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Abstract

In this paper, we introduce attribute-aware fashion-
editing, a novel task, to the fashion domain. We re-define the
overall objectives in AttGAN [5] and propose the Fashion-
AttGAN model for this new task. A dataset is constructed
for this task with 14,221 and 22 attributes, which has been
made publically available. Experimental results show ef-
fectiveness of our Fashion-AttGAN on fashion editing over
the original AttGAN.

1. Introduction

As we’re witnessing great booming of online fashion
shopping, deep learning models such as GAN models[3]
have been widely applied to fashion industry, such as vir-
tual try-on[4], domain adaptation[1], text2image [8] and so
on. In this paper, we introduce a novel task into the fash-
ion domain, namely attribute-aware fashion-editing, which
edits certain attribute(s) of the image of a fashion item and
preserve other details as intact as possible. This task opens
a new door of possibilities for user-driven fashion design,
and is potentially beneficial to virtual try-on, outfit recom-
mendation, visual search and so on. Although previous
work on human face editing is relevant to our proposed
task [7, 5, 2, 6],they are not directly applicable to fashion-
editing, since now the scope of editing is not confined to a
small area in human faces, but to much larger area of a fash-
ion item, such as an entire sleeve or collar. To bridge these
gaps, we present preliminary results of Fashion-AttGAN, a
variant of face attribute-editing AttGAN. We define differ-
ent overall objectives, and break the overly-strict constraint
from the auto-encoder on the generator so that it can gener-
ate more “wild” samples with dramatic changes.

The contributions of our work are three folds: 1) We in-
troduce the task of fashion-editing into the fashion domain.
To our best knowledge, this is the first time such task is es-
tablished and explored in this area. 2) We adapt the original
AttGAN to our task, and improve the model by re-defining
the overall objectives. 3) We build a large-scale fashion
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dataset of 14,221 images and 22 attributes, which has been
made publically available on Github.

2. Method

Our Fashion-AttGAN model is a variant of previous fa-
cial attribute-editing model AttGANI[5]. Both models in-
clude an encoder network F, a generator network G, a clas-
sification network C' and discriminator network D, where
C and D share parameters except the last layer. For details
of the structure of the model, please refer to AttGAN [5].
The main differences between our model and AttGAN are
the overall objectives: we define three objectives of differ-
ent optimization scopes:
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In AttGAN, the loss objectives in equation 2 and 3 are
of the same scope for both encoder and decoder networks.
The training details of Fashion-AttGAN is summarized in
Algorithm 1.

The intuition behind our objective functions is that
by back-propagating the classification error Lo (x;) of
attribute-edited generated sample x; to as back as the gener-
ator network, the model is empowered with more flexibility
to generate “wild” samples related to different attribute ed-
its, in contrast with propagating the errors back to encoders,
which greatly limited the power of the generator network
to generate novel samples, due to the auto-encoder path
in AttGAN. This may not be a problem in face attribute-
editing, since the editing is focused on small areas of human
faces. However, when it comes to fashion-editing, origi-
nal AttGAN does not allow generator sufficient flexibility
to edit much larger areas, such as the length of the sleeves.



(a) Attribute-Editing Results of AttGAN

,E

(b) Attribute-Editing Results of Fashion-AttGAN
Figure 1: Clothing Attribute-Editing Results. From left to right columns:(1) original image, (2) reconstructed image, (3-6)

varied sleeve lengths, (7-24) varied colors.

3. Experiments & Results
3.1. Dataset

In this study, we constructed a dataset based on the VI-
TON dataset[4, 9] which is publically available . Each
entry in the dataset consists of an image from VITON,
and a vector of attributes, such as “no-sleeve”, “short-
sleeve”,“red”,“blue” and so on. The attribute vector is pre-
dicted with our in-house classification model. The dataset
includes 14,221 images, and 22 attribute values. In the fu-
ture, we plan to publish a larger dataset with more images
and more attributes.

3.2. Experimental Results

The comparative results of fashion-editing between our
Fashion-AttGAN and AttGAN are depicted in Fig.1. From
the figures we can observe that: (1) Color edits: the
original AttGAN can edit colors of clothes with lighter
shades, but not so well for darker shades (row:(1,4,5),
column:(7-22)). Whereas our Fashion-AttGAN can mod-
ify clothes of almost any shade to other colors as shown
in Fig.1(b); (2) Sleeve length: original AttGAN does not
present any sleeve-length changes even with careful param-
eter tuning (Fig.1(a),column:(3,4,5,6)).On the contrary, our
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Fashion-AttGAN can generate vivid samples of different
sleeve lengths and preserve the patterns in original sam-
ples (shapes,colors, logos, textures) as much as possible
(Fig.1(b)).

Algorithm 1 The training pipeline of Fashion-AttGAN
Require: 0g,0.0p,0¢ are initial image encoder network,
generator network, discriminator network and attribute clas-
sification network parameters. £(+) is a binary cross-entropy
loss for an attribute.

1: while 0 has not converged do

2: Sample z, ~ p, a batch from real image data;

3: z + E(xg)

4: xs <+ G(z,a)

5: x; < G(2,b)

6 Lo(wa) ~ Eoonpya, o1 Uai, C(a))]

T EC(?EZ,) ~ Ema’\‘pdataﬁb’\’pattr [Z?:l E(b“ O(xin))]
8: Lago, ~ —= S [logD(zq) + log(1 — D(x;))
9: ['ad'ug ~ % E:il[log(l - D(xl;))

10: Lyee ~ ]Ex“diam ||q)(xa) - (I)(x&)”%

11: GD,HC — —veD,GC(ﬁadvd +£C(xfl))

12: 0r,0q —Vog,0c (Eadvg + Erec)

13: (Ze] — —Vog (,Cc(xg))
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