articles (sold from 2011 to 2016) with

the aim of predicting limited fashion article metadata such

as categorical attributes, gender, age group, commodity

group, and main article color. Using the fDNA backbone

we are able to extract for each image a bottleneck feature

vector of dimension 128.

Multi-Layer Perceptron: On top of the backbone net-

work, we attach a multi-layer perceptron (MLP) that con-

sists of four fully-connected layers. We opt for a bottle-

neck MLP approach [28] going up from the 128 extracted

feature vector, to 256 units and down again to 128. There-

fore, the numbers of units of the four fully connected layers

are respectively 256, 128, 64 and 32. Each of these lay-

ers is followed by a non-linear ReLU activation function.

To avoid over-fitting on the training data, we use standard

dropout layers for each fully connected layer. The output

layer has a sigmoid activation with a unit indicating the siz-

ing issue. We use a binary cross-entropy loss function and

optimize the network weights through stochastic gradient

descent (SGD).

We adopt a curriculum that gradually trains the SizeNet

starting from more confident samples, coming from the sta-

tistical model, down to less confident samples. To pre-

pare the loss function for samples where the label confi-

dence from the statistical model is low, we propose to use a

weighting function in the loss. Let’s define a sample weight

wi using logarithmic transformation of the sample confi-

dence score si as follow:

wi = ln (1 + si) (4)

The logarithmic transformation allows us to reduce the

skewness in the confidence score distribution and provides

numerically well-behaving weights compared to the scores.

Once the network has been fully trained, we evaluate the

performance using unseen test data in the next section. We

analyze on cases that extend from a. articles where the sta-

tistical model provides quality predictions of sizing issue, to
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b. articles where the statistical model fails to provide qual-

ity predictions. The aim of this approach is twofold: first

to see to what extent SizeNet is capable of producing qual-

ity results comparable to the statistical model using purely

images, and second to see to what extent SizeNet can gen-

eralize its predictions thanks to the learned visual represen-

tations, to those unknown, cold start, and low confidence

articles.

4. Experimental Results and Discussion

In this section, we conduct multiple experiments to

evaluate and understand the performance of the proposed

SizeNet model over multiple garment categories from

around 500 different brands.

4.1. Dataset

For our experiments, we use an in-house rich dataset

of women textile garments including 12 categories such as

dresses, blouses, jeans, skirts, jackets, etc. collected from

around 500 different brands. Observations are defined at

the stock keeping unit (SKU) level. This means that two

pieces of garments belonging to the same model, but with

different colors, are considered as two distinct observations.

We justify this choice by two main reasons derived from

expert knowledge: 1. manufacturers use different fabrics

depending on the dying technique, 2. customers don’t per-

ceive size and fit the same way depending on the color of

clothes. Those two points lead to very different size related

return reason distributions for the same article model but

with different colors.

Class #Articles # Images

size issue 68,892 69,064

no size issue 58,152 58,321

total 127,044 127,385

Table 1. Overall statistics of used women textile dataset, showing

the number of SKUs and the number of related images in each

class according to the statistical model labels (subsection 3.2).

The dataset in-hand was composed of a relatively bal-

anced size-issue/no-size-issue subset of the articles as re-

ported Table 1. The class labels and confidences are de-

rived from the statistical model described in subsection 3.2.

Articles activated in the last 6 months were excluded in this

dataset to ensure the quality of the return data. We opt to

use packshot images with white background and without

a human model. We do not perform any task-specific im-

age pre-processing, the input images are simply re-sized to

177× 256. The data set was split by maintaining a ratio of

60/20/20 for training, validation, and test sets respectively.

We cross-validate hyper-parameters of the network, such as
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Figure 3. Evaluation of size issue prediction for the overall dataset

(12 categories) comparing SizeNet to two baselines. Left: Re-

ceiver Operating Characteristic (ROC) curves with area under

curve (AUC); Right: Precision-Recall curves with average pre-

cision (AP).

start learning rate, batch size, number of epochs, and stop-

ping criteria using the validation set.

4.2. Evaluation

In order to assess the performances of our model, we

first study the classification metrics including the receiver

operating characteristic (ROC) and precision-recall curves.

Baselines: We introduce two baselines: first baseline is

a model denoted as Attributes that instead of article

image uses sparse k-hot encoding vector of binary fashion

attributes (e.g. fabric material, fit type, length, etc.) of size

13,422. These attributes are created following a laborious

and costly process by human expert annotators. As a sec-

ond baseline, we use a standard ResNet pretrained on Im-

ageNet as the backbone CNN instead of fDNA. We report

the results for the overall size issue predictions (12 cate-

gories combined). Figure 3 demonstrates that SizeNet

outperforms ResNet baseline, and achieves promising re-

sults compared to that of Attributes model which re-

quires tremendous annotation effort. This benchmark estab-

lishes the value of the SizeNet purely using image data.

Figure 4 presents SizeNet performance per category curves

for the four major garment categories: dresses, trousers,

knitwear, and tops/blouses, where for each category more

than 2000 articles are present in the test set. From these

curves we can observe good results for SizeNet predictions;

in particular prediction of size issues in dress and trouser

categories outperforms other categories.

Let’s investigate how the teacher and the student interact

with each other. As mentioned in section 3, the neural net-

work (the student) learns the image based size issue predic-

tions from the output of a statistical model (the teacher) that

has access to privileged sales and returns data. Samples are

weighted to favor regions in the parameter space where the

certainty of the teacher is maximal. As a result, we expect

to observe good predictions from the student for samples

where the teacher is confident. To verify this hypothesis,

we plot in Figure 5 the accuracy of the SizeNet model with
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Figure 4. Evaluation of size issue prediction for the four major

categories. Left: Receiver Operating Characteristic (ROC) curves

with area under curve (AUC); Right: Precision-Recall curves with

average precision (AP).

respect to different values of a threshold τ applied on the

weights wi which correspond to a monotonous transforma-

tion of class confidences from the statistical model. Fig-

ure 4 (left) shows the overall accuracy (12 categories) on

the test set, obtained both with and without sample weight-

ing during the training phase. Figure 4 (right) shows per

category accuracy for four major categories using sample

weighting in the training phase. Low values of τ corre-

spond to all articles particularly including those that suffer

from the cold start problem. With higher values of τ , only

those articles which are not suffering from the cold start

problem are considered (higher confidence in the class). As

expected, the curve shows a high correlation between the

SizeNet model performances and the confidence level based

on the binomial estimator.
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Figure 5. Accuracy of SizeNet model for different thresholds τ on

the test set. Lower values of τ correspond to including cold-start

articles, where an increase in τ corresponds to only considering

articles with larger sales and returns (Left) Overall accuracy with

and without using the sample weights wi in the training phase.

(Right) Per category accuracy for major categories using sample

weighting in the training phase.

With regards to the added value of the weighting during

the training phase, from Figure 5 (left) we observe that per-

formances of both cases follow the same trend, though for

lower values of τ , using the weights in the training phase

improves the performances on the test set. For high values

of τ , results do not provide much insights since the variance

is too high (caused by too few samples). The algorithm ex-

ploiting weights is relaxed around the decision boundary in

agreement with the study from [21], leading the model to

provide a better generalization capacity.
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Figure 6. SizeNet output probability vs. statistical weights wi: Y

axis is the output prediction of SizeNet. X axis is the weights wi

from the statistical model corresponding to a monotonous transfor-

mation of class confidences. Left plot is for class 1 (sizing issue)

and right plot is for class 0 (no sizing issues)

As mentioned before, one of the added values of SizeNet

is its capability to tackle the cold start problem using only

images, while ensuring good performances for cases where

return data is enough to accurately predict size related is-

sues. To get a better understanding of the relation be-

tween the sample weights and the outcome of the neural

network, we plot the output of the network as a function of

the weights wi (a monotonous transformation of the confi-

dence score) in Figure 6. In both plots, dots are distributed

like triangles. Let us focus on the four corner regions of the

left plot (class sizing issue) in Figure 6:

• Upper right corner: the network outputs a value close

to 1 (sizing problem) and the statistical weight is high,

meaning that the teacher is very certain of the sizing

issue. The dots in that area confirm that the student

has learned accurately from the teacher.

• Upper left corner: the network outputs a value close to

1 (sizing problem) but the weight is low, meaning that

the teacher is unsure of the class. This is the interest-

ing case where the student correctly predicts the class,

thanks to the learned visual cues, whereas the teacher

fails due to lack of historic data - this region mainly

corresponds to the cold start problem.

• Lower left corner: the network misclassifies sam-

ples for which the teacher is not certain of the class.

Though we would prefer avoiding misclassification,

those samples are next to the decision boundary where

we expect disagreements between the teacher and the

student.

• Lower right corner: the network misclassifies samples

for which the teacher is very certain of the class. No

points are observed in this region that would indicate

a strong disagreement between the teacher and the stu-

dent.
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Similar observations can be made from the right plot

in Figure 6, corresponding to the class 0 (no sizing issues).

Following this analysis we observe that SizeNet is capable

of learning and replicating the knowledge of the teacher

without direct access to the privileged data. In cold-start

cases, the learned cues can even help the student to make a

more informed decision compared to that of the teacher.

4.3. Visualization of Size Issue Cues

In the spirit of explainable AI, and to better understand

the SizeNet predictions from fashion images, in this sec-

tion we follow the recent methodology proposed by [29]

called randomized input sampling for explanation of black-

box models (RISE). We randomly generate masked versions

of the input image and obtaining the corresponding outputs

of the SizeNet model to assess the saliency of different pix-

els to the prediction. Therefore, estimated importance maps

of image regions can be generated for size issue predictions

in different garment categories.

Top True Positive

Top False Positive

Figure 7. Explanations for SizeNet model predictions: importance

maps showing the effect of different image regions on the model

predictions for the top five true positives (top rows), and the top

five false positive predictions (bottom rows).

In Figure 7 we show the highest ranked true positives

(top) and false positives (bottom) for size issues from dif-

ferent categories. It should be recalled, SizeNet was trained

without any size and fit related image segment-annotations

or human expert-labels. Overall from Figure 7 we observe,

for true positives, localized heatmaps attached to specific

regions of the cloths, whereas for false positives we observe

more expanded heatmaps covering large portions of the im-

ages. When looking closer, we can speculate that SizeNet

predicts the following size issues for the highest ranked true

positive articles; chest area for the evening dress, sleeves for

the leather jacket, the length of the wedding dress, and ar-

eas of the trousers that may indicate too tight fit. In future

work we aim to validate or reject these observations either

by analyzing customer reviews on the same articles, or by

including region based expert size issue annotations. On the

other hand, when considering the top ranked false positives,

we can observe that SizeNet misclassifies the pink top and

the loose trousers based on regions of the article that are

not related to size issues. These false positive examples can

provide qualitative insights into the complexity of size and

fit in fashion and show limitations of our approach which

in its current implementation does not take into account any

information on the style of fashion articles.

5. Conclusion

The potential of fashion images for discovering size and

fit issues was investigated. A weakly-supervised teacher-

student approach was introduced where a CNN-based archi-

tecture called SizeNet, acts as a student, learns visual sizing

cues from fashion images thanks to a statistical model, act-

ing as a teacher, with privileged access to articles sales and

returns data. Quantitative and qualitative evaluation was

performed over different categories of garments including

dresses, knitwear, tops/blouses, and trousers for both warm

and cold-start scenarios. It was demonstrated that fashion

images in fact contain information about article size and

fit issues and can be considered valuable assets in tack-

ling the challenging cold start problem. Future work con-

sists of including expert-labeled data, evaluating the gen-

eralization capacities of SizeNet to fashion images in the

wild, and multi-task learning for SizeNet using fit style tax-

onomies. Also, further evaluation of size issue explanations

derived from SizeNet is necessary to understand, on one

hand, to what extend these weakly-learned localized expla-

nations (i.e. tight shoulders, long sleeves) correspond to

the actual customer experience, and on the other hand, how

these explanations may be used in the future to visually sup-

port retail customers in their purchase decision making. In

a longer term effort, large-scale size and fit quality met-

rics can be calculated for brands using SizeNet, potentially

already at the prototyping stage before mass production,

which can in turn result in improved products and customer

satisfaction. In the future, we aim to work towards bringing

a subset of our dataset to the public domain enabling further

fruitful research on the challenging topic of size and fit in

fashion.
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thropometry and the comparison of garment size systems

in some european countries. Collegium antropologicum,

29(1):71–78, 2005.

[3] Su-Jeong Hwang Shin and Cynthia L Istook. The importance

of understanding the shape of diverse ethnic female con-

sumers for developing jeans sizing systems. International

Journal of Consumer Studies, 31(2):135–143, 2007.

[4] Marie-Eve Faust and Serge Carrier. Designing Apparel for

Consumers: The Impact of Body Shape and Size. Woodhead

Publishing, 2014.

[5] Yang Hu, Xi Yi, and Larry S Davis. Collaborative fash-

ion recommendation: A functional tensor factorization ap-

proach. In Proceedings of the 23rd ACM international con-

ference on Multimedia, pages 129–138. ACM, 2015.

[6] Sagar Arora and Deepak Warrier. Decoding fashion contexts

using word embeddings. In Workshop on Machine learning

meets fashion, KDD, 2016.

[7] Christian Bracher, Sebastian Heinz, and Roland Vollgraf.

Fashion dna: Merging content and sales data for recommen-

dation and article mapping. In Workshop Machine learning

meets fashion, KDD, 2016.

[8] Beatriz Quintino Ferreira, Luı́s Baı́a, João Faria, and Ri-

cardo Gamelas Sousa. A unified model with structured out-

put for fashion images classification. In Workshop on Ma-

chine learning meets fashion, KDD, 2018.

[9] Ziwei Liu, Ping Luoa, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition and

retrieval with rich annotations. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[10] Patricia Gutierrez, Pierre-Antoine Sondag, Petar Butkovic,

Mauro Lacy, Jordi Berges, Felipe Bertrand, , and Arne Knud-

song. Deep learning for automated tagging of fashion im-

ages. In Computer Vision for Fashion, Art and Design Work-

shop in European Conference on Computer Vision (ECCV),

2018.

[11] Wei Di, Catherine Wah, Anurag Bhardwaj, Robinson Pira-

muthu, and Neel Sundaresan. Style finder: Fine-grained

clothing style detection and retrieval. In Workshop in Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2013.

[12] Takuma Nakamura and Ryosuke Goto. Outfit generation and

style extraction via bidirectional lstm and autoencoder. In

Workshop Machine learning meets fashion, KDD, 2018.

[13] M. Hadi Kiapour, Xufeng Han, Svetlana Lazebnik, Alexan-

der C. Berg, and Tamara L. Berg. Where to buy it: Matching

street clothing photos to online shops. In International Con-

ference on Computer Vision (ICCV), 2015.

[14] Julia Lasserre, Katharina Rasch, and Roland Vollgraf. Stu-

dio2shop: from studio photo shoots to fashion articles. arXiv

preprint arXiv:1807.00556, 2018.

[15] G Mohammed Abdulla and Sumit Borar. Size recommenda-

tion system for fashion e-commerce. In Workshop on Ma-

chine Learning Meets Fashion, KDD, 2017.

[16] Romain Guigourès, Yuen King Ho, Evgenii Koriagin,

Abdul-Saboor Sheikh, Urs Bergmann, and Reza Shirvany.

A hierarchical bayesian model for size recommendation in

fashion. In Proceedings of the 12th ACM Conference on Rec-

ommender Systems, pages 392–396. ACM, 2018.

[17] Vivek Sembium, Rajeev Rastogi, Atul Saroop, and Srujana

Merugu. Recommending product sizes to customers. In Pro-

ceedings of the Eleventh ACM Conference on Recommender

Systems, pages 243–250. ACM, 2017.

[18] Vivek Sembium, Rajeev Rastogi, Lavanya Tekumalla, and

Atul Saroop. Bayesian models for product size recommen-

dations. In Proceedings of the 2018 World Wide Web Con-

ference, WWW ’18, pages 679–687, 2018.

[19] Zhi-Hua Zhou. A brief introduction to weakly supervised

learning. National Science Review, 5(1):44–53, 2017.

[20] Vladimir Vapnik. The nature of statistical learning theory.

Springer science & business media, 2013.

[21] Vladimir Vapnik and Rauf Izmailov. Learning using privi-

leged information: Similarity control and knowledge trans-

fer. Journal of Machine Learning Research, 16:2023–2049,

2015.

[22] Jeremy HM Wong and Mark John Gales. Sequence student-

teacher training of deep neural networks. 2016.
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