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Abstract

Street-to-Shop fashion item retrieval is an instance-level

image retrieval task in which a photo from a user is used to

query a fashion image database in order to retrieve either

the same or similar fashion items. This task is particularly

challenging due to the domain shift between database pho-

tos, which tend to be staged professional shots, and con-

sumer photos that have a much greater variety in terms of

quality, pose, etc. To reduce the problem difficulty, state-

of-the-art approaches train one retrieval model per domain

or fashion item category. In this work we propose a single

detect-then-retrieve model that can be applied to any (query

or database) image and which outperforms methods using

domain or category-specific retrieval models by significant

margins on the Exact Street2Shop benchmark dataset.

1. Introduction

The past decades have seen the rise of e-commerce as a

popular alternative to shopping in brick-and-mortar stores.

More recently, applications such as NAVER shopping allow

customers to search for items using images taken by their

smartphone’s camera. This task can be cast as an instance-

level image retrieval task for the shopping domain [12, 19].

In this paper we address this task, and focus on fashion item

retrieval in particular.

Fashion item retrieval using images provided by con-

sumers as queries is particularly challenging due to the sig-

nificant domain gap between these photos and photos taken

by retailers. This domain gap arises because photos from

retailers tend to be of much higher quality, in terms of light-

ing, resolution, and visual simplicity (e.g. with respect to

clutter and occlusions). An illustration of this gap can be

shown in Figure 2.

Another challenge is that fashion items such as clothing

are highly deformable, such that their appearance exhibits

high intra-instance variation. Due to these challenges, it

is typical to improve the accuracy of methods for Street-
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Figure 1. Schematic of the proposed detect-then-retrieve model.

The framework consists of two steps: detection and retrieval. The

query image along with the desired clothing category is passed

into a clothing detection model to generate clothing detection pro-

posals (a). The bounding box whose category matches the desired

category is selected (b) and then passed into the retrieval model,

which computes the image embedding used for shop image re-

trieval (c).

to-Shop image retrieval by training domain-specific models

[12] or training one model per fashion item category [19].

One assumes that the category of each database and query

item is known and, for a given query image, the appropri-

ate domain-specific image retrieval model for that category

is used. State-of-the-art retrieval models are trained to gen-

erate representations for images that, when compared us-

ing a simple metric such as the cosine similarity, reflect the

similarity of the image content [8]. The image database is

therefore stored as a set of image representations extracted

from the trained model. Using one model per category re-

quires to store one representation per category, which is not

desirable. In this work, we propose a cross-domain image

retrieval model (Fig. 1) which outperforms per-category or

domain-specific models while using one model for all cate-

gories and for both query and database images. Our model

uses a detection model for fine-grained clothing item detec-

tion to reduce ambiguity in the retrieval objective. We train

our retrieval model using both the standard triplet loss [8]

1



and the recently-introduced average precision (AP) loss [1]

and find that models trained using these losses are comple-

mentary and can be effectively ensembled to boost perfor-

mance. We make the following contributions:

• We introduce a detect-then-retrieve model which first

uses a state-of-the-art object detection model trained to

detect fashion items.

• We show that ensembling models trained using two

complementary losses boost performance.

• We demonstrate that our single detect-then-retrieve

model outperforms per-category model baselines by

significant margins.

In section 2, we discuss related work on cross-domain fash-

ion image retrieval. In sections 3 & 4, we describe our pro-

posed detect-then-retrieve method and evaluate our method

and provide quantitative and qualitative results.

2. Related work

As our work can be considered an application of

instance-level image retrieval we first discuss general im-

age retrieval methods before focusing on works related to

cross-modal fashion image retrieval.

Image Retrieval. Traditional approaches to image re-

trieval typically adopt the following procedure: (i) extract

local image features descriptors (e.g. scale-invariant fea-

ture transform (SIFT) [18]); (ii) embed them into a high-

dimensional space using encoding techniques such as Bag-

of-Visual-Words(BoVW) [3], or Fisher Vectors (FV) [22];

(iii) aggregate them to produce a fixed-length global repre-

sentation; and (iv) apply a (perhaps learned) similar metric

between representations to measure relevance [23]. More

recently, convolutional image representations have achieved

state-of-the-art results in image retrieval [8]. [25] showed

the suitability of off-the-shelf features for image retrieval.

It was shown that classification fine-tuning can further im-

prove the quality of CNN features [2]. Current state-of-

the-art approaches formulate image retrieval as a ranking

problem and use an appropriate loss to optimize the order

in which the images appear with respect to a query. Typical

works in this vein use two- or three-stream Siamese net-

work architectures combined with pairwise [20], triplet or

n-tuplet losses [8] to train representations in an end-to-end

manner. However, such approaches often require setting

appropriate margins and using sophisticated hard-negative

mining techniques [8, 29]). Recently, alternative loss func-

tions based on optimizing for evaluation metrics such as av-

erage precision (AP) [1, 10] have been proposed and shown

to achieve state of the art results on retrieval tasks, including

instance-level image retrieval. In our work, we investigate

the use of both the triplet loss and the AP loss and find that

they are complimentary.

Cross-modal fashion image retrieval. Early exploration

of cross-domain image retrieval [5, 6, 17] focused on re-

trieving “similar” clothing by collecting sets of images la-

beled with various clothing-related attributes. However,

while such works have defined the similarity between two

images as the number of high-level attributes in common,

defining clothing similarity more rigorously is challeng-

ing. Kiapour et al. [19] and Huang et al. [12] were

among the first to introduce the problem of exact street-

to-shop clothing image retrieval, where the goal is to re-

trieve “shop” images that contain the exact item shown in

the query image. Kiapour et al. [19] use a multi-layer per-

ceptron (MLP) to learn a similarity measure between the

“street” and “shop” image descriptors by minimizing the

cross-entropy loss over pairs of CNN features which consist

of street and shop images with matching or non-matching

product IDs. Wang et al. [27] use a Siamese network archi-

tecture optimized simultaneously with a robust contrastive

loss for image retrieval, and cross-entropy loss to regular-

ize the network by predicting the 21,841 fine-grained cate-

gories of the images in the ImageNet dataset [4].

The most popular approach to optimizing image rep-

resentations for retrieval uses the triplet loss. Huang et

al. [12] proposed a dual attribute-aware ranking network

(DARN), consisting of two networks each adapted to its

specific image domain - “street” user images or shop im-

ages. These networks are used both for predicting semantic

image attributes and image retrieval. Each image is first pre-

cropped with a foreground clothing detector, after which

the images are fed into the DARN network, which uses

both the softmax loss to optimize attribute prediction and

triplet loss to align the representations of images containing

the same product. Liu et al. [33] propose the FashionNet

model which jointly optimizes objectives for landmark pre-

diction, category and attribute classification, and retrieval.

The model first predicts the clothing landmarks, which are

then used to pool and/or gate local features over estimated

clothing landmarks. The local features are then concate-

nated with features from the whole clothing image for joint

prediction of categories, attributes and retrieval (learned by

optimizing the triplet loss). Jiang et al. [14] propose a

bi-directional cross-triplet embedding for the task of cross-

domain retrieval. More specifically, they break down the

triplet loss and assign different weights to intra- and cross-

domain losses. The network is fine-tuned for each cate-

gory separately, with the convolutional layers being frozen,

and only the last three fully-connected layers being fine-

tuned with the proposed loss. Ji et al. [13] propose a net-

work architecture which uses an attention mechanism to

bias the pooling across the spatial regions, with different

sub-networks for street and shop images. Gajic et al. [7]



Figure 2. Examples of the images contained in the Exact

Street2Shop dataset, demonstrating the domain shift between user

queries (left) and database images (right).

train a three column Siamese network using the triplet loss,

in which they separate the streams according to whether

they belong to the street set or the shop set, adapting the

weights for each domain individually.

Previous works in cross-domain fashion retrieval have

explored various ways to remove background clutter and fo-

cus on the main subject of the image. Kiapour et al [19] use

selective search to generate high-confidence region propos-

als in their attempt to remove background clutter. Huang

et al. [12] use selective search and an R-CNN model to

crop clothing from images using humans as cues, but with-

out considering clothing categories. Liu et al. [33] explore

variations of the FashioNet model in which they compare

using fashion landmark regression, human joint detection

or body part detection to gate and/or pool features from an

image. Zhang et al. [31] describe a weakly-supervised joint

detection and retrieval system for image retrieval that con-

siders various categories, e.g. dresses, furniture and toys.

Different from these works, our framework trains a detec-

tor for fine-grained clothing detection, as opposed to using

a global clothing detector [12], and uses it to select a sin-

gle region to represent an image. Additionally, we consider

the retrieval of multiple clothing categories using a single

model, and do not limit ourselves to images of upper-body

clothing [12].

3. Our approach

Our approach aims to tackle the scenario described in

[19], in which the following assumptions are made:

• the ground-truth fashion item categories are known for

both query and database images;

• the ground-truth bounding box for the query image is

provided by a motivated user of the service;

• the ground-truth bounding box for database images are

unknown.

We propose an efficient detect-then-retrieve approach that

consists of a two-stage pipeline: (i) clothing item detection

and (ii) clothing item retrieval. We describe each of these

stages next.

3.1. Clothing item detection

We train a clothing item detector using the Mask R-CNN

[9] detection architecture. This detector is trained to de-

tect different clothing categories, as opposed to detecting

one generic “clothing” category. Once trained, we apply

the detector to all database images. To obtain a single crop

for each image, it is first fed into the detector to produce

a set of detection proposals. Each proposal has an object-

ness score and a predicted category. We filter the propos-

als to keep only those proposals with an objectness score

greater than 0.5 and that have been categorized as belonging

to the ground-truth category for that image. We then select,

from this filtered list, the proposal with the highest category

score. If the filtering process produces no proposals (i.e. if

there are no proposals with an objectness score greater than

0.5 that have been predicted as belonging the ground-truth

category for that image) then the bounding box is set to be

the whole image. The resultant bounding box is then used

to crop the database image.

3.2. Clothing item retrieval

Network architecture. Our baseline retrieval architecture

is based on the end-to-end RMAC pipeline [8]. We used

ResNet50 [11] as our baseline feature extractor fθ, which

generates a feature map X = [x1; . . . ;xk], where xi ∈ R
N

is the feature descriptor of the image I at the spatial location

i. To aggregate the various descriptors, we replace R-MAC

pooling with Generalized Mean (GeM) pooling [24],

x =

(

1

k

k
∑

i=1

(xi)
p

)

1

p

(1)

to obtain a single descriptor for each image. The descrip-

tor is then fed through an l2 normalization layer, a fully

connected layer, and another l2 normalization layer, to pro-

duce the final embedding xI = fθ (I) . I is the query or the

database image, fθ is a parametric function that computes

the image embedding, and θ are the trainable parameters of

f . Figure 3 shows the schematic of the approaches used to

optimize the weights using the triplet and AP loss functions,

which we describe next.

Learning with the triplet loss

We train a first model using the three-stream Siamese net-

work architecture, which accepts a triplet of images: a

query, a positive example (in our case another image with a



Figure 3. Schematic of architectures for proposed retrieval model trained with a triplet loss (top) or AP loss (bottom).

matching product ID), and a negative example. The weights

between the different columns are shared.

Gordo et al. [8] show the improvement in ranking perfor-

mance when the network is pre-trained with a classification

loss. Therefore the network is first optimized to predict the

product ID from an image. Afterwards, the weights are op-

timized with the triplet loss,

L(Iq, I
+, I−) =

1

2
max

(

0,m+
∥

∥q − d+
∥

∥

2
−
∥

∥q − d−
∥

∥

2
)

,

(2)

where Iq and q, I+ and d+, and I− and d− are the image

and feature descriptors for the query, positive, and negative

images, respectively. This loss encourages the following

property to hold: sim(q, d+) < sim(q, d−)− ρ [10].

Learning with the AP loss

We also consider the AP loss described in [1] which directly

optimizes the average precision (AP) for each query exam-

ple. Let X be the set of all image representations and let

Q ⊂ X and S ⊂ X be the sets of query and database repre-

sentations respectively. Given a user “street” query q ∈ Q,

let S+
q and S−

q be the sets of database images with matching

and non-matching product IDs respectively. Given a list of

items ri ∈ S+
q ∪ S−

q sorted by their increasing distance to

q, average precision (AP) is defined as:

Prec@K =
1

K

K
∑

i=1

1
[

ri ∈ S+
q

]

(3)

AP =
1

∥

∥S+
q

∥

∥

N
∑

K=1

1
[

rk ∈ S+
q

]

· Prec@K (4)

as defined in [10]. Though the AP metric cannot be directly

optimized as it is non-differentiable, one can use the his-

togram binning approximation introduced by Ustinova and

Lempitsky [26] to obtain a differentiable loss.

Model ensembles

Creating ensembles of deep models is known to improve

performance significantly for tasks such as image classifi-

cation [15]. To generate an ensemble image representation

r for image retrieval, we perform feature-level fusion us-

ing representations rtl and rapl extracted from two models,

one trained using the triplet loss and the other trained using

the AP loss. To obtain a single representation we perform

feature-level fusion by concatenating both as r̃ = [rtl; rapl].
We then l2-normalize r̃ to obtain r. In section 4 we com-

pare the performance of both individual representations and

their ensemble.

3.3. Querying the database

Each database image is cropped as described in sec-

tion 4.2 and an image representation d is extracted using

the model described in 3.2. In section 4 we evaluate the

impact of applying the detection module to the database on

retrieval performance.



Figure 4. Detection examples for the query (left) and database (correct (middle) and incorrect(right) ) images in the Street2Shop dataset.

To conduct a query, the query image is cropped using its

ground-truth bounding box and its representation q is ex-

tracted using the retrieval model. The similarity between

query descriptor q and database descriptor di is computed

as the inner product between their embeddings:

sim(q, di) = q⊤di. (5)

These similarity scores can then be sorted to return a list of

decreasingly relevant database items.

4. Experiments

4.1. Datasets

ModaNet [32]. ModaNet is a recently introduced large-

scale dataset that contains street images of fashion items.

The dataset consists of a total of 55,176 images and pro-

vides polygon labels for 13 types of clothing items. The

dataset currently contains annotations only for the training

split of the dataset. Therefore we randomly chose 5% of the

images to use as a validation set. Note that this dataset does

not contain product ID information and thus cannot be used

to train and/or evaluate retrieval models. We use it to train

our detector.

Exact Street2Shop. Kiapour et al. (2015) introduced

the Exact Street2Shop [19] dataset to tackle the challeng-

ing problem of Street-to-Shop clothing retrieval. Though

various datasets, like DARN [12], were released for solv-

ing this problem, we chose the Exact Street2Shop dataset as

it contains over 400,000 shop images, over 20,000 “street”

images, and images have been labelled with 11 different

clothing categories. In addition, the query images have been

annotated with bounding boxes of clothing items. Figure 2

shows examples of “street” and “shop” images from the Ex-

act Street2Shop.

4.2. Clothing item detection

Though Exact Street2Shop dataset contains bounding

boxes for the query items, there is only roughly 40,000

of boxes as compared to the ModaNet, which contains a

55,000 images each labeled with various piece of clothing.

Thus we trained our Mask R-CNN [9] clothing item detec-

tor using the ModaNet dataset. In order to ensure the qual-

ity of the detector, we use the AP at 50% Intersection over

Union (IoU) metric to evaluate its performance. Though

the validation sets are not equivalent and results not directly

comparable, the detector achieves similar overall and per-

category quantitative performance as compared to the best

detection models reported in [32]. In particular, our model

achieves an overall mean AP of 0.893, as compared 0.82

mAP [32]. We used the Mask R-CNN model with a Fea-

ture Pyramid Network (FPN)[16] backbone based on the

ResNext-101 architecture.

Qualitative Results In Figure 4, we show detection ex-

amples for the “street” and “shop” domains from the Ex-

act Street2Shop dataset which is used for retrieval training

and experiments. As is expected, fashion item detection for

query images is quite good as they are similar to images in

the ModaNet dataset. For the case of “shop” images we ex-

perience a slight domain shift as these images are a mixture



metric Tri DB F Tri DB C mAP DB F mAP DB C Tris mAPs Fulls Crops

mAP 0.1819 0.1928 0.2262 0.1914 0.2082 0.2238 0.2684 0.2339

bags Acc@1 0.2518 0.3094 0.3309 0.2806 0.3022 0.3237 0.3813 0.3597

Acc@20 0.6115 0.5612 0.6115 0.5827 0.6043 0.6691 0.6619 0.6259

mAP 0.0674 0.0809 0.0778 0.0874 0.1024 0.1072 0.1005 0.0942

belts Acc@1 0.0714 0.0952 0.0476 0.1190 0.1429 0.1429 0.1190 0.0952

Acc@20 0.3571 0.3095 0.2857 0.3810 0.3810 0.3333 0.3571 0.4286

mAP 0.4592 0.4644 0.4306 0.4253 0.4866 0.4548 0.5091 0.4954

dresses Acc@1 0.5166 0.5208 0.4834 0.4984 0.5403 0.5176 0.5606 0.5640

Acc@20 0.7162 0.7159 0.6674 0.6593 0.7302 0.6806 0.7407 0.7204

mAP 0.2121 0.2084 0.1167 0.2371 0.2189 0.2053 0.1723 0.2671

eyewear Acc@1 0.2586 0.2241 0.1379 0.3103 0.2586 0.2586 0.2069 0.3621

Acc@20 0.7069 0.8621 0.5862 0.8793 0.7759 0.6724 0.6897 0.9138

mAP 0.1301 0.1048 0.0719 0.0749 0.1294 0.0803 0.1382 0.1103

footwear Acc@1 0.1539 0.1384 0.0819 0.1052 0.1600 0.0963 0.1573 0.1478

Acc@20 0.4048 0.3671 0.2204 0.2453 0.4103 0.2464 0.3771 0.3416

mAP 0.2109 0.2957 0.1660 0.2761 0.2765 0.2574 0.2219 0.3274

hats Acc@1 0.2000 0.2615 0.2000 0.2462 0.2462 0.2308 0.2462 0.3077

Acc@20 0.7077 0.7077 0.5077 0.6769 0.7077 0.6769 0.7231 0.7077

mAP 0.1330 0.1563 0.1573 0.1606 0.1510 0.1705 0.1875 0.1818

leggings Acc@1 0.1510 0.1766 0.1852 0.1937 0.1681 0.1994 0.2251 0.2051

Acc@20 0.4758 0.4729 0.3533 0.3789 0.5071 0.3704 0.4843 0.4900

mAP 0.2088 0.2241 0.2645 0.2497 0.2323 0.2739 0.2771 0.2806

outerwear Acc@1 0.2348 0.2530 0.3018 0.2835 0.2530 0.3079 0.2988 0.3049

Acc@20 0.4329 0.4482 0.4726 0.4451 0.4634 0.4695 0.4909 0.4787

mAP 0.2081 0.2626 0.2251 0.2484 0.2341 0.2580 0.2310 0.2817

pants Acc@1 0.2727 0.3333 0.2727 0.2727 0.2879 0.3030 0.2727 0.3333

Acc@20 0.4091 0.5000 0.3788 0.4848 0.4545 0.4242 0.4091 0.5152

mAP 0.5420 0.5862 0.5433 0.5829 0.5968 0.5836 0.5890 0.6231

skirts Acc@1 0.6091 0.6320 0.5711 0.6294 0.6294 0.5990 0.6142 0.6802

Acc@20 0.7919 0.7944 0.7716 0.7741 0.7970 0.7944 0.8173 0.8020

mAP 0.3187 0.2988 0.3488 0.3265 0.3374 0.3600 0.4060 0.3687

tops Acc@1 0.3639 0.3425 0.3945 0.3777 0.4021 0.4128 0.4480 0.4266

Acc@20 0.5734 0.5933 0.6147 0.5765 0.6101 0.6009 0.6407 0.6162

mAP 0.2429 0.2614 0.2389 0.2600 0.2703 0.2704 0.2819 0.2967

average Acc@1 0.2804 0.2988 0.2734 0.3015 0.3082 0.3084 0.3209 0.3442

Acc@20 0.5625 0.5757 0.4972 0.5531 0.5856 0.5398 0.5811 0.6036

Table 1. Comparison of the mAP, Top-1, and Top-20 retrieval accuracy for the Exact Street2Shop dataset. The first four models represent

the ablation experiments in which the loss functions and database images were varied. Tri / mAP indicated whether a triplet loss or AP loss

was used in training of the network. DB F / C indicates whether the database images were un-cropped or cropped respectively. The last

four columns report the results for the various ensemble representations considered in our experiments. We list each ensemble and models

it combines in parentheses: Tris (Tri DB F / Tri DB C), mAPs (mAP DB F / mAP DB C), Fulls (Tri DB F / mAP DB F), and Crops (Tri DB

C / mAP DB C). Best models are highlighted in bold for both single (first four columns) and ensemble models.

of images with people modelling the item and images that

display the item by itself on a uniform background.

4.3. Image Retrieval

In our retrieval experiments, we explore the following as-

pects: (a) the effect of using the fine-grained clothing item

detector to crop database images on the retrieval accuracy;

(b) a comparison of the triplet and AP losses; and (c) the

effect of combining learned representations on the retrieval

performance.

We Followed the evaluation protocol of Kiapour et al.

[19], the experiments are restricted to within category re-

trieval. For each set of experiments, we report the mean

average precision (mAP), defined by Eq. 4 and the Top-k

retrieval accuracy (Acc@K):

Acc@K =
1

N

N
∑

i=1

1
[

S+
q ∩ SK

q

]

, (6)

where 1
[

S+
q ∩ SK

q

]

is an indicator function that equals 1
if the set of the top-K retrieval images contains a database

image that matches the product ID of the query image.

Implementation details

The retrieval models and both losses are implemented in

Python using the PyTorch [21] framework. During training,



each image either has its smallest side (AP loss) or largest

side (triplet loss) re-sized to 800 pixels and is augmented

with the following set of image transformations: color dis-

tortion, random tilting, random skew, and random cropping

to 800 × 800 (AP loss). Each model was initialized with

the network weights pre-trained on the ImageNet dataset

and trained until convergence. For the triplet loss, we fol-

low the weight update scheme of Gordo et al. [8], which

allows for use of high-resolution images in training of the

network. Given an image triplet, the gradients of L with

respect to d, d+, and d− are computed sequentially and ag-

gregated over the triplet and the batch of size b. For the AP

loss, we follow the weight update scheme outlined in [1], al-

lowing for use of large images and arbitrary batch sizes. For

both the triplet and AP losses, images from arbitrary cate-

gories are used in mini-batches. That is, we do not train on

a per-category basis but ignore category information during

the retrieval training phase and train a single model. This

model is then applied on a per-category basis during the

testing phase.

Effect of object localization

In the first set of ablation experiments, we explore the ef-

fect of obtaining the database crops on the learned repre-

sentations. If you compare column 1 to column 2 and col-

umn 3 to column 4 of Table 1, we can see that on aver-

age cropping the database images aids the retrieval when

trained with both the triplet loss and the AP loss. The per-

formance gain is found to be more significant for the AP

loss (columns 3 and 4). In particular we see significant im-

provements in retrieval performance for the eye-wear and

pants categories, which are often modeled by a person or

with a mannequin. Despite the good detector performance

in the footwear category, the triplet loss loses some perfor-

mance. The AP loss improves by 2 % in retrieval accuracy

(footwear category results of columns 3 and 4), which is

still worse than the triplet loss. This can be explained by

examining the database images for the footwear category

and seeing that most of the images are already very clean

photos displaying the particular shoe product on a simple

background, and thus there is not much to be gained by

further cropping the image. Similarly, we see little to no

improvement in retrieval accuracy in categories that often

occupy a large portion of the image, such as dresses, skirts,

and tops.

Effect of different retrieval losses

In the second set of ablation experiments, we explore the

effect of different training loss functions on the learning

process. Table 1 shows that training the retrieval network

with the AP loss achieves similar results in terms of mAP

Single model Per-category

Categories Wang et al. Our best Our best Kiapour et al.

[27] model ensemble [19]

Bags 46.6 56.1 62.6 37.4

Belts 20.2 31.0 42.9 13.5

Dresses 56.9 71.6 72.0 37.1

Eyewear 13.8 86.2 91.4 35.5

Footwear 13.1 36.7 34.2 9.6

Hats 24.4 70.8 70.8 38.4

Leggings 15.9 47.3 49.0 22.1

Outerwear 20.3 44.8 47.9 21.0

Pants 22.3 50.0 51.5 29.2

Skirts 50.8 79.4 80.2 54.6

Tops 48.0 59.3 61.6 38.1

Average 30.2 57.6 60.4 30.6

Table 2. Comparison of our best performing single and ensemble

models to the state-of-the-art on the Street2Shop dataset.

Categories VAM [28] P. Non-Sh.[30] P. Sh. [30] Ours

Dresses 0.621 0.571 0.583 0.716

Outerwear N/A 0.500 0.509 0.448

Skirts 0.709 0.736 0.723 0.794

Tops 0.523 0.467 0.470 0.593

Table 3. Comparison of the Top-20 retrieval accuracy for methods

which considered a subset of the categories.

and Top-1 retrieval accuracy, however we can see that net-

works trained with the AP loss show worse results in terms

of Top-20 retrieval accuracy. We hypothesize that this is be-

cause the AP loss has a small gradient for misranked images

later in the ranking (as such images have a small impact on

the AP) and therefore the supervisory signal to the model

during training is weak. This is perhaps mitigated by using

detection, as we see that the drop in Top-20 accuracy from

triplet to AP loss is much lower when the database images

are cropped.

Effect of model ensembling

Table 1 shows results for different ensembles. As is ex-

pected, we observe noticeable improvements in mAP, Top-

1 and Top-20 accuracy in all cases. Significant improve-

ment can be obtained when two models trained with dif-

ferent losses are combined. Ensembles of models trained

with either the triplet or AP loss, with either cropped and

un-cropped images, improve the performance over their re-

spective single models with cropped database images. A

more significant improvement is achieved when one of the

models is trained with the triplet and the other with the AP

loss. When combining models trained using the AP loss and

triplet loss (and each trained with cropped images), we see

absolute improvements of 3.5 % mAP, 4.5 % Top-1 accu-

racy, and 2.8 % Top-20 accuracy when compared with the

best individual model trained on cropped images.



Figure 5. Qualitative retrieval examples. The images in the left column are examples of image queries with their ground-truth bounding

boxes shown in yellow. To the right of them are database images ordered by decreasing similarity to the query. Images with green borders

match the product in the image. The last row shows an example of an image for which there was no ground truth match in the top 7

retrieved images.

Comparison to the state-of-the-art

Table 2 compares the best single and ensemble models to

the previous state-of-the approaches that either (a) trained

a single model for all categories, or (b) used a set of mod-

els that were fine-tuned per category. Both of our models

perform significantly better in terms of Top-20 retrieval ac-

curacy per-category as well as overall.

Table 3 compares our best single model with works that

only trained and evaluated their models on a subset of the

categories of the Exact Street2Shop dataset. Our best sin-

gle model outperforms the results of [28] and [30] for the

dresses, skirts, and tops categories. Note that [28] and [30]

train separate models for each category.

5. Conclusion

In this paper, we propose a memory-efficient detect-

then-retrieve framework for cross-modal fashion image re-

trieval, which consists of fine-grained clothing detection

followed by retrieval. We show that our framework achieves

state-of-the-art results and outperforms category-specific

models. Additionally, we explored the retrieval perfor-

mance of our models and showed that the triplet and AP

loss are complementary and, when combined, lead to sig-

nificant performance gains.
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